Research on high-bandgap materials and amorphous silicon-based solar cells. Annual technical report, 15 May 1995--15 May 1996

PDF Version Also Available for Download.

Description

We have developed a technique based on electroabsorption measurements for obtaining quantitative estimates of the built-in potential in a-Si:H based heterostructure solar cells incorporating microcrystalline or a-SiC:Hp layers. This heterostructure problem has been a major limitation in application of the electroabsorption technique. The new technique only utilizes measurements from a particular solar cell, and is thus a significant improvement on earlier techniques requiring measurements on auxiliary films. Using this new electroabsorption technique, we confirmed previous estimates of V{sub bi} {approx} 1.0 V in a-Si:H solar cells with {open_quotes}conventional{close_quotes} intrinsic layers and either microcrystalline or a-SiC:Hp layers. Interestingly, our first measurements ... continued below

Physical Description

26 p.

Creation Information

Schiff, E.A.; Gu, Q.; Jiang, L. & Rao, P. January 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We have developed a technique based on electroabsorption measurements for obtaining quantitative estimates of the built-in potential in a-Si:H based heterostructure solar cells incorporating microcrystalline or a-SiC:Hp layers. This heterostructure problem has been a major limitation in application of the electroabsorption technique. The new technique only utilizes measurements from a particular solar cell, and is thus a significant improvement on earlier techniques requiring measurements on auxiliary films. Using this new electroabsorption technique, we confirmed previous estimates of V{sub bi} {approx} 1.0 V in a-Si:H solar cells with {open_quotes}conventional{close_quotes} intrinsic layers and either microcrystalline or a-SiC:Hp layers. Interestingly, our first measurements on high V{sub oc} cells grown with {open_quotes}high hydrogen dilution{close_quotes} intrinsic layers yield a much larger value for V{sub bi} {approx} 1.3 V. We speculate that these results are evidence for a significant interface dipole at the p/i heterostructure interface. Although we believe that interface dipoles rationalize several previously unexplained effects on a-Si:H based cells, they are not currently included in models for the operation of a-Si:H based solar cells.

Physical Description

26 p.

Notes

OSTI as DE97000102

Source

  • Other Information: PBD: Jan 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97000102
  • Report No.: NREL/SR--520-22362
  • Grant Number: AC36-83CH10093
  • DOI: 10.2172/434452 | External Link
  • Office of Scientific & Technical Information Report Number: 434452
  • Archival Resource Key: ark:/67531/metadc676945

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • March 31, 2016, 4:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Schiff, E.A.; Gu, Q.; Jiang, L. & Rao, P. Research on high-bandgap materials and amorphous silicon-based solar cells. Annual technical report, 15 May 1995--15 May 1996, report, January 1, 1997; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc676945/: accessed May 27, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.