Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS

PDF Version Also Available for Download.

Description

Recently, a great deal of interest has developed in manufacturing processes that allow the monolithic integration of MicroElectroMechanical Systems (MEMS) with driving, controlling, and signal processing electronics. This integration promises to improve the performance of micromechanical devices as well as lower the cost of manufacturing, packaging, and instrumenting these devices by combining the micromechanical devices with a electronic devices in the same manufacturing and packaging process. In order to maintain modularity and overcome some of the manufacturing challenges of the CMOS-first approach to integration, we have developed a MEMS-first process. This process places the micromechanical devices in a shallow trench, ... continued below

Physical Description

10 p.

Creation Information

Smith, J.H.; Montague, S.; Sniegowski, J.J. & Murray, J.R. October 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Recently, a great deal of interest has developed in manufacturing processes that allow the monolithic integration of MicroElectroMechanical Systems (MEMS) with driving, controlling, and signal processing electronics. This integration promises to improve the performance of micromechanical devices as well as lower the cost of manufacturing, packaging, and instrumenting these devices by combining the micromechanical devices with a electronic devices in the same manufacturing and packaging process. In order to maintain modularity and overcome some of the manufacturing challenges of the CMOS-first approach to integration, we have developed a MEMS-first process. This process places the micromechanical devices in a shallow trench, planarizes the wafer, and seals the micromechanical devices in the trench. Then, a high-temperature anneal is performed after the devices are embedded in the trench prior to microelectronics processing. This anneal stress-relieves the micromechanical polysilicon and ensures that the subsequent thermal processing associated with fabrication of the microelectronic processing does not adversely affect the mechanical properties of the polysilicon structures. These wafers with the completed, planarized micromechanical devices are then used as starting material for conventional CMOS processes. The circuit yield for the process has exceeded 98%. A description of the integration technology, the refinements to the technology, and wafer-scale parametric measurements of device characteristics is presented. Additionally, the performance of integrated sensing devices built using this technology is presented.

Physical Description

10 p.

Notes

OSTI as TI96014834

Source

  • SPIE conference on micromachining and microfabrication, Austin, TX (United States), 14-15 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: TI96014834
  • Report No.: SAND--96-2025C
  • Report No.: CONF-961086--3
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/380312 | External Link
  • Office of Scientific & Technical Information Report Number: 380312
  • Archival Resource Key: ark:/67531/metadc677004

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 13, 2016, 1:04 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Smith, J.H.; Montague, S.; Sniegowski, J.J. & Murray, J.R. Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS, report, October 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc677004/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.