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ABSTRACT 

The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, whch 
can be separated into high-level waste (HLW) and low-level waste (LLW) fiactions. Since the unit costs of 
treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW 
are being developed. A key process currently being studied to reduce the volume of HLW sludges is called 
enhanced sludge washug (ESW). This process removes, by water washes, soluble constituents such as sodium 
salts, and the washed sludge is then leached with 2-3 M NaOH at 60- 100 O C to remove nonrdoactive metals 
such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after 
radionuclides such as '37Cs have been removed. Results of bench-scale tests have shown that the ESW will 
probably remove the required amounts of inert constituents. While both experimental and theoretical results 
have shown that leaclng efficiency increases as the time and temperature of the leach are increased, increases 
in the caustic concentration above 2-3 Mwill only margrnally improve the leach factors. However, these tests 
were not designed to validate the assumption that the caustic used in the ESW process will generate only a 
small increase (1 0 Mkg) in the amount of LLW; mstead, the test con&tions were selected to maximize leaching 
in a short period and used more water and caustic than is planned during full-scale operations. Even though 
calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be 
reasonable, a detailed study of the amount of LLW from the ESW process is still required. lf the LLW 
analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt 
process or caustic recycle would be needed. Finally, experimental and theoretical stu&es have clearly 
demonstrated the need for the control of solids formation during and after leaching. 
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1. INTRODUCTION 

By the end of 1995 , the chemical reprocessing of spent reactor fuel and irradiated targets had generated 
atotal of 215,300 m3 of solid high-level waste (HLW) and 158,100 m3 of liquid HLW.' The HLW, which is 
stored in underground tanks, contains the nonvolatile fission products, activation products, residual uranium, 
plutonium, and other transuranics (TRUs). After the HLW is more than a year old, the radioactivity comes 
primarily fiom I3'Cs in the liquids and %r in the solids. The relatively small amount of TRUs can be found 
in the solids. PUREX reprocessing of s p t  fuel produces an acidic liquid waste. At Hanford and the Savannah 
River Site (SFG), thls HLW has been neutralized with sodium hydroxide, and so&um nitrite has also been 
added to prevent corrosion during storage in carbon-steel tanks. Neutralization of the HLW formed hydrated 
oxides, which precipitated and formed a sludge in the storage tanks. In cases where the neutralized supernatant 
liquids were concentrated sufficiently by evaporation, sodium nitrite and sodium nitrate crystallized to form 
salt cakes. 

The Department of Energy (DOE) is required by law to treat and safely dispose of its rahoactive tank 
wastes. It is expected that appropriate separation technologies will be used to &vide the tank contents into 
HLW and LLW fiactions. At Hanford, the pretreatment or separation steps are expected to generate 
78,000,000 kg (78 Mkg) of LLW and 9.3 Mkg of HLW.' After these separation or pretreatment steps have 
been completed, the segregated waste will be immobilized and isolated geologically. After the HLW has been 
concentrated at Hanford and the SRS, it will be incorporated into borosilicate glass, which is acceptable for 
permanent @osal in a geologic repository. The LLW will be immobilized in grout or glass and stored on site. 
Table 1 Iists the current volume of tank waste as well as the projected volume and number of HLW canisters.' 

Table 1. Tank inventories (1995) and projected volume 
of glass canisters 

Volume of tank waste in 1995, 1000 m3 Hanford SRS 

Liquid 

Solids 

HLW volume after separations and vitrification 

Projected cumulative volume of HLW glass 
canisters, 1000 m3 

89.839 

143.668 

Hanford" 

14.277 

58.700 

67.800 

SRSb 

3.720 

Estimated cumulative number of HLW canisters 12,442 5,944 
"Based on assumptions in Reference 1: canister has &meter of 0.61 m and is 4.50 m 

long (about 2 ft in &am by about 15 ft long). The nominal glass volume is 1 . 1  m3 with a 
minimum waste oxide loading of 25 vol % (excluding s d u m  and silicon). 

'Based on assumptions in Reference 1: canisters are 0.6 m in diam by 3 m long (about 
2 ft in diam by about 10 ft long). Each canister is assumed to contain 0.625 m3 of glass made 
with HLW fiom the reprocessing of spent nuclear fuel at SRS. The glass incorporates 
36 wt % oxides from waste. 
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Technology development effoIts have focused on volume reductions of the HLW because the costs (per 
kilogram of waste oxide) of processing, immobilizing, and lsposing of HLW are considerably higher than 
those for its LLW counterpart, as shown in Table 2. The primary incentives to reduce the total volume of 
HLW glass include a lower overall life-cycle cost and the limited availability of repository space. A process 
to reduce the volume of HLW should be cost effective if the amount of additional LLW generated is less than 
33 times the amount of HLW volume reduction. From Table 2, a doubling of the pretreatment cost for HLW 
can be paid for with a 1% decrease in HLW volume (i.e., $28/$2126). 

HLW volume can be reduced by various means, such as loading as much waste into the glass as possible. 
Technology development efforts are currently under way to improve glass formulations so that maximum waste 
loadmgs can be achieved. However, modifications to the glass formulations are expected to be only partially 
effective. Another approach is to separate the more abundant inert constituents, such as sodium and aluminum, 
from the radionuclides in the sludges. This process would also remove chromium, sulfate, and phosphate, 
which can cause vitrification problem? In 1993, the DOE considered three separation options for the Hanford 
sludges. The treatment options3 included simple sludge washing, enhanced sludge washing, and advanced 
separations. Simple sludge washmg uses only water or dilute sodium hydroxide with corrosion inhibitors such 
as sodium nitrite. Enhanced sludge  was^ (ESW) refers to simple sludge washing that is followed by caustic 
leaclng with 2-3 MNaOH at an elevated temperature. The leached solids are then washed with dilute NaOH 
to remove the dissolved components and the added NaOH. Advanced separations consist of complete 
dissolution, if possible, followed by extensive radionuclide separation. 

Table 2. Comparison of LLW and HLW management costs 

Hanford" International Atomic Energy Agencyb - 
LLW HLW LLW HLW 
( $ h  ( $ & ? I  ($/m') ($/m3) 
wa ste Waste 
oxide) oxide) 

Pretreatment 16 28 

Immobilization 44 728 

Disposal 4 1,370 

Total 64 2.126 

600-6,800 450,00O-1,400,000 

"Reference 4. 

'Reference 5 .  

An analysis of the options led to the conclusion that simple sludge washing would result in an 
unreasonably large volurhe of HLW and that advanced separation would require extensive technology 
development and complex facilities. Therefore, ESW was selected as the baseline process for sludge 
pretreatment. Several assumptions, h r  example, the minimum wash and leach factors6 in Table 3, were made 
about the ESW process, and verification of these assumpt~ons was required by the DOE. This paper discusses 
the results of these verification studies as well as other processing issues such as solids formation after 
leaching. 
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Table 3. Percentage removal of key elements by sludge washing“ 

Minimum Test results on a weighted basis (‘A) Overall wash 
goal and leach factor 

(%) Wash Leach Total 1996 1997 
8 Al 68 14 74 88 60 92 

Cr 64 44 32 77 40-65 86 

Po:- 74 55 35 90 70 95 
“Reference 6. 

2. ANALYSIS OF EXPERIMENTAL RESULTS 

2.1 Enhanced Sludge Washing 

As part of the verification studies, ESW studies 7-16 have been performed on sludge samples from 34 
Hanford tanks by researchers at Pacific Northwest National Laboratory (PNNL), Los Alamos National 
Laboratory (LANL), and Oak Ridge National Laboratory (ORNL). In the ESW study at OWL, multiple tests 
were performed on sludge samples fiom a few Hanford tanks to evaluate the effects of temperature, leaching 
time, and caustic concentration. In contrast, the PNNL and LANL researchers have tested numerous sludge 
samples under a smgle set of conditions, which were peridcally modified as new results were obtained. While 
the ESW concept appears to be relatively simple, the ESW test procedure is quite complicated. In 1995, the 
ESW procedure consisted of 18 steps.” It should be noted that a small portion of each sludge sample 
undergoes extensive water washing without caustic leaching and that the remainder of the sample is only 
slightly washed before bemg subjected to the caustic leach tests. Therefore, none of the samples were subjected 
to the entire ESW process. 

While the PNNL and LANL procedures, as well as the ORNL tests, were quite reasonable for bench-scale 
experiments, they were not designed to mimic the expected full-scale operations. For example, the researchers 
used excessive amounts of water and caustic, as shown in Table 4. Theoretical calculations based on phase 
 equilibrium^'^ have deterrmned the minimum volumes of water and caustic that must be used to remove the 
soluble salts and key nonradioactive metals from sludge in Hanford tank S-101. In the test with real waste,I3 
the volumes of water and caustic were seven and five times larger than required by the calculations, 
respect~vely; these excessive liquid volumes permitted much shorter wash (0.5-1 h) and leaching (5 h) times. 
During large-scale operations, the additions of water and sodium should be kept to a minimum so that a 
reasonable amount of LLW will be generated, and the wash and leaching times can be expected to be longer 
than those used in the laboratory tests. It is also important to remember that the sludge samples that were 
leached were not washed extensively first. Note in Table 4 the large increase in the cumulative wash and leach 
factors from 1996 to 1997, even though only 8 of the 34 tanks were tested in 1997.’3,’6 It is possible that 
aational ESW tests on other tanks in 1998 can change these factors further. While results of past bench-sde 
experiments have demonstrated that the ESW will probably exceed the minimum goals for removing key 

generate an acceptable amount of LLW. It is unwise to draw conclusions about the contents of an entire tank 
based on a single test with a few grams of sludge. 

a constituents, as shown in Table 3, the tests have not established that the ESW can meet the removal goals and 
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Table 4. Amounts of water and sodium added during 
the ESW procedure 

Tank Wet Dried Water Water SOdiUm Initial 
sludge sludge added, added, added& sdum(g 

&) (g) initialwash lastwash Ndgdried Ndgdried 
( d i g  (mL/g sludge) sludge) * 
dried dried 

sludge) sludge) 

B- 106" 8.80 3.53 55 11 1.70 0.49 

BX-103" 7.41 5.24 29 41 3.61 0.11 

BY-llob 6.23 4.01 28 7 0.98 0.46 

C-104" 9.17 4.22 45 32 4.17 0.37 

C-105" 2.97 2.58 22 45 3.98 0.0061 

S-107' 5.71 3.40 32 33 4.28 0.26 

SX-108' 21.06 20.22 21 22 1.13 0.24 

SX-113" 3.25 1.63 39 51 6.50 0.034 

S-104' 5.14 4.85 18 31 2.16 0.019 

s-101' 6.27 4.00 45 18 2.35 0.28 

S-10ld 10.0 6.4 4.7 7.1 0.32 0.28 
"Reference 16. 

'Reference 1 1. 

'Reference 13. 

dBased on theoretical c:alculations using equilibrium constants (Reference 17). 

2.2 Sludge Washing Optimization 

Several DOE researchers are currently performing parametric studies on ESW to optimize the process 
for particular sludges and to providc a much more reasonable estimate of the LLW that will be generated by 
the washes and leaches. During these studies, the effects of process variables such as NaOH concentration, 
temperature, and leaching time on ihe efficacy of the caustic leaching process will be determined. The test 
conditions for these parametric studies are shown in Table 5. The goal of these tasks is to minimize the overall 
system cost by optimizing the leaching of the HLW to produce the appropriate amounts of wastes. As a 
starhng point, researchers are using the aluminum concentration in the sludge to determine the solidfliquid ratio. 1 
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Table 5. Current parametric studies for sludge leaching 

Parameter Proposed test points 
~~ ~ 

Caustic concentration, M 

Temperature, " C 

Leaching time, h 

60,80, 100 

5,24, 72, 168 

Table 6 shows the effect of leach behavior when the caustic concentration, the total volume of leach 
solution, the temperature, and the leaching time are increased.* It is important to note that the caustic 
concentmtion and leach time in Case 1 were higher than those in the typical ESW tests. In Case 2, the NaOH 
concentration, the solifliquid ratio, the temperature, and leach time were increased significantly from the 
values in Case 1.8 Table 7 shows the results of a second comparison, which involved only variations in the 
caustic Concentration.' An analysis of the results indicates that time and temperature play a large role in the 
increased leaching efficiency with this sludge. However, increases in the caustic concentration will only 
margmally improve the leach factors. Further support for these observations was obtained through simulations 
using equilibrium constants on sludge from Hanford tank S-10 1 .I7 The volume of NaOH that would be needed 

Table 6. Examples of effect of increasing NaOH concentration, solutiodsludge ratio, 
leach time, and leach temperature on S-104 sludge dissolution" 

Parameter Case 1 Case 2 

Sludge wt., g 1.49 1.10 

NaOH conc., A4 

NaOH vol., mL 

Leach temp., "C 

Leach time, h 

3.99 

15 

70 

21 

6.33 

30 

80 

126 

Original sludge Percent removed 

Case 1 Case 2 Component amc. (mdd 

Al 

Cr 

P 

140 

3.1 

2.5 

21 

98 

43 

96 

99 

96 

"Reference 8. 
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Table 7. Effect of'NaOH concentration on caustic leaching of S - l O P b  

Percent removal 

Component 3.99 MNaOH 6.33 MNaOH 

Al 

Cr 

P 

c s  

21 

98 

43 

97 

27 

97 

49 

99 
"Reference 8. 

?3ludge weight = 1.5 g; NaOH volume = 15 mL; leach temp. = 70°C; leach time = 21 h. 

to treat a l-g sample of S-101 sludge was calculated for the following temperatures and caustic concentrations: 
(1) 25°C and 1 MNaOH (60 mL), (2) 70°C and 1 MNaOH (20 mL), (3) 25°C and 3 MNaOH (17.3 mL), 
and (4) 70 "C and 3 MNaOH (5.7 mL). It is interesting to note that as the temperature was increased, the 
number of NaOH moles per gram of sludge was decreased by a factor of 3. However, an increase in the 
caustic concentration resulted in only a slight decrease in the number of NaOH moles per gram of S-101 
sludge. It is important to remember hat the caustic will eventually report to the LLW unless other treatment 
steps are taken to recycle this streani. 

2.3 Sodium Management 

During the initial evaluation of'the ESW process, it was assumed in the reference flowsheetI8 that only 
10 Mkg of sodium would be added during the ESW process. The total amount of sodium in the sludges in the 
Hanford single-shell tanks is approximately 8 Mkg.6p'9 Therefore, the reference flowsheet assumes a 125% 
increase in the amount that is from Ihe ESW process. However, all of the bench-scale tests have used much 
larger amounts of caustic than the reference flowsheet assumed, and the average increase in sodium was 
approximately 1300%. In the case of sludge from Hanford tank S- 10 1 , the equilibrium calculations indicated 
that an increase of 114% in the amount of sodium would be needed to leach all of the aluminum, while the 
ESW test on the S-101 sludge increased the amount of sodium by 840%. While the initial assumption appears 
to be reasonable based on the S-101 calculation, the 125% assumption must still be validated. Each 10% 
increase in the amount of caustic ~ised in the ESW adds $64,000,000 to the estimated cost to process and 
dispose of LLW, and a sodium increase of 1300% would more than double the amount of LLW. It must be 
reiterated that the ESW test condtions were chosen to perform the leaches quickly and efficiently; no 
implication is made that the full-scale operations would use these same conditions. 

The large amount of caustic that may be required raises the issue of sodium management. DOE 
researchers have developed two technologies that can limit the amount of sodium to be immobilized as LLW. 
The k$ technology involves the cleim salt process, which uses multiple fractional crystallizations of sodium 

nitrate to produce a decontaminatec salt product from liquid waste or supemate, which is primarily sodium 
nitrate. Most of the radioactiwty in the supernate is due to '37Cs. In a test with supernate from W o r d  tank 
AW-10 1 ," an average cesium deccmtunination f'actor OF) of 2 1 was obtained for each stage, and a cumulative 

6 



DF of 4 x lo6 was obtained after five stages. No additional separation process was used except for filtration 
of the initial acidified waste feed to remove undissolved solids. However, before t h ~ s  technology can be used 
to reduce the amount of sod~um to be immobilized, the Environmental Protection Agency must set limits that 
will permit free release of clean sodium nitrate. The second promising technology involves the use of 
electrochemical processes, which can generate clean sodium nitrate or sodium 

2.4 Awareness of Solids Formation and Control a 

The chemistry of sludge dssolution and leachate handling is complex. At the end of the ESW process, 
the remaining solids are considered to be HLW, while the potentially saturated solutions are defined as LLW 
after cesium has been removed. However, solids will form in the solutions as they are permitted to cool or as 
they are mixed with other solutions. The leachates can result in the formation of crystalline solid precipitates 
and gels, which can cause significant processing problems. Therefore, a controlled precipitation may be 
r-ed since the amount of caustic needed to prevent solids formation, as shown in Fig. 1 :3 is unacceptably 
large at 200 L of 3 MNaOH per kg of aluminum. Clearly, the treatment of LLW liquid and LLW solids from 
the ESW process will be necessary. 

ORNL DWG 96C-353R 
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Fig. 1. Calculation of T-104 caustic leaching: OH-, initially 3 m at 75°C; ambient temperature, 
25°C. 
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Sludges and supemates contain% phosphates offer addtional challenges. Phosphate is typically present 
in the form of insoluble compounds 2nd must be removed by the metathesis of water-insoluble metal phosphates 
to insoluble hydroxides and solublc: phosphates. An example of this reaction is shown for iron phosphate in 
the following equation: 

FePO,(s) + 3NaOH(aq) - Fe (OH)&) + Na,PO,(aq). 

However, addtional problems are generated when an effort is made to solubilize phosphate, since 
phosphate solubility is very sensitivl: to temperature. After the leach at elevated temperatures, the phosphate 
may reprecipitate as a sticky gel as the liquid is cooled. The presence of fluoride in the tank can also greatly 
increase the complexity. Gels of natrophosphate, Na,(P0,),F-19H20, have been observed in leached solutions 
of sludge from tank T-104. When this substance was wet, it resembled a gel; it was soft and stuck to the 
sample container walls. On drymg, it appeared as a white mass. 

Addxtional solids formations have been observed during sludge washmg tests of sludge samples from tanks 
C-105, C-107, C-108, SX-113, B-202, and C-104.' Upon processing and cooling, solids formed in 7 out of 
a total of 8 filtered sludge washing solutions (from different tanks) that were tested. With C-105 and C-107 
tests, a clear gel-like material formed in the leachates.. Wash solutions from the C- 105 and C-107 tests also had 
some clear masses of sorbents. The lizhate from the C-108 test developed a mass of gel-like material, as well 
as some material that appeared to be more crystalline. The wash solutions from the C-108 test developed a 
small amount of filmy fibrous material. The filtered leachate from the SX-113 test generated a significant 
amount of particulate material that appeared to be semigelatinous when suspended. Scanning electron 
microscopy with energy-dqersive X-ray analysis showed that these particles contained sodium and silicon. 
These particles could be any of a host of sodium silicates in the NaOH-Si0,*H20 system. The test with sludge 
from B-202 also produced particu14ite material containing bismuth, a principal component of this sludge.24 

Additional evidence of the prob [ems with solids formation is the fact that several cross-site transfer lines 
are plugged at Hanford. This pluggage, which occurred following the transfer of hot, saturated solutions that 
were allowed to cool during transfer, has resulted in the abandonment of these transfer lines. 

As a result of these observed pr~~blems, an alternative flow~heet,~ has been proposed, based on the Bayer 
process in the aluminum industry. In this flowsheet, the sludge is leached at elevated temperatures and the 
aluminum, phosphate, and silicates in the leachate LLW stream are intentionally precipitated. This process 
may be aided by the addtion of lime (to precipitate the anions) and flocculent, as shown in Fig. 2. The resulting 
solids will be transported to the low-activity waste stream for immobilization. Although this refinement is not 
part of the current Hanford flowshcet, it is under consideration. 

6 

3. CONCLUSIONS 

Numerous bench-scale tests have shown that the ESW will probably remove the required amounts of 
aluminum, phosphate, and chromiurr~ Experimental and theoretical results have shown that leaching efficiency 
improves as time and temperaturc: are increased while increases in the caustic concentration will only 
marginally improve the leach factors. However, it has also been assumed that the caustic added during the 
ESW process will generate only a small increase (10 Mkg) in the amount of LLW. The bench-scale 
experiments were not designed to validate this assumption; rather, the test conditions were selected to maximize 
leachmg in a short period. Theoretical calculations indicated that the amount of LLW from the ESW process 
appears to be reasonable. However, a more detailed study on the amount of LLW from the ESW process is 
needed. The findmgs should, at least, encourage mediation personnel to h i t  their use of caustic. If the LLW 
analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt 
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process or caustic recycle would be needed. Finally, experimental and theoretical studres have clearly 
demonstrated the need for the control of solids formation. Solids formation can be particularly difficult for 
wastes CQ- signtsCant concentrations of phosphate. Solids can hamper downstream treatment steps such 
as cesium removal and, in the extreme cases, could plug lines. Methods to address these issues are needed. 
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