Paper Number:
DOE/METC/C-97/7270

Title:
Hot Gas Desulfurization PDU Project

Authors:
L.A. Bissett (METC)

Conference:
Advanced Coal-Fired Power Systems '96 Review Meeting

Conference Location:
Morgantown, West Virginia

Conference Dates:
July 16-18, 1996
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
HOT GAS DESULFURIZATION PDU Project

Capabilities

The process development unit (PDU) being constructed at METC will fill the strategic role of bridging the gap between past/current small-scale testing and future large-scale demonstrations. With the capability for both fluid-bed and transport reactor contacting, the project will provide a site for testing/proving hot gas desulfurization (HGD) process configurations and demonstrating sorbent suitability. Process conditions will be representative of anticipated commercial applications in terms of temperatures, pressures, compositions, velocities, and sorbent cycling.

The project utilizes a coupled configuration with continuous circulation of a desulfurization sorbent between the absorption (fuel gas) and regeneration (air) sides of the process. Specially fabricated high-temperature slide valves in the circulation standpipes regulate the flow (circulation) of sorbent between the absorber and regenerator. Inert gases (steam and/or nitrogen) are used to fluidize the sorbent in the standpipes above the valves and to prevent fuel gas and air intermixing. Removable spool pieces and piping along with other vessel design features (such as submerged/freeboard risers and underflow/overflow standpipes) have been incorporated to expand potential testing capabilities. Since both the absorber and regenerator sides have fluid-bed and transport reactor capabilities, four principle configurational modes of operation are possible. Sorbent is circulated by reactant gases (i.e., fuel gas and air) in transport reactor modes, and inert gases in fluidized-bed modes.

Opportunities

- Advance/leverage reactor system R&D
 - Protect/gain intellectual property
 - Eventual retrofit to applications other than HGD

- Share process technology development
 - Test planning
 - Training and observation of operations
 - Data reduction and analysis

- Qualify sorbent for commercial-scale demonstrations
HOT GAS DESULFURIZATION PDU PROJECT

Key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption temperature</td>
<td>1,000 - 1,200 °F design</td>
</tr>
<tr>
<td>Regeneration temperature</td>
<td>1,100 - 1,400 °F design</td>
</tr>
<tr>
<td>Operating pressure</td>
<td>400 psia maximum</td>
</tr>
<tr>
<td>H₂S concentration</td>
<td>0.5 - 1 vol% typical</td>
</tr>
<tr>
<td>Sorbent circulation rate</td>
<td>2,000 - 5,000 lb/hr typical</td>
</tr>
<tr>
<td>Sorbent inventory</td>
<td>1,000 - 2,000 lb typical</td>
</tr>
<tr>
<td>Sorbent cycles per day</td>
<td>50 - 100 typical</td>
</tr>
<tr>
<td>Sorbent size</td>
<td>50 - 300 microns typical</td>
</tr>
</tbody>
</table>

The Project

PDU Flow Diagram

The PDU being constructed at METC