Results of Molten Salt Panel and Component Experiments for Solar Central Receivers: # Cold Fill, Freeze/Thaw, Thermal Cycling and Shock, and Instrumentation Tests James E. Pacheco, Mark E. Ralph, James M. Chavez, Sam R. Dunkin, Earl E. Rush, Cheryl M. Ghanbari and Matt W. Matthews Solar Thermal Technology and Test Departments SAND94-2525 Printed January 1995 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Prices available from (615) 576-8401, FTS 626-8401 Available to the public from National Technical Information Service US Department of Commerce 5285 Port Royal Rd Springfield, VA 22161 NTIS price codes Printed copy: A16 Microfiche copy: A01 # **DISCLAIMER** Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ### SAND94-2525 Unlimited Release Printed January 1995 Distribution Category UC-1301 RESULTS OF MOLTEN SALT PANEL AND COMPONENT EXPERIMENTS FOR SOLAR CENTRAL RECEIVERS: COLD FILL, FREEZE/THAW, THERMAL CYCLING AND SHOCK, AND INSTRUMENTATION TESTS James E. Pacheco, Mark E. Ralph, James M. Chavez, Sam R. Dunkin, Earl E. Rush, Cheryl M. Ghanbari and Matt W. Matthews Solar Thermal Technology and Test Departments > RECEIVED APR 0 3 1995 O S T I #### **Abstract** Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW_e Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. categories of experiments were conducted: 1) cold filling procedures, 2) freeze/thaw procedures, 3) component tests, and 4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Analysis is presented which quantifies the thermal stresses in a pipe undergoing thermal shock. In addition, penetration depths were calculated to determine the distances salt could flow in cold pipes prior to freezing shut and validated with panel tests. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams to assess permanent deformation in the tubes, and to develop procedures to thaw a panel so minimal damage occurs. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop. MASTER # **ACKNOWLEDGMENT** We would like to acknowledge the following for their contribution to the molten salt panel and component experiments: Greg Kolb Scott Rawlinson Craig Tyner -Roy Tucker John Kelton Darrell Johnson Clifford Hilliard Albert Mitchusson. We would also like to thank Ann Van Arsdall for providing helpful suggestions to the report and acknowledge Tech Reps for formatting the manuscript. # Contents | I. BACKGF | ROUND | 1 | |--------------|--|------------| | II. SYSTEN | DESCRIPTION | 3 | | III. TEST R | ESULTS | 7 | | COLD FILL T | ESTS | 7 | | Results o | f Cold Fill Panel, Manifold, and Piping Tests | 7 | | Thermal A | Analysis During Cold Fill | 10 | | Ana | Stress Analysis of Piping and Tubes Undergoing Thermal Shock - Nondime | 12 | | | ons of Penetration Distances - Transient Freezing in Pipes | | | | of Cold Fill Tests | | | | W Experiments | | | | TESTS | | | | live Cycling | | | | rmal Cycling of Flanges | | | inermai | Shocking of Flanges | 33 | | | ATION TESTS: FLOWMETERS AND PRESSURE TRANSDUCER | | | | rsTransducer | | | | NG AND FURTHER RESEARCH | | | SIMPLE FLEM | IENT FREEZE/THAW TESTS (ONGOING) | <i>A</i> 1 | | | TEST | | | | REEZING EXPERIMENTS | | | | HEATING SYSTEM | | | | /ALVE | | | | | | | V. REFERE | NCES | 43 | | APPENDIX A. | FINITE ELEMENT ANALYSIS OF FLANGE UNDERGOING THERMAL SHOCK | | | APPENDIX A. | FABRICATION OF HEAT TRACE CIRCUITS | | | APPENDIX C. | HEAT TRANSFER COEFFICIENT FOR CIRCUMFERENTIALLY VARYING HEAT FLUX | | | APPENDIX C. | STRAIN EQUATIONS FOR A RECEIVER TUBE UNDER HIGH FLUX | | | APPENDIX E. | MOLTEN AND SOLID NITRATE SALT PROPERTIES | | | AI FERDIA E. | Molten Nitrate Salt Properties | | | | Phase Change Nitrate Salt Properties. | | | | Solid Salt | | | APPENDIX F. | SELECTED SETS OF DATA AND OTHER INFORMATION | 99 | # **List of Figures** | 1. | Flow schematic of the system and the wing panels. | 4 | |-----|--|-------------| | 2. | Molten salt panels and flow loop at the base of the Central Receiver Test Facility | | | | at Sandia National Laboratories in Albuquerque, NM | 5 | | 3. | Temperature response of the cold tubes and manifolds as they are filled with | | | | 550°F (288°C) salt | 8 | | 4. | Temperature ramp rates of first, second, third, and fourth pass tubes | 9 | | 5. | Outside wall temperature as a function of time of a 2 inch schedule 40 pipe | | | | undergoing thermal shock. | .10 | | 6. | Nondimensional circumferential thermal stresses in pipe undergoing thermal shock | | | | as function of the nondimensional radius for several times (Fo) using thirty terms in | | | | of the nondimensional temperature equation (Eq. 1) for r _i /r _o =0.8 and Bi=100 | . 14 | | 7. | Nondimensional radial thermal stresses in pipe undergoing thermal shock as function | a | | | of the nondimensional radius for several times (Fo) using thirty terms in of the | 1.4 | | | nondimensional temperature equation (Eq. 1) for r _i /r _o =0.8 and Bi=100 | . 14 | | 8. | Nondimensional axial thermal stresses in pipe undergoing thermal shock as function | | | | of the nondimensional radius for several times (Fo) using thirty terms in the | 15 | | _ | nondimensional transient temperature equation (Eq. 1) for r _i /r _o =0.8 and Bi=100 | .13 | | 9. | Effect of the Biot number on the nondimensional circumferential thermal stress | 15 | | 10 | distribution for a specific time (Fo=0.2) and $r_i/r_0=0.8$ | . 13 | | 10. | Nondimensional thermal (circumferential or axial) stress at the inner surface of the pipe undergoing thermal shock as a function of time (Fo) for several Biot numbers | | | | using 30 terms of the series in the nondimensional transient temperature equation | | | | (Eq. 1) for $r_i/r_o=0.8$ | 16 | | 11. | The maximum nondimensional thermal stress as a function of the Biot number | | | 11. | for a pipe undergoing thermal shock for $r_1/r_0=0.8$. These are the maxima of | | | | Figure 10 | .17 | | 12. | The time (Fo) when the maximum thermal stress occurs as a function of the | | | | Biot number | .17 | | 13. | Maximum stress at the inside wall as a function of velocity for 6 inch piping | .18 | | 14. | Maximum stress at the inside wall as a function of velocity for 16 inch piping | .19 | | 15. | The penetration depths for several pipe diameters as a function flow velocity | .21 | | 16. | Temperatures receiver panels and header as they cool when filled with molten | | | | salt which freezes in the panel at approximately 430°F (221°C) | .24 | | 17. | Permanent strain induced in the east panel tubes as a function of the panel height | | | | after two freeze/thaw cycles | .25 | | 18. | Permanent strain induced in the west panel tubes as a function of the panel height | | | | after two freeze/thaw cycles | .25 | | 19. | Permanent strain as a function of the width (tube number) for the east panel | 26 | | 20. | Permanent strain as a function of the width (tube number) for the west panel | 26 | | 21. | Photograph of the 3 inch check valve (V-CON model manufactured by Reflange, | ~ | | | Inc.)
tested in the salt loop | . 25 | | 22. | Pressure and flow as a function of time during a typical check valve cycle | 3(| | 23. | Typical slow thermal cycle of flanges simulating nightly cool down of components | 2 | | | followed by slow heatup with heat trace | ر کر
مور | | 24. | Schematic of ECON and RCON flanges | رک
دو | | 25. | Typical temperature transient of the flanges during a shock | د د
د د | | 26. | Response of vortex and ultrasonic flowmeters during a varying flow condition | 36 | | 27. | Comparison of the vortex and ultrasonic flowmeters against the calibration tank flowrate | 38 | |---------|---|-----| | 28. | Measured bias errors (relative to the calibration tank flowrate) for each flowmeter as a function of flow | | | 29. | Measured random errors for each flowmeter as a function of flow | | | List of | f Tables | | | 1. | Components and instrumentation tested in molten salt loop | 6 | | 2. | Biot numbers and heat transfer coefficients during cold fill experiments | 12 | | 3. | Calculated Maximum Stresses at the Inner Wall of Piping or Tubes Initially at 25°C Undergoing Thermal Shock with Molten Salt at 290°C based on the Biot | 18 | | .1 | Numbers from Experiments | 18 | | 4. | Maximum velocities during cold fill where maximum thermal stresses are below endurance limit of the material for $T_{wall} = 25$ °C and $T_{salt} = 288$ °C | 19 | | 5. | Penetration depths for molten salt for various pipe diameters, velocities, and salt inlet temperatures for a wall temperature $T_w = 68^{\circ}F$ (20°C) | 20 | | 6. | Results for cold start experiments with the MSEE external receiver along with | 20 | | 0. | the correlation results | 2.2 | | 7. | Estimated penetration depths for Rockwell's Solar Two receiver | | | 8. | Pre- and Post-Measurements of Tube Diameters in East and West Panel after | | | | two Freeze/Thaw Cycles | 27 | | 9. | Bias Limit Sources for Calibration Tank Flow Measurements | | | 10 | Root-sum-square Uncertainty (Unce) for Each Flowmeter | | #### **Nomenclature** v = Poisson's ratio Bi = Biot number Cp_s = specific heat of solid Cpm = specific heat of liquid D = diameter of pipeE = modulus of elasticityFo = Fourier number h = heat transfer coefficient $h_c = heat of fusion$ k =thermal conductivity of pipe (Eq. 5) L = wall thicknessNu = Nusselt numberPr = Prandtl number r = radial coordinate of pipe $r_1 = inner radius of pipe$ r_o = outer radius of pipe r* = nondimensional pipe radius R = radial coordinate of inner radius of pipe R_0 = radial coordinate of frozen layer Re = Reynolds number T = temperature $T_f =$ freezing point $T_i = initial$ wall temperature $T_o = inlet liquid temperature$ T_w = wall temperature T_{∞} = fluid temperature x^* = nondimensional distance from insulated surface z = distance to freeze closed α = thermal diffusivity (Eq. 3) or coefficient of thermal expansion (Eq. 9) α_m = thermal diffusivity of liquid α_s = thermal diffusivity of solid $\delta = 1 - r_1^* = \text{nondimensional wall thickness}$ λ_n = characteristic values of transient conduction equation γ = parameter measuring the relative importance of sensible to latent heat, assumed to be 0.7 (water) θ^* = nondimensional temperature θ_0^* = nondimensional temperature at the insulated surface σ_{θ} = circumferential stress σ_r = radial stress $\sigma_z = axial stress$ σ^* = nondimensional thermal stress # **Executive Summary** This report summarizes experiments we conducted with a molten salt flow loop, located at the Central Receiver Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, under the US DOE Central Receiver Development Program. Experiments were conducted to test hardware and instrumentation in a molten salt environment and to develop procedures that support the design and operation Solar Two. Solar Two is a 10 MW_e Solar Central Receiver Pilot plant in Daggett, California, which is undergoing retrofit with a receiver and storage system which use molten salt as the heat transfer fluid. The major conclusions and recommendations from our experiments with the molten salt loop are summarized below. #### Cold Fill Tests We successfully showed that molten salt can flow through ambient temperature piping without freezing shut provided the flow rate is high enough. These results were scaled to the riser and down comer of the Solar Two and a 100 MW_e molten salt power plant using a correlation. These large diameter pipes should not freeze closed during the cold filling procedure (e.g., at morning startup). The thermal stresses during this thermal shock were calculated to be lower than the material's endurance limit for vertical runs of the piping. We recommend testing the cold filling method in the riser and downcomer of Solar Two and if it proves favorable, implemented as a mode of operation in commercial plants to reduced parasitic power consumption and increase availability. We found every region of the receiver does not have to be above the salt freezing point before flow is initiated. The minimum temperature to avoid freezing during startup for the Solar Two receiver is estimated to be 200°F (93°C). We found the best method for preheating a panel was to use moving heliostats to avoid hot or cold spots. #### Freeze/Thaw Tests A receiver panel which becomes frozen with salt could require hours to thaw and could damage the tubes. We measured permanent strains as high as 4% after two freeze/thaw cycles. Monitoring the temperatures during the thawing process was also difficult with a limited number of thermocouples, but an infrared camera would simplify the monitoring. #### Component Tests We found that check valves work well in a molten salt environment after repeated pressure cycling and recommend their use. Flanges held up well to slow thermal cycling and to thermal shocking without major failures. All the flanges tested, though, began to leak slowly. Flanges should be minimized in a molten salt loop. Hot torquing the flanges, periodically, may help reduce the leaks. #### Instrumentation Tests Vortex shedding flow meters worked exceedingly well with molten salt and are the preferred flow meter for this application. Overall flow rate uncertainties of less than $\pm 5\%$ can be obtained with a proper calibration. The impedance-type pressure transducer we tested was responsive and performed well. It could replace hard to find NaK filled pressure transducers. The impedance type is relatively expensive, though. and a second sec X # I. Background In a molten salt central receiver power plant, the parasitic electrical power consumption can be a significant percentage of the total power production if it is not properly managed. Good management also involves careful assessment of operating strategies to minimize the parasitics. Since the nitrate salt, which serves as the heat transfer medium between the receiver and the steam generator, has a freezing point of 430°F (221°C), the associated piping, valves, instrumentation, and tanks must be kept above this temperature (typically at 550°F, 288°C) to assure the salt will not freeze. During inclement weather and during the night the plant does not operate, but the heat trace is kept energized to maintain the temperature of the empty lines at 550°F (288°C). This operating strategy is not an economically advantageous method of conditioning a highly cyclic power plant. One strategy of reducing the nightly parasitic power consumption is to turn off the heat trace at night, allowing the piping to cool down to ambient, then fill the piping cold at start up the next morning. There has been very little data collected on cold starting the receiver and piping at temperatures below the molten salt freezing point. The Molten Salt Electric Experiment receiver in the external configuration was cold started at temperatures below the freezing point. In one of three cases, the receiver partially froze [1]. No detailed analysis was done on the transient freezing phenomenon. In this report we describe experiments where we cold started receiver panels and piping. Due to the nitrate salt's high freezing point and the fact that the salt expands upon melting, we were concern with the damage that could occur in receiver tubes if the salt were to freeze in the receiver and then thaw out. This situation could occur during shut down of the receiver. If one of the drain valves failed to open and went undetected during the drain process, molten salt would be trapped in the associated panel, and the salt would subsequently freeze. Upon thawing, the expanding salt could damage the tube. In previous experiments, detailed assessments of the freezing and thawing of the panel tubes were not conducted. The Martin Marietta molten salt receiver became frozen with salt and was successfully thawed, though no data on tube deformation was available. Three molten salt receivers and large-scale pump and valve loops have been tested at Sandia National Laboratories to determine the viability of molten salt as a heat transport fluid and storage medium for central receiver solar power plants. The Category B receiver was a 5 MWt cavity molten nitrate salt receiver. The testing of this receiver in 1988 [2] showed the feasibility of fabricating and operating a molten salt receiver consisting of serpentine flow panels. However, there are some components and instrumentation that need further evaluation. Check valves have not previously been used in molten salt. Check valves are required when pumps are connected in series to a common manifold, or to the base of a riser to prevent back spin and damage to a pump during a sudden shut off of one pump while the others are flowing. Experiments with flanges in the Pump and Valve Loop show that
they were a significant source of leaks. The purpose of the current molten salt experiments is to verify the operation and reliability of components, instrumentation, and procedures proposed for implementation in the Solar Two project. Many of the components have been proven in a molten salt environment, but additional information is required. Other components were not tested sufficiently or at all in previous molten salt experiments. The goal of these tests was to reduce uncertainties concerning the performance of untested components and operating procedures (e.g., cold filling the receiver or piping, and thawing a frozen panel.) We conducted these tests to address concerns by the Solar Two Technical Advisory Committee - a committee of utilities, industries, the U.S. Department of Energy, and Sandia National Laboratories overseeing the technical issue of the Solar Two Project. The technical needs and concerns were prioritized, and a test program was developed. Consequently, some issues, such as thermal cycling of full scale valves, could not be implemented. However, this test program did address all the high priority issues. # **II. System Description** The experiments were conducted with an existing molten salt loop initially built for a direct absorption receiver [3]. It was modified to accommodate two wing panels (fabricated by Foster Wheeler Corporation) removed from a salt-in-tube receiver (the Category B receiver) to evaluate a cold receiver startup procedure and conduct freeze/thaw experiments. Each panel consists of two serpentine flow passes which have six 1 inch (2.5 cm) OD 304 stainless steel tubes with 0.065 inch (1.65 mm) thick walls. The two passes are connected to a common 6 inch (15 cm) diameter manifold (schedule 80 piping) at the top of the panel. Each panel vent connects to a common 1 inch vent line, in which a hand valve is located to vary the venting flow rate. The experiment was located at the base of the Solar Tower at the National Solar Thermal Test Facility in Albuquerque, NM. Figure 1 is a schematic of the system and the wing panels. Figure 2 is a photograph of the panels and flow loop. In this flow loop, salt is pumped from the salt sump, through the components, then either returned to the sump or diverted up the riser. At the top of the riser is the pressurized accumulator (surge) tank. The flow goes through the down comer, and can either be diverted to the panel or a manifold. The outlet of the panel flows into the manifold. The manifold drains into two calibration tanks. Flow from the calibration tanks returns to the sump. The pump can flow salt at 100 gallons per minute (380 liters/min) through the 2 inch (5.1 cm) piping. We added flanges, a check valve, flow meters, and pressure transducers to test their performance. Three types of flanges were tested: 1) clamped, compressive metal-seal type flanges made by Reflange (R-CON) and by Grayloc, 2) bolted, compressive metal-seal flanges (E-CON) also made by Reflange, and 3) a standard ANSI ring-joint flange. The check valve, manufactured by Reflange (V-CON), was a spring-loaded, swing-type check valve. Two types of flow meters were tested: 1) vortex shedding flow meters made by Engineering Measurements Company, and 2) ultrasonic flow meters (wetted type and clamp on type transducers) manufactured by Panametrics. In addition, we installed pieces of performed fiberglass insulation to determine their viability as another insulation material. This insulation is easier to install than the wool blanket or calcium silicate insulation previously used. Its upper temperature limit is approximately 850°F. Table 1 lists the components we tested. Although we were not able operate the flow loop at the pressures expected to be encountered in the cold side of a typical molten salt system, we were able to simulate operational and thermal cycling expected on the cold side of the system where the thermal ramp rates and stresses are typical of nightly conditioning. The ramp rates on the hot side of a molten salt system (down stream of a receiver) are very difficult to simulate with the existing loop, and therefore were not simulated with this test setup. Figure 1. Flow schematic of the system (a) and a wing panel front (b) and side view (c). Figure 2. Photographs of molten salt panels (a and b) and flow loop test section (c) at the base of the Central Receiver Test Facility at Sandia National Laboratories. Table 1. Components and instrumentation tested in molten salt loop. | Component or instrumentation | Туре | Size | Manufacturer | |------------------------------|--------------------------------------|-----------------------------------|---------------------------------------| | Flange | Clamped, compressive metal seal type | 2 inch and two 4 inch | Reflange (R-CON) and Grayloc (2 inch) | | Flange | Bolted, compressive metal seal type | 6 inch | Reflange (R-CON) | | Flange | ANSI ring type flange | 4 inch | standard | | Check valve | Spring loaded swing | 3 inch | Reflange (V-CON) | | Flow meter | Vortex shedding | 2 inch | Engineering Measurements Co. | | Flow meter | Ultrasonic - wetted transducer | 2 inch | Panametrics | | Flow meter | Ultrasonic - clamp on transducer | any sized pipe up to 10 feet dia. | Panametrics | | Pressure
transducer | High temperature Impedance | 0-250 psi range | Kaman | # III. Test Results #### **Cold Fill Tests** Cold filling involves flowing molten salt through piping or the receiver when all or part is below the salt freezing point. Cold filling has several advantages in the operation of a plant that experiences cyclic operation. If the molten salt can flow through parts of the system which are below the freezing point, parasitics could be reduced, since the heat trace would not have to be used on those lines. In addition, the operation of the plant could be more flexible if the plant could be brought on line faster by not having to wait for the heat trace to heat the lines to operating temperatures resulting in increased availability. Also, during morning startup, it is difficult to uniformly preheat the entire receiver. Some spots will experience much more heating than others due to non-uniform flux profiles from heliostats. This is a particular concern for the east side of a cylindrical receiver during morning start up. Localized convection will add to the problem. A roving aiming strategy, where the heliostat aim points are periodically changed, could provide more uniform heating of the receiver panels, thus avoiding severe hot or cold spots. Also, if the receiver can be filled with molten salt when areas of the receiver are below the salt freezing point, the receiver start up procedure would be much simpler, and could occur sooner. These strategies will boost performance and reduce operating expenses, resulting in lower energy costs. There are two major concerns with cold filling components and piping: freezing of the flowing salt, and transient thermal stresses. We conducted cold fill experiments on the panels and on a section of piping. We measured the thermal response as the panel or piping underwent the rapid change in temperature, and estimated the heat transfer coefficients during this transition. We also derived expressions describing the transient stresses a pipe or tube will experience during a thermal shock. Using a correlation which describes the penetration distance of a liquid as a function of the fluid properties and flow conditions, we estimated the distance salt could flow through cold piping before freezing shut. Results of Cold Fill Panel, Manifold, and Piping Tests. We conducted tests varying the initial panel temperature to determine whether salt could flow through all four passes of the panel before freezing shut. The flow velocity was approximately the same for each test, 2 ft/s (0.6 m/s). The purposes of these tests were to 1) determine if salt flow could be established in "cold" manifolds, panels, and piping, 2) measure the thermal responses of the tubes and manifolds undergoing thermal shock, and 3) estimate the corresponding stresses in the materials. We conducted a series of tests trying lower and lower panel preheat temperatures ranging from 550 °F (288°C) to ambient before initiating salt flow. Next, we tried flowing salt through cold (near ambient) manifolds (heat trace off) with the panels preheated to 550°F. Then we tried flowing through cold manifolds and cold panels. Each scenario was repeated several times. We found we were able to consistently flow through ambient temperature manifolds and panels without freezing salt or blocking tubes. In our test loop, we were able to fill the panels only in a serpentine fashion. To prevent entrapment of air, we had to fill the panel slowly (~2 ft/s, 0.6 m/s). Figure 3 shows the temperature response of the tubes and upper manifold as they are filled with 550°F (288°C) salt. The receiver tubes were initially at 50°F (10°C). The header was # **Temperatures During Cold Fill** Figure 3. Temperature response of the cold receiver tubes and upper header as they are filled with 550°F (288°C) salt. initially hotter than the panels, since an adjacent heat trace zone conducted heat to the header. The header and first pass receiver tubes experienced the greatest thermal shock. As the salt continued through the other passes, the temperature of the initial slug of salt decreased, resulting in the deposition of a frozen layer of salt on the tube wall, which reduced the shock, then melted away. This can be inferred from the change in slope of the fourth pass tube temperature and the upper header temperature. Figure 4 shows the temperature ramp rates of first, second, third, and fourth pass tubes. Note how the third and fourth passes show lower peak ramp rates. A frozen layer of salt is likely responsible for the reduced peak ramp rates, since as the initial slug of salt comes in contact with the cold tube surface, a frozen layer develops which limits the
rate at which the temperature can rise, and provides some thermal capacitance. The outside tube temperature corresponding to the peak ramp rate in the fourth pass is approximately 395°F (202°C). A thermal analysis was conducted on a receiver tube and header during this thermal shock, and is described in the Thermal Analysis section. The estimated heat transfer coefficients were calculated. In addition, calculations on the penetration depths—the distance a fluid flows through cold piping before freezing shut— are also discussed in the Calculation of Penetration Distances section. # **Ramp Rates** Figure 4. Temperature ramp rates of first, second, third, and fourth pass tubes. The stresses in the receiver tube were calculated using the heat transfer coefficients obtained from the experiment. A stress model is described in the Transient Stress Analysis section. Stresses in the tube-to-header junction are more complicated, and are dictated by the temperature gradients at the transition. In addition to cold filling the panels and manifolds, we conducted similar tests on a section of piping. We turned off the heat trace to a section of piping and let it cool to ambient, then initiated salt flow to determine its thermal response and estimate heat transfer coefficients and stresses. We measured the thermal response of an insulated 40 foot (12 m) long, 2 inch (5.1 cm) diameter 316 SS, schedule 40 pipe undergoing thermal shock. The piping was part of the riser. We turned off the heat trace, and allowed it to cool to ambient. When the piping was cold (at ambient), we pumped salt through it at approximately 9.5 ft/s (2.9 m/s) and measured the temperature outside of the pipe. Figure 5 is a plot of the outside wall temperature as a function of time. With this data, we calculated the heat transfer coefficient at the inner wall using a first eigenvalue approximation to an analytical solution of plane wall conduction. These procedures are discussed in the next section. ## 2" sch40 Pipe Figure 5. Outside wall temperature as a function of time of a 2 inch schedule 40 pipe undergoing thermal shock. The symbols are actual data points. The solid line is a fit of the data using the thermal model for Bi = 0.444. Thermal Analysis During Cold Fill. In the cold-fill experiment on the panel, manifolds, and piping, we measured the outside wall temperatures as they are thermally shocked. From that data we wanted to obtain the inside wall temperature and the average heat transfer coefficient. The heat transfer coefficient allowed us to calculate the stresses developing in the wall of the pipe or tube as it rapidly heats up. Assuming that the tube or pipe wall can be approximated as a plane wall, we can use an analytical solution to estimate the inside wall temperature and heat transfer coefficient. Since the receiver tube and piping have relatively thin walls, the plane wall assumption is a good approximation. In our tests, the outside of the pipe, manifolds, and the receiver tubes were insulated. (In actuality, only half of the receiver tube is insulated and the other side is exposed, but this should have minor bearing on the result, since initially the outside natural convective heat transfer to the air is relatively small, and the time scales are short for thermal shock.) The solution to the energy equation for a plane wall suddenly subjected to a convection boundary condition describes the temperature distribution in the wall as a function of time [4]. Its form is: $$\theta^*(x^*, t^*) = \frac{T(x, t) - T_{\infty}}{T_i - T_{\infty}} = \sum_{n=1}^{\infty} C_n \exp(-\lambda_n F_0) \cos(\lambda_n x^*)$$ (1) where the coefficient C_n : $$C_n = \frac{4\sin(\lambda_n)}{2\lambda_n + \sin(2\lambda_n)},\tag{2}$$ Fo (the Fourier number) is the nondimensional time and x^* is referenced from the insulated surface: $$Fo = \frac{\alpha t}{L^2}, \ x^* = \frac{x}{L}. \tag{3,4}$$ The discrete characteristic values (eigenvalues) of λ_n are the positive roots of the transcendental equation: $$\lambda_n \tan(\lambda_n) = Bi = \frac{hL}{k}. \tag{5}$$ The length, L, is half the thickness of the plane wall since convection occurs on both faces, but in the case of a pipe or tube wall it is equal to the wall thickness, since one face has convection and the other is insulated. Note the midplane of a plane wall behaves like an insulated surface. The infinite series solution can be approximated by the first term in the series for values of $Fo \ge 0.2$. The solution becomes: $$\theta^* = C_1 \exp(-\lambda_1^2 F_0) \cos(\lambda_1 x^*) \tag{6}$$ or $$\theta^* = \theta_a^* \cos(\lambda_1 x^*) \tag{7}$$ where θ_o^* is the temperature at the midplane, $x^*=0$ (the insulated boundary, in our case the outside tube wall). The coefficients C_I and λ_I are determined from the equations 2 and 5. Since we measured the outside wall temperature (insulated surface) as a function of time and we knew the approximate salt bulk-fluid-temperature (initial salt temperature), we calculated measured values for θ_o^* and Fo. By iterating on λ_I until the calculated value of θ_o^* converged on the measured value of θ_o^* , we obtained the Biot number, Bi. From the Biot number we obtained the heat transfer coefficient. The average heat transfer coefficients determined during the thermal shock for each pass, for the upper header, and for a 2 inch pipe are shown in Table 2. The solid line in Figure 5 is a fit of the data to the model for a constant heat transfer coefficient. Note that initially the temperature changes gradually (the first three data points). In order to get a good fit of the data with the model, the initial starting time of the model had to be adjusted, since the actual heat transfer coefficient is not constant with time. Assuming a constant heat transfer coefficient will yield higher stresses than one which gradually increases to its final value, and thus will be conservative. Stress analyses for an insulated circular pipe undergoing thermal shock are discussed in the next section. For heat transfer in fully developed pipe flow when applied to freezing with turbulent flow, the following correlation has been suggested to estimate heat transfer coefficients between the fluid and the frozen layer [5]: $$Nu = 0.0155 \text{ Re}^{0.83} \text{Pr}^{0.5} (R_{\circ}/R)^{0.83}$$ (8) Table 2. Biot numbers and heat transfer coefficients during cold fill experiments. | Location | Approx.
Velocity
m/s | Bi (from data using the model) | h (from
Bi)
W/m ² K | |------------------|----------------------------|--------------------------------|--------------------------------------| | 2" sch40 Pipe | 2.9 | 0.444 | 1700 | | 6" sch80 Header | 0.11 | 0.881 | 1200 | | First Pass Tube | 0.67 | 0.296 | 2700 | | Second Pass Tube | 0.67 | 0.243 | 2200 | | Third Pass Tube | 0.67 | 0.124 | 1100 | | Fourth Pass Tube | 0.67 | 0.114 | 1000 | where R_o is the inner pipe radius and R is the radial coordinate of the frozen layer. This correlation is applicable beyond the thermal entrance length (approximately 10 tube diameters), and provides a conservative estimate of the heat transfer to the pipe, since the frozen layer will act as an insulator. It should be noted that the heat transfer that occurs when the receiver is under high flux is quite different for a cold start scenario. A description of the heat transfer under high flux is presented in Appendix C. Transient Stress Analysis of Piping and Tubes Undergoing Thermal Shock - Nondimensional Analysis. The stress calculations are important in determining the material behavior in a severe transient condition. For an insulated pipe, we can use the temperature distribution from the thermal analysis to calculate the circumferential, radial, and axial stresses. These thermal stresses should be superimposed on existing pipe loads due to structural factors. If the temperature is a function of the radial component only, then each component of stress is [6,11]: $$\sigma_{\theta}(r) = \frac{E\alpha}{(1-\nu)r^2} \left(\frac{r^2 + r_i^2}{r_o^2 - r_i^2} \int_{r_i}^{r_o} T(r)rdr + \int_{r_i}^{r} T(r)rdr - T(r)r^2 \right)$$ (9) $$\sigma_{r}(r) = \frac{E\alpha}{(1-\nu)r^{2}} \left(\frac{r^{2} - r_{i}^{2}}{r_{o}^{2} - r_{i}^{2}} \int_{r_{i}}^{r_{o}} T(r)rdr - \int_{r_{i}}^{r} T(r)rdr \right)$$ (10) $$\sigma_{z}(r) = \frac{E\alpha}{(1-\nu)} \left(\frac{2}{r_o^2 - r_i^2} \int_{r_i}^{r_o} T(r) r dr - T(r) \right)$$ (11) The temperature profile at a given time, Fo, can be found from Equation 7: $$T(r) = \theta^*_{o}(T_i - T_{\infty})\cos(\lambda_I x^*) + T_{\infty}$$ (12) The nondimensional length x^* is referenced from the insulated surface (the outside radius) and can be transformed into the nondimensional radial coordinates, $r^*=r/r_0$ and $r^*_1=r_1/r_0$, from: $$x^*=(1-r^*)/(1-r^*)=(1-r^*)/\delta$$. In carrying out the integration, the stress components can be expressed in a nondimensional thermal stress format: $$\sigma^*(r^*) = \frac{\sigma(r)(1-\nu)}{E\alpha(T_r - T_{co})} \tag{13}$$ Which for the three stress components are: $$\sigma_{\theta}^{*}(r^{*}) = \frac{r^{*2} + r_{i}^{*2}}{1 - r_{i}^{*2}} \frac{\partial_{\sigma}^{*}}{2r^{*2}} \left\{ \frac{\delta^{2}}{\lambda_{1}^{2}} \left[1 - \cos(\lambda_{1}) \right] + \frac{\delta r_{i}^{*}}{\lambda_{1}} \sin(\lambda_{1}) \right\}$$ $$+ \frac{\delta^{2} \theta_{\sigma}^{*}}{\lambda_{1}^{2} r^{*2}} \left\{ \cos(A) - \cos(\lambda_{1}) \right\}$$ $$- \frac{\delta \theta_{\sigma}^{*}}{\lambda_{1} r^{*2}} \left\{ r^{*} \sin(A) - r_{i}^{*} \sin(\lambda_{1}) \right\} - \theta_{\sigma}^{*} \cos(A)$$ $$\sigma_{r}^{*}(r^{*}) = \frac{r^{*2} - r_{i}^{*2}}{1 - r_{i}^{*2}} \frac{\partial_{\sigma}^{*}}{r^{*2}} \left\{ \frac{\delta^{2}}{\lambda_{1}^{2}} \left[1 - \cos(\lambda_{1}) \right] + \frac{\delta r_{i}^{*}}{\lambda_{1}} \sin(\lambda_{1}) \right\}$$ $$- \frac{\delta^{2} \theta_{\sigma}^{*}}{\lambda_{1}^{2} r^{*2}} \left\{ \cos(A) - \cos(\lambda_{1})
\right\}$$ $$+ \frac{\delta \theta_{\sigma}^{*}}{\lambda_{1} r^{*2}} \left\{ r^{*} \sin(A) - r_{i}^{*} \sin(\lambda_{1}) \right\}$$ $$+ \frac{\delta \theta_{\sigma}^{*}}{\lambda_{1} r^{*2}} \left\{ r^{*} \sin(A) - r_{i}^{*} \sin(\lambda_{1}) \right\}$$ $$- \theta_{\sigma}^{*} \cos(A)$$ $$A = \frac{\lambda_{1}}{2} (1 - r^{*})$$ $$(17)$$ $A = \frac{\lambda_1}{s} (1 - r^*)$ (17) The characteristic value, λ_1 , is found from the solution to Equation 5 and is a function of the Biot number, Bi, which indicates the relative importance of surface heat transfer to conduction. Equations 14 to 16 are valid for $Fo \ge 0.2$. For smaller times (Fo <0.2), several terms in the series in Equation 1 must be used to calculate the temperature distribution. The temperature distribution is then used in Equations 9-11 to calculate the stresses. These equations can be used to calculate the transient stresses as a function of the Biot number and the pipe geometry. Figures 6, 7, and 8 show the nondimensional circumferential, radial, and axial thermal stresses as function of the nondimensional radius for several times (Fo) for a specific geometry. Note that in Figure 6 a skin stress develops at the inner surface. When the pipe is cold relative to the fluid—"up shock"—the stresses at the inner surface are compressive and tensile on the outer surface during the thermal shock. When it is hot relative to the fluid-"down shock"-the stresses are tensile on the inner surface. Figure 9 shows the effect of the Biot number on the stress distribution for a specific time. Figure 10 shows the nondimensional thermal (circumferential or axial) stress at the inner surface of the pipe as a function of time (Fo) for several Biot numbers using 30 terms of the series in Equation 1. When the heat transfer coefficient is large relative to the pipe thermal conductivity (large Bi numbers), there will be significant temperature gradients across the pipe wall and larger thermal stresses will develop during a thermal shock. At small Biot numbers, conductivity dominates relative to surface heat transfer and there are small thermal gradients across the wall #### Circum. Stress vs Radius Figure 6. Nondimensional circumferential thermal stresses in pipe undergoing thermal shock as function of the nondimensional radius for several times (Fo) using thirty terms in of the nondimensional temperature equation (Eq. 1) for $r_i/r_o=0.8$ and Bi=100. Figure 7. Nondimensional radial thermal stresses in pipe undergoing thermal shock as function of the nondimensional radius for several times (Fo) using thirty terms in of the nondimensional temperature equation (Eq. 1) for r_i/r_o =0.8 and Bi=100. #### **Axial Stress** Figure 8. Nondimensional axial thermal stresses in pipe undergoing thermal shock as function of the nondimensional radius for several times (Fo) using thirty terms in the nondimensional transient temperature equation (Eq. 1) for $r_i/r_o = 0.8$ and Bi=100. #### Effect of Bi Figure 9. Effect of the Biot number on the nondimensional circumferential thermal stress distribution for a specific time (Fo=0.2) and $r_i/r_o = 0.8$. # Stress vs Time (Fo) Figure 10. Nondimensional thermal (circumferential or axial) stress at the inner surface of the pipe undergoing thermal shock as a function of time (Fo) for several Biot numbers using 30 terms of the series in the nondimensional transient temperature equation (Eq. 1) for $r_i/r_o=0.8$. resulting in small thermal stresses. The stresses build with time, reaching a peak, then finally drop as the wall reaches a uniform temperature. Each curve has a maximum thermal stress. These maximum stresses are shown in Figure 11 as a function of the Biot number. Figure 12 shows the time (Fo) when the maximum stress occurs as a function of Biot number. From the data we gathered during the shock tests, we determined the Biot numbers are relatively small. We used these Biot numbers to calculate the stresses in piping or tubes we thermally shocked: a 2-inch schedule 40 316SS pipe, a 6-in schedule 40 304SS header and a 1-inch 0.065 inch wall 304SS receiver tube. Table 3 shows the maximum equivalent stress based on the maximum energy distortion theory of failure [7], sometimes referred to as the von Mises stress, for each case. In each case the stresses were calculated to be lower than the endurance limit of the material ($\sigma_e \approx 270$ MPa for stainless steel [8]) for these tests indicating that for the test conditions the piping itself can handle these stresses over the life of the system. It is likely these stresses are conservative, since the heat transfer coefficients are not constant, but gradually increase to the equilibrium value. #### Maximum Stress vs Bi Figure 11. The maximum nondimensional thermal stress as a function of the Biot number for a pipe undergoing thermal shock for $r_i/r_o = 0.8$. These are the maxima of Figure 10. #### Time When Max. Stress Occurs Figure 12. The time (Fo) when the maximum thermal stress occurs as a function of the Biot number. Table 3. Calculated Maximum Stresses at the Inner Wall of Piping or Tubes Initially at 25°C Undergoing Thermal Shock with Molten Salt at 290°C based on the Biot Numbers from Experiments. | Pipe or Tube Size | σ _{Equivalent} , MPa | |--|-------------------------------| | 1 inch receiver tube, 0.065 inch wall, | -100 | | 304 SS | | | 2 inch schedule 40, 316 SS | -140 | | 6 inch schedule 80 header, 304 SS | -240 | Using Equation 9, a conservative estimate of the peak circumferential stresses at the inner surface of a pipe or tube can be calculated as a function of salt velocity. Plots of these relations are shown in Figures 13 and 14 for 6 inch and 16 inch piping proposed for handling molten salt in the Solar Two and Commercial scale systems, respectively. There is a critical velocity at which the stresses exceed the endurance limit of the material. These velocities are listed in Table 4 for several pipe schedules and materials proposed for handling molten salt. Carbon steel is able to handle thermal stresses better than stainless steel, because carbon steel has a much lower coefficient of thermal expansion, even though its endurance limit is lower. ## Thermal Stresses in 6" Pipe (Stainless Steel) Figure 13. Maximum stress at the inside wall as a function of velocity for 6 inch piping. ### Thermal Stresses in Stainless Steel 16 inch Pipe Figure 14. Maximum stress at the inside wall as a function of velocity for 16 inch piping. Table 4. Maximum Velocities During Cold Fill Where Maximum Thermal Stresses are Below Endurance Limit of the Material for $T_{wall} = 25^{\circ}\text{C}$ and $T_{salt} = 288^{\circ}\text{C}$. | Pipe Size | Schedule | Material | Maximum
Velocity, m/s | |-----------|----------|---------------|--------------------------| | 6 inch | 80 | Stainless 316 | 0.9 | | 6 inch | 80 | Carbon | 3.7 | | 6 inch | 40 | Stainless 316 | 1.5 | | 6 inch | 40 | Carbon | 6.3 | | 6 inch | 10 | Stainless 316 | 3.8 | | 16 inch | 80 | Carbon | 1.9 | | 16 inch | 40 | Carbon | 3.7 | | 16 inch | 10 | Carbon | 12.2 | | 16 inch | 10 | Stainless 316 | 5.7 | Even though the stresses in the walls of piping or tubes were low when thermally shocked in our tests, high stresses could develop where there are large loads already existing in the piping due to structural considerations, where there is a sudden change in wall thickness, or where there is abrupt changes in contour resulting stress concentrations. It should be noted this analysis applies only to vertical runs of piping or tubes where the temperature gradient is a function of the radial coordinate. In horizontal pipes, the leading edge of the fluid could have a sloped profile resulting in circumferential temperature gradient, in addition to the radial gradient. This would result in stress condition. Most of the piping in the risers and downcomers of molten-salt central-receiver solar power plants is in vertical runs. For a receiver illuminated with high flux, the stresses are quite different from the stresses during thermal shock. In addition to a through-wall stress, there is a front-to-back tube stress. Appendix D shows the strain equations applicable to receiver tubes under high flux. Calculations of Penetration Distances - Transient Freezing in Pipes. Another issue pertaining to cold starting piping is how far the molten salt can flow through a cold pipe before freezing shut. This length is known as the penetration distance. There are several models which describe transient freezing in pipes, but one model correlates data from several experiments and a variety of fluids into a single equation that describes the penetration depth as a function of the fluid properties, the Reynolds number, the wall temperature, and fluid temperature [9]. The correlation, Equation 18, describes the axial distance a fluid will flow through a cold pipe whose temperature is held below the fluid's freezing point before the pipe freezes shut. The wall temperature is held constant. $$\frac{z}{D} = 0.23 \,\mathrm{Pr}^{1/2} \,\mathrm{Re}^{3/4} (\alpha_m / \alpha_s)^{1/9} [h_f / (Cp_s (T_f - T_w))]^{1/3} [1 + \gamma Cp_m (T_o - T_f) / h_f]$$ (18) The penetration depths were calculated for molten salt properties at several pipe diameters and flow velocities. These results are shown in Table 5 and in Figure 15. For large diameter piping, such as used with the riser or downcomer in the Solar Two central receiver power plant, we could theoretically flow through hundreds or thousands of feet of piping. In a commercial scale plant, we may be able to flow through *miles* of cold piping. We expect these values to be conservative, since the correlation was developed for a constant wall temperature. Table 5. Penetration depths for molten salt for various pipe diameters, velocities, and salt inlet temperatures for a wall temperature $T_w = 68^{\circ}F$ (20°C). | Diameter | Flow Velocity | Salt
Inlet
Temperature | Penetration Depth | |----------|------------------|---------------------------|-------------------| | 0.75 in | 3 m/s (9.8 ft/s) | 288°C (550°F) | 39 m (129 ft) | | 0.75 | 1 m/s (3.3 ft/s) | 288°C (550°F) | 17 m (57 ft) | | 0.75 | l m/s | 371°C (700°F) | 27 m (87 ft) | | 1.5 in | 3 m/s | 288°C (550°F) | 132 m (435 ft) | | 1.5 | l m/s | 288°C (550°F) | 58 m (191 ft) | | 1.5 | 1 m/s | 371°C (700°F) | 90 m (294 ft) | | 6 in | 3 m/s | 288°C (550°F) | 1498 m (4920 ft) | | 6 | l m/s | 288°C (550°F) | 657 m (2160 ft) | | 16 in | 3 m/s | 288°C (550°F) | 8340 m (27400 ft) | | 16 | 1 m/s | 288°C (550°F) | 3660 m (12000 ft) | For the panel experiments described previously, we were able to flow through four passes and the associated headers and jumper tubes all at ambient temperature with a salt velocity of 2 ft/s (0.6 m/s). The total length of tubing is about 60 feet (18 m). The correlation predicts the fluid should freeze in about 50 feet (15 m). This means we were probably on the border of freezing. #### Penetration Depths vs Salt Flow Rate Figure 15. The penetration depths for several pipe diameters as a function flow velocity. In addition, we were able to flow through over 155 feet (47 m) of ambient temperature (<100°F) 2 in piping without freezing the pipe shut. The correlation predicted we would be able flow at least twice that distance. It should be noted that the correlation was developed for piping that was submerged in a bath of fluid to hold the pipe outer surface at a constant temperature. In the cold fill tests described in the previous section, the piping or receiver tubing was not held at a constant temperature, but allowed to heat up. The correlation may be conservative, because an insulated pipe has a finite heat capacitance. When tried filling the panels at lower velocities (0.4 m/s), we were not able to flow through all the passes. We detected salt in the second and part of the third pass, but it is unclearly whether the flow stopped in third pass due to freezing, or a systematic problem. The correlation predicted we should have frozen in the third pass. Unfortunately, we could not the verify the accuracy of the correlation very well with the panels, because they are connected with a common vent line which allows the flow to bypass the second and third pass and enter the fourth pass. We postulate that when the flow through the tubes in the second and third pass becomes restricted due to a buildup of a frozen layer of salt, the preferential path of least resistance is the bypass line. This could effectively cut off the venting of air through the second and third passes, resulting the panel becoming air bound. In a report on the Molten Salt Electric Experiment of a receiver in the external configuration [1], experiments are described in which the receiver was started cold in a flood fill mode (all the panels in a receiver are filled from the bottom up). In two cases they succeeded in filling the panel, but in one case they froze part of it. For this case, the correlation predicts that salt would have barely made it through the 11.5 foot (3.5 m) high panel, which is consistent with the results. The data are summarized in Table 6. (The flow rate was not given in the report, but was calculated from information about the system. The fact that third test in the series has a higher penetration distance than the second one may be attributed the uncertainty in the flow assumption and average panel temperature measurement.) Table 6. Results for cold start experiments with the MSEE external receiver along with the correlation results. The panel height is 11.5 feet (3.5 m), tube diameter 0.62 inches (1.6 cm), salt flow rate approximately 0.4 ft/s (0.1 m/s). | Wall Temp | Salt Temp | Penetration Distance | MSEE Result | |---------------|---------------|----------------------|------------------------| | 325°F (163°C) | 700°F (371°C) | 19.0 ft (5.8 m) | Fill OK | | 240°F (116°C) | 650°F (343°C) | 13.6 ft (4.2 m) | Fill OK | | 210°F (99°C) | 700°F (371°C) | 14.7 ft (4.5 m) | Partially frozen panel | For the Solar Two receiver designed by Rockwell, in order to prevent freezing, the receiver panels should be heated (with heliostats) to temperatures above 200°F (93°C) with headers and jumper tubes preheated with heat trace to the salt temperature, assuming the panels are flood filled at the design flow rate. The panels should be heated to at least 390°F (199°C) with jumper tubes initially at ambient temperature. These results are shown in Table 7. Table 7. Estimated penetration depths for Rockwell's Solar Two receiver. Panel height is approximately 21 feet (6.4 m), jumper tube length: approximately 10 ft (3.0 m), tube inside diameter: 0.7145 inches (1.81 cm), salt velocity during flood fill: 0.87 ft/s (0.27 m/s). | Tube Temp | Penetration depth | |---------------|-------------------| | 10°F (-12°C) | 18.35 ft (5.6 m) | | 100°F (38°C) | 19.9 ft (6.1 m) | | 200°F (93°C) | 22.4 ft (6.8 m) | | 400°F (204°C) | 44.3 ft (13.5 m) | # **Summary of Cold Fill Tests** The following conclusions can be made about the cold fill tests: - Cold filling the panel and/or manifolds is feasible. In normal operation it would not be necessary to cold fill the panel. As a minimum, our results show that the entire panel does not have to be above the salt freezing temperature before salt flow is established. - Results from the stress analysis show that the stresses in the header and receiver tubes were below the endurance limit during a thermal shock. Analysis should be done for a particular design of the tube-to-header junction and transitions in piping cross section to make sure there are not any localized stress concentrations, and to estimate the life based on fatigue of these areas. - The best combination of reduced parasitics and increased availability might be partial preheating (e.g., preheating to 300°F). - We recommend that even if the piping is cold started, valves, flanges, and instrumentation should be kept near the salt temperature to minimize reliability issues that could arise if these components were thermally stressed. - Our experience has shown that the most successful method for uniformly preheating the panels is to use a roving aiming pattern where the heliostat aim points change every few seconds to avoid localized under- and overheating. - Although our results show that we can successfully flow through cold piping and tubes, care must be taken to avoid freezing of salt past slow leaking valves in unheated piping. #### Freeze/Thaw Experiments In a molten salt receiver, there are multiple drain valves. During the nightly shut down of the receiver, a drain valve might fail to actuate. If a valve fails to actuate once in a thousand times, a receiver—which has 14 drain valves—will fail to drain approximately once every two and a half months. That does not necessarily mean a panel will freeze that often. Only if this failure is not detected in time and corrective action (such as manually opening the valve) is not taken will the salt trapped in the associated panels freeze. Since the volume of salt increase when it goes from the solid to the liquid state for a fixed mass, damage can occur to the panel if the salt is thawed in a section of tubing or piping which is constrained at both ends. The objectives of these tests were to determine the procedure required to thaw a receiver panel if it became frozen with salt, and to determine what amount of damage were done to the receiver tubes during the thawing process. A total of five freeze/thaw cycles were conducted. Prior to installation of the panels, all the tubes' outside diameters were measured at various locations along its length, so we could determine the permanent strain induced during the freeze/thaw tests. The freeze/thaw test procedures we used are described below. First, we established flow in all tubes of the panels to allow the panels to reach thermal equilibrium. After flowing salt through the panels for several minutes, we shut off all drain and outlet valves to prevent salt from draining out of the panel. We then allowed the panels to cool so their temperatures' dropped below salt the freezing point. Figure 16 shows panel and header temperatures as they cool. Note how the slopes of the curves change at the salt freezing temperature, 430°F (221°C). When the salt becomes solid, the slopes change again. The header temperature is maintained above 460°F (238°C) by heat trace. The panels cooled to the salt's freezing point only 25 minutes after the pump stopped in the shielded environment of the solar tower. An exposed external central receiver (e.g., the Solar Two receiver) will cool much faster. After the average panel temperature was less than 280°F (138°C), we opened the drain and panel outlet valves to empty the lower header of salt. Heat trace was kept on in the headers and on the jumper tubes to maintain the temperature above the freezing point. Once the headers had drained, we initiated thawing with heliostats. The only way for salt to leave the panel as it thaws is through the drain. Therefore, we started thawing from the bottom by putting on one heliostat and allowing it to heat that area of the panel to > 500°F (260°C). We continued to add heliostats, one at a time above the previous one, raising the panel temperature. One test was interrupted by weather and had to be continued the next sunny day. Once all thermocouple readings on the panel were above the salt freezing point, we tried to establish flow through the panel. On the first attempt, we were #### Panel Freeze Test: 01/04/94 Figure 16. Temperatures receiver panels and header as they cool when filled with molten salt which freezes in the panel at approximately 430°F (221°C). unable to flow though the majority of the panel because there were sections of tubes under the insulation where the heat trace could not heat it up enough, and we could not heat it with solar. In these regions we
had to rely on conduction to melt the salt. Once we achieved flow through part of the panel we continued to flow salt, which helped thaw the frozen areas. After several hours we were able clear all tubes. After two freeze/thaw cycles we measured the tube diameters. Plots of the permanent (plastic) strain as a function of the panel height are shown in Figure 17 for the east panel and 18 for the west panel. There did not seem to be any pattern to the damage. The maximum permanent strain induced in the tubes was over 4%. Figures 19 and 20 show the plastic permanent strain as a function of the horizontal location (tube number). The values of tube deformations are also shown in Table 8. Tubes 3, 4, and 5 in the east panel have much lower permanent strains than the other tubes in the panel. The west panel does not show this behavior. These results indicate the freezing phenomenon is complex, and requires further study. Some observations and conclusions can be made regarding these tests: - Thawing a frozen panel can require several hours, and could result in significant down time. - The major problem with thawing the panel was a lack of sufficient heat under the insulation, particularly in the upper header where beneficial natural convection within the header oven cavity is not significant. It may be necessary to install additional heat trace in the regions where the insulation meets the panel to assure those areas can heat up to above the salt melting point. ### **East Panel Deformation** Figure 17. Permanent strain induced in the east panel tubes as a function of the panel height after two freeze/thaw cycles. ### **West Panel Deformation** Figure 18. Permanent strain induced in the west panel tubes as a function of the panel height after two freeze/thaw cycles. # Side View: East Panel Deform. Figure 19. Permanent strain as a function of the width (tube number) for the east panel. # **Side View: West Panel Deformation** Figure 20. Permanent strain as a function of the width (tube number) for the west panel. Table 8. Pre- and Post-Measurements of Tube Diameters in East and West Panel after 2 Freeze/Thaw Cycles. Motten Salt Panel Deformation Measurements Pretest Measurements: 02/02/93 Post Measurements: 02/07/94-02/08/94 • | diet fre | Station | | | | Differ | | Post : | Differ | Den | Port | Differ. | Dro | Post | Differ. | Dro | Post | Dittor | Dro | Post ! | Differ | Pro I | Post 1 | Differ | Pre | Post | Differ, | Pro I | Post | Differ | Pro I | Post I | Differ | Pro | Post | Differ. | Pro I | Post | Differ. | |-------------------------|----------------|-------------|-----------|-----------|----------------|----------|----------------------|---------|---------------------|----------|--------------|-------------------------|-----------|----------------------|---------|----------|--------|---------|----------|----------------|--------|---------|--------|-----------|---------|----------------|--------|--------|--------|-----------|---------|--------|---------------|----------------|--------------|--------|---------|---------| | botton | | bollom | les . | | E1 | 20 | Post
E2
inches | E2 | Pre
E3
inches | 63 | E3 | <u> </u> | | E4 | | | E5 | E6 | | E6 | 芦一 | E7 - | F7 | | E8 | ER | | | E9 | | | E10 | E11 | | E11 | | | E12 | | meters | 110. | inches | inchae | inches | · · | ochoe | inches | 52 | inches | inches | ~ | inches | | - | inches | | | | inches | | inches | | · | inches | | ~ ~ | inches | | | inches | | | | inches | | inches | | | | 11101013 | | III KII IOS | II KATIGS | IN KATIOS | /• | 4 KI 103 | IIICI103 | - | 14.6.1103 | HICHOS | ~ | II KATIOS | H ICI 103 | <i>"</i> | 1101103 | ******** | /• | 4101103 | II CIIO3 | / - | 120103 | HACITOS | /* | III COLOG | 1101103 | , , | 12103 | HICHOS | | 11201103 | 110(100 | 70 | I I I I I I I | 11101102 | ~ | | 1101100 | | | 7 | | - 5 | - 557 | ٠ ١ | | 0 997 | | | 0 999 | | - | 1.001 | - | | 1,000 | | | 1.002 | | | 1,014 | | | 0.998 | | | 0.998 | | | 0.998 | | | 0.998 | - | | 1,000 | | | | 0.00 | 2 | F - ₹ | 0.997 | . 5.5 | 2 404 | | | | 0.998 | | | 0.000 | | | 1,000 | | | 0 999 | | | 1.003 | | | 0.998 | | | 0,998 | | | 0.998 | | | 0.999 | | | | 1,000 | ~~~ | | 0.051 | - 2 | | | | 1,401
2,608 | 0.998 | 3 550 | 0.000 | | 1 010 | | 0 999
0 997 | | | 0.999 | - 2 000 | 0.400 | 1 003 | | | 1,000 | + | | 0.999 | | | | - 0000 | 0.201 | | 0.000 | 0 100 | | 0.999 | 0 100 | | 1,001 | | | 0.102 | 3 | 4 | 0.997 | 1.023 | 2.608 | | 1,026 | 2.806 | 0.999 | 1 010 | 1.101 | | | | | 1,000 | 0.100 | 1.003 | | | | | | 0.999 | | | | 0.999 | 0.201 | 0.997 | 0.990 | 0.100 | 0.999 | | 0.100 | 0.997 | 1.001 | 0.200 | | 0.152 | - 4 | | 0,997 | | | 0.999 | | | 0,999 | | | 1,002 | | | 0.999 | | | | | | 0.999 | | | | | | 0.998 | | | | | | 0.999 | | | 0.996 | | | | 0 203 | 5 | 8 | 1.000 | | | 0.997 | _ : | | 0.997 | | | 1.000 | | | 0,998 | | | 1,003 | | | 1,001 | | | 0.888 | | | 0 998 | | | 0.998 | | | 0,999 | 1 | | 0.996 | | | | 0.254
0.305 | - 6 | 10 | | | | | | | | | | | | | | | | | | | | 4 | | | | | | | | | | | ļ | | | | | | | 0,305 | 7 | 12 | l | ٠., . | | | | | I | ! | \square | | | l | | | | | | | 0.356 | 8 | 14 | 0.999 | l | | 1.001 | | l | 1.000 | | | 1,000
1,000
1,000 | | | 1.002 | | | 1.002 | | | 1.003 | | | 1.000 | | | 1.001 | | | 1.002 | | | 0.998 | | | 0.999 | | | | 0 406 | 9 | 16 | 0.997 | | | | | | 1.001 | | 1.099 | 1.000 | 1.005 | | | | | | | 0.399 | | 1,019 | | | | 1.101 | | | | | 1.018 | 1,698 | | | | | 1.029 | | | 0.864
1.321 | 10 | 34 | 1.001 | 1.033 | | 1.001 | 1.041 | | 0,999 | | | 1.000 | 1.006 | 0.600 | | 1.009 | 1,001 | | | 0 299 | 1.001 | 1.019 | | 0.997 | | | 0.997 | | 2.307 | 0.997 | | | 1.000 | | | | | | | 1,321 | 11 | 52 | 1.001 | 1.035 | | 1.000 | 1.028 | | 0.997 | | | 0.998 | 1.009 | | | 1,010 | 1,000 | 1.000 | 1.012 | 1,200 | 1.002 | | | 0.999 | | 2,703 | 1,001 | | | 0,997 | 1.028 | | 0 997 | | | | | | | 1.727 | 12 | 68 | 1,000 | 1.024 | 2.400 | 1.001 | 1,015 | 1.399 | 0.998 | 1,005 | 0.701 | | 1,007 | 0.599 | 1.001 | 1,009 | 0.799 | 0 996 | | 2.410 | 1.001 | | 1.798 | 0.996 | | 1,406 | | 1.020 | 1,898 | 0.998 | 1.032 | 3.407 | 1,000 | | | 0.999 | | | | 1.727
2.235
2.692 | 12 | 88 | 0.999 | 1.026 | 2.703 | 0.999 | 1.015 | 1.602 | 0.997 | 1.005 | 0 802 | | 1,007 | 0.700 | 0.999 | 1,002 | 0.300 | 1,000 | | 0.400 | | | | 0 998 | | 2.405 | 1.000 | 1.034 | 3.400 | 0.998 | 1.038 | 4.008 | 0.997 | 1.022 | 2.508 | 1.007 | 1.031 | 2.383 | | 2.692 | 14 | 106 | 0.998 | 1.018 | 2,004 | 0.999 | 1.014 | 1,502 | 0.999 | 1.009 | 1,001 | 1.000 | 1.010 | 1,000 | 1.001 | 1.000 | -0.100 | 1,000 | 1.005 | 0.500 | 0.997 | 1.032 | 3 511 | 1,000 | 1.023 | 2.300 | 0.997 | 1.024 | 2.708 | 0.998 | 1.035 | 3,707 | 0.996 | 1.030 | 3.414 | 1,005 | 1.040 | 3 483 | | 3,15 | 14
15 | 124 | 0 999 | | 1 | 0,998 | | | 1.000 | | | 0.998 | | | 1.001 | | | 1,001 | | | 0.998 | | | 0.997 | | | 0.999 | | | 0,997 | | | 0.998 | 3 | | 1.005 | | | | 3.2 | 16 | 126 | 1.001 | 1.018 | 1.698 | | 1.005 | 0,500 | 0.999 | 1.002 | 0.300 | 0.998 | 0.998 | 0.000 | 1,001 | 1.000 | -0,100 | 1.001 | 1.005 | 0.400 | 0,998 | 1.019 | 2,104 | 0.998 | 1.018 | 2.004 | 1,001 | 1.024 | 2,503 | 0,996 | 1.039 | 4.317 | 0.998 | 1.034 | 3.607 | 1.008 | 1.042 | 3,373 | | 3.251 | | | 1,000 | | | 1,000 | | | 0.999 | | | 0,998 | | | 1,001 | | | 1.001 | | | 0.998 | | | 1,000 | | | 1,001 | | | 0.999 | | | 0.998 | | | 1.007 | | | | 3.302 | 18 | | | | | | | | | 1 | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | 3 353 | 10 | 132 | | | | | - ! | 1 | | | | | | 3,353 | 19
20
21 | 132
134 | 1.001 | | | 1.000 | - 1 | | 0.998 | | | 0.997 | | | 1,000 | | | 1.001 | | | 1.000 | | | 0.999 | | | 1.000 | | | 0.997 | | | 0 997 | 1 | | 1.006 | | | | 3.454 | 21 | 136 | | | | 0.999 | | | 1,000 | | | 0 998 | | | 1,001 | | | 1.000 | | | 1.000 | | | 0.997 | | | 0.999 | | | 0.998 | | | 1.000 |) | | 1,006 | | | | 3.505 | 22 | 138 | 1,002 | 1.017 | 1,497 | | | 2 002 | 1,001 | 1.000 | -0.100 | 1.000 | 1.000 | 0.000 | | 1.005 | 0.601 | | 1,003 | 0.501 | | 1,025 | 2 603 | | 1.025 | 2 808 | 1.000 | | 3.200 | | 1.035 | 3 604 | | 1.026 | 2.498 | | 1.033 | 2.684 | | 3.556 | | 140 | 1,002 | | 11.407 | 0.998 | | | 1.000 | - 11.000 | -0.100 | 0 996 | - 11000 | 0.000 | 0.999 | -11000 | 0.001 | 0 999 | 11000 | | 1.000 | -1,020 | 2.000 | 0.997 | 11020 | | 0.998 | | | 0.997 | 11000 | | 1,000 | | | 1,003 | - 111-1 | | | 3.330 | 23 | .129 | | | | | | | I | | | - 330 | | | -2.000 | | | | | | | | | -5.007 | | | 3.500 | | | | | | | | | | | | | Autoroa | | _ | 1,000 | 1.024 | 2 421 | 0.999 | 1.022 | 2 201 | 0.999 | 1.007 | 0.779 | 0.999 | 1 006 | 0.563 | 1,000 | 1.005 | 0.522 | 1,001 | 1,008 | 0.764 | 1.001 | 1.022 | 2 226 | 0.998 | 1.018 | 2 004 | 0.999 | 1.022 | 2.358 | 0.008 | 1 028 | 2 004 | 0.005 | 1,023 | 2 477 | 1 002 | 1 026 | 2 435 | | Average
Std De | <u> </u> | | 0.002 | | | | | | | | 0.779 | 0.002 | 0.004 | | | 0.005 | | | 0.006 | 0.722 | | | | | | | 0.999 | | | | | | | 0.012 | | | | | | Sid De | ř · | | | | | | 1.041 | | 1,001 | | | 1,002 | 1.010 | | | | | | | 2.410 | | | | 1,000 | | | | | | | | | | 1.034 | | | | | | Max
Min | | - | 1,002 | 1.035 | 3 397 | | | | 0 997 | | | | | | 0.998 | | | | | | | 1.032 | | | | | | | | 0.996 | | | | | | | | | | | <u> </u> | | | | 1.401 | 0 997 | 1,005 | 1 0 500 | 1.0 997 | 1,000 | •0.100 | 0.896 | 0,998 | 0.000 | 0.998 | 1.000 | -0.100 | 0.996 | 1,003 | 0.299 | 0.997 | 1.0181 | 1,698 | 0 996 | 1,010 | 1.101 | 0.997 | 0,999 | 0.201 | 0.996 | 0.338 | 0.100 | 0.990 | 0.999 | 0.100 | 0.990 | 1.000 | 0 000 | | Max. c | nange % | - | 4.317 | | | | | | | | | | | Max, change %= 4.317 | Max. | change | 1 %= | 4 | .31 | 7 | |------|--------|------|---|-----|---| | | - | | _ | | - | | dist.frot | Station | ist.fro
| Pro | Post | Diff | Pro, in | Post, In | Diff, % | Pro, in | Post, in | Diff, % | Pre, In | Post, In | Diff, % | Pre, in | Post, In | Diff, % | Pre, In | Post, In | Diff, % | Pre, In | Post, in | Ditt, % | Pro, in | Post, In | Diff, % | Pre, in i | Post, In | Olff, % | | Post, in | | Pre, in | Post, in | | Pre, In I | | | |---|--|---------------|----------------|-------------------------|----------------------------------|-------------------------|----------|---------|-------------------------|----------|---------|---------|----------|---------|----------|----------|---------|----------------|----------------|---------|---------|----------|---------|---------|----------|---------|-----------|----------|---------|--------|----------|--------|---------------|----------|--|-----------|-------|-------| | bottom | Ь | ottom | W1 1 | W1 | W1 | W2
inches | W2 | W2 | W3
inches | W3 | W3 | W4 | W4 | W4 | | | | | | | | | | | | W8 | | | | W10 | W10 | | | | | W12 \ | | | | meters | i ii | ches i | nches | Inches | % | inches | inches | % | inches | inches | % | inches | nches | % | inches ! | Inches | % | Inches i | nches | % | | | | _ | | 1 | | | | | | | | | 1 | | | | | | | | | i | | | | | | | | | | | $\overline{}$ | | | - | | | | 0 | 1 | . <u>o</u> l. | 1,001 | 1.004
1.023
1.019 | 0.300
2.198
1.900
2.004 | 0,999 | 0.999 | 0.000 | 1,000 | | | 0.997 | - | | 0.999 | | | 1,003 | | | 1.000 | | | 0.996 | | | 1.001 | 1.004 | 0.300 | 0.999 | | | 1.001 | 1.004 | 0.300 | 0.998 | 0.999 | 0.100 | | 0.051 | 2 | 2 | 1.001 | 1.023 | 2.198 | 1,000 | 1,001 | 0.100 | 0.999 | | | 0 998 | | | 1,000 | 0.999 | -0.100 | 1,003 | 1,002 | -0.100 | 1.001 | 1,003 | 0.200 | 0.993 | 1.000 | 0.705 | 0,996 | 1,018 | 2.209 | 1.000 | 1.011 | 1,100 | 0.998 | 1.009 | 1.102 | 0.996 | 1.035 | 3.916 | | 0.051 | 3 | 4 | 1,000 | 1.019 | 1.900 | 1,000 | | | 1,000 | 0.999 | -0.100 | 0.999 | 1.008 | 0.901 | 1,000 | 1.002 | 0.200 | 1.001 | 1.002 | 0.100 | 1.002 | | -0.200 | | 1.002 | 0.906 | 1.000 | 1.020 | 2.000 | 1.003 | 1.035 | 3,190 | 1.001 | 1.019 | 1.798 | 0,998 | 1.032 | 3.407 | | 0.152 | 4 | | 0.998 | 1.018 | 2.004 | 0,999 | 0,998 | -0.100 | 0.999
1.000
1.000 | 1.002 | 0.200 | 0.999 | | 0.901 | 1.001 | 1.009 | 0.799 | 1,000 | 1.007 | 0.700 | 1.000 | 1.016 | 1.600 | 0,997 | 1.006 | 0.903 | 0.998 | | | 1.004 | 1.025 | 2.092 | 1.004 | 1.036 | 3.187 | 0.996 | 1.034 | 3.815 | | 0.203 | 5 | | 1.000 | | | 1.002 | | | 1.000 | | | 0 997 | | | 1,001 | | | 1,002 | | | 1.002 | | | 1,001 | | | 1.003 | | | 1.005 | | | 1.002 | | | 0.999 | | | | 0.254
0 305 | 6 | 10 | | | | | · - | | I | | | | | | | | | - | 0 305 | 7 | 12 | | - 1 | 0.356
0.406
0.864 | 8 | | 1.001 | 1 | | 1,001 | | L | 0.999 | | | 0.999 | | | 0.998 | | | 1,002 | | | 1.002 | | | 0,994 | | | 1,002 | | | 1,005 | | | 1.002 | | | 0,999 | | | | 0.406 | 9 | 16 | 1,000 | 1.019 | 1.900 | | 1.032 | 3.303 | | 1.014 | 1.705 | 0.996 | 1.012 | | 0,997 | | | 0 998 | 1.015 | 1.703 | 1.001 | | | | | | 0.999 | 1.021 | 2.202 | 1.003 | 1.027 | | | | | | 1.034 | | | 0.864 | 10
11
12
13 | | 0.997 | 1.021 | 2.407 | | | | 0.996 | 1.017 | 2.108 | 0.998 | | 1.703 | | | 1.493 | | | | 0 999 | | | | 1.019 | | | | 2.305 | | 1.034 | | | | 2.797 | | | | | 1,321 | 11 | 52 | 1.001 | 1.016 | 1.499 | 0.999 | | 1.702 | 0.995 | | | 0.997 | | 1.404 | | 1.013 | 1.401 | | 1.013 | 1.300 | | 1.008 | 0.901 | | | 1.000 | 1,000 | 1.015 | 1.500 | | 1,019 | | 1.001 | | 2.897 | | | | | 1.727 | 12 | 68 | 1.002 | 1.015 | 1.297 | 1,000 | | | 0,999 | 1.007 | | 1.001 | 1.010 | 0.899 | 0.997 | | | 0.985 | | 2.132 | | | -0.100 | | | 0.400 | 1,000 | | | | 1.004 | | | | 1.600 | | 1.036 | | | 2.235 | 13 | 88 | 1.000 | 1.018 | 1.800 | 0.998 | | | 0,999 | 1.020 | 2,102 | | 1.019 | 1.697 | 1.001 | 1.013 | 1,199 | 1.001 | | 1.299 | | 1.001 | 0 301 | | | 0,000 | | | | 1.001 | 1.001 | | | | -0.100 | | 1.038 | | | 1,321
1,727
2,235
2,692
3,15
3,2 | 14 | | 1.001 | 1.018
1.024
1.027 | 1.297
1.800
2.298
2.700 | 0.998
1.001
0.999 | | | 0.999 | 1.018 | | | 1.015 | 1.805 | 0.998 | | 2.104 | 0.996 | 1.019 | | 0,999 | | | | 0.999 | | 0.999 | 1.000 | | | | -0.100 | | | | | | | | 3.15 | 15 | | 1,000 | 1.027 | 2.700 | 0.999 | | | 1.001 | 1,019 | 1.798 | 1.001 | 1.017 | 1.598 | | 1,025 | 2,295 | | 1.023 | 2.505 | 1.000 | 0.998 | -0.200 | | 1.017 | -0.196 | 1.001 | 1.006 | 0.500 | | 1,004 | 0.400 | | | 0.800 | | 1.025 | 2.705 | | 3.2 | 16 | | 1,000 | | | 0.999 | | | 1.000 | | | 1.000 | | | 0.998 | | | 1.012 | | | 1.001 | | - | 1.004 | | | 0.999 | | | 1.004 | | | 1.000 | | | 0.998 | | | | 3 251 | 17 | 128 | 0,999 | | | 1,001 | | | 1.000 | | | 0.999 | | | 0.998 | | | 1.015 | | | 1.002 | | | 0.999 | | | 1.000 | | | 1.003 | | | 0.999 | ' | ' | 1,019 | | | | 3.251
3.302
3.353
3.404
3.454
3.505
3.505 | 15
16
17
18
19
20
21
22
23 | 130
132 | | | | | | | | _ | | | | | _ | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | 3,353 | 19 | 132 | | | | | | | I | | | | | | | | | |] | | | | | | _ | | | | | | | | l | ! | ' | | | | | 3.404 | 20 | 134 | 0.997 | | | 1,000 | | | 0.998 | | | 1,000 | | | 1.000 | | | 0.999 | | | 1,000 | | | 0,995 | | | 0,999 | | | 1.000 | | | 1.002 | | اـــــــــــــــــــــــــــــــــــــ | 0.998 | | | | 3.454 | 21 | 136 | 0.999 | 1.027 | 2.803 | 1.001
1.001
1.001 | | | 0.998 | 1.020 | 2.204 | 1,000 | 1.018 | 1,800 | | 1.019 | 2.207 | 0.998 | 1.020 | 2.204 | | 0.999 | 0.000 | | 1.000 | 0 200 | 1,001 | 1.000 | -0.100 | | 1,000 | -0.100 | | 1.000 | -0.100 | | 1.021 | 2.305 | | 3.505 | 22 | 138 | 1.000
0.998 | | | 1.001 | | | 0.996 | . 1 | | 1.001 | - 1 | | 0.998 | | | 1.001
0.998 | ! | - | 0,999 | | ! | 0.998 | | | 0.999 | | | 1,000 | | | 1.000 | | | 0.996 | | | | 3 556 | 23 | 140 | 0,998 | 1.024 | 2.605 | 1.001 | | | 0.999 | | | 1.000 | ! | | 0.997 | | | 0.998 | | - | 1.000 | | | 0.996 | | | 1.000 | | | 1.000 | | | 1.003 | <u> </u> | <u> </u> | 0 997 | | | | | | | | | <u> </u> | Average | | | 1.000 | 1.020
0.006 | 1.978 | | 1,011 | 1.185 | | 1.013 | 1.413 | 0.999 | 1.013 | 1.432 | 1.000 | 1.013 | | 1.001 | 1,012 | 1.415 | | | | | 1.006 | | | | | | | | 1.001 | | | | | | | Std Dev | | 1. | 0.001 | 0 006 | 0.676 | 0.001 | 0.014 | 1.402 | 0.002 | 0.008 | 0.880 | 0.002 | 0.004 | 0.384 | 0.002 | 0.008 | 0.823 | 0.006
1.015 | 0.008
1.023 | 0.929 | 0,001 | 0.007 | 0.694 | 0.006 | 0.007 | 0.716 | 0.002 | | | | | | 0.001 | | | | | | | Average
Std Dev
Max
Min | 1 | | 1.002 | 1.027 | 2,803 | 1.002 | 1.032 | 3 303 | 1.001 | 1.020 | 2 204 | 1.002 | 1.019 | 1.805 | 1.005 | 1.025 | 2.295 | 1.015 | 1.023 | 2.505 | 1.003 | 1.016 | 1.600 | 1.019 | 1.019 | 2.309 | 1.003 | 1.021 | 2.305 | 1,005 | 1,035 | 3,194 | 1.004 | 1,036 | 3,187 | 1.019 | | | | Min | i | | 0.997 | | 0 300 | 0 998 | 0.998 | -0.100 | 0.995 | 0.999 | -0.100 | 0 996 | 1.008 | 0 899 | 0.997 | 0.999 | -0.100 | 0.985 | 1.002 | -0.100 | 0.998 | 0 998 | -0.200 | 0.993 | 0.999 | -0.196 | 0 996 | 0.999 | -0.100 | 0.998 | 0,997 | -0.100 | 0.998 | 0 999 | -0.100 | 0.996 | 0 999 | 0.100 | | Max ch | ange %= | | 4 112 | - Although we had over 41 thermocouples on the 24 receiver tubes and 4 headers, we were unable to determine where the blockages were. Even when all the thermocouples indicated that the temperatures were above the salt melting point, we still had plugs of salt. In the Solar Two and commercial receivers there will be even less instrumentation. If a panel becomes frozen, temporary thermocouples should be installed to monitor the panel temperatures more thoroughly. They could be mounted on the outside of the tubes. Another option is to monitor the temperatures with an IR camera. - The heat trace should be designed to heat the headers and jumper tubes above 500°F within 10 hours when they are *full* of salt. ## **Component Tests** The main objectives of the component tests were to test unproven hardware and determine how well they perform in a molten salt environment, and to reduce uncertainties of the performance of untested components and operating procedures. Many of the flanges were tested in a molten salt environment, but additional information is required. Check valves were not tested previously in molten salt. The component tests were broken down into three areas: 1) check valve cycling, 2) slow thermal cycling of flanges, and 3) thermal shocking of flanges. Check valves are needed at the pump outlet to prevent damage to the pump from the static "head" of salt when the pump stops, or to prevent pressure surges caused by redundant pumps on a common header when one pump stops. Serious damage to the pump can result if it is not protected from the strong inertial forces of the salt coming from the other pump and from the salt head in the riser. It is desirable to use flanges that facilitate service of certain high maintenance components in molten salt loops. The flanges used in the molten salt pump and valve test loops were a constant source of salt leaks. The purpose of these tests was to test various other designs of flanges (e.g., tapered flanges or clamp type flanges) to measure how well they held a seal under thermal cycling, and to determine if it is practical to use flanges around the high maintenance components. We tested five flanges: a 2 inch Grayloc, two 4 inch R-CONs, a 6 inch E-CON, and a 4 inch ANSI ring type. Check Valve Cycling. The purpose of the experiments with the check valve were to test their operation in a molten salt environment and to determine how to drain the salt from the check valve. A 3
inch spring loaded swing check valve was tested in a section of piping between flanges in the loop. Although we could not simulate the pressures expected to be encountered in cold side of a molten salt loop, we did simulate the flow velocities and the temperature cycles on the cold loop. Figure 21 is a photograph of the check valve we tested (V-CON model manufactured by Reflange, Inc.). A drain hole was drilled in the flapper to allow a short section of piping downstream of the check valve to drain. Figure 21. Photograph of the 3 inch check valve (V-CON model manufactured by Reflange, Inc.) tested in the salt loop. In these tests we pressure cycled the check valve by flowing salt at the maximum flow rate approximately 100 gallons/min (380 l/min) and establishing pressure in the accumulator to 30 psi, then shutting a bypass valve (FCV 720) and turning off the pump. Shutting the valve before turning off the pump caused a momentary spike in the pressure, but assured the check valve would receive positive pressure on the downstream side of the flapper. We monitored the pressure decay in the accumulator tank. After waiting approximately 30 minutes to allow the pump motor to cool, we repeated the cycling. Figure 22 shows the pressure and flow as a function of time for several cycles. There were no problems with its operation after over 300 cycles (approximately 1 year of operation). The flapper was inspected after the 300 cycles, and found to be in good condition with no signs of wear. Slow Thermal Cycling of Flanges. Flanges in a molten salt environment have been known to leak significantly after being thermally cycled [12]. It is desirable to use flanges to facilitate service of high maintenance components, such as the pumps, in molten salt loops. The flanges used in the molten salt pump and valve experiments were a constant source of salt leaks. We tested various flanges to determine how well they hold a seal under the slow thermal cycling expected during nightly shut down of the plant followed by morning preheat with heat trace. We slow cycled four flanges: a Grayloc 2 inch with clamp type connectors, two 4 inch R-CON flanges with clamp type connectors manufactured by Reflange, and one 6 inch E-CON bolted flange also manufactured by Reflange. The Reflange flanges have a unique metal gasket that is radially compressed (elastically) when the two faces are brought together, providing a tight seal. ## **Checkvalve Cycling** Figure 22. Pressure and flow as a function of time during a typical check valve cycle. In these tests we simulated the nightly shut down and cooling of the components (assuming the heat trace were turned off) by using a fan and removing some of the insulation to enhance the cooling and match the temperature profiles we had expected to see in service at Solar Two. We cycled between 200 and 500°F. Each cycle took between six and eight hours. Figure 23 shows a typical slow thermal cycle. After approximately 180 slow thermal cycles, one of the 4 inch flanges started leaking very slightly. (We realized the torque on the bolts for the first 180 cycles was lower than the recommended value for the size of bolts we were using, and may have resulted in a less than optimum compression on the gasket.) We inspected all the flanges (we disassembled the two 4 inch flanges) and noticed they had all leaked to some extent, except the bolted 6 inch E-CON which showed no visible signs of salt. The bolted flange may provide a more uniform compression on the faces of the flange and gasket as compared to the clamp type flanges. See Figure 24. Since the salt is very wetting, it tends to get into cracks and seeps past gaskets, soaking and degrading the insulation. The continuous thermal cycling adds to its migration. Even though the flanges leaked a small amount (approximately 1 drop per hour), they would not likely fail catastrophically, since the gaskets are metal. We retorqued the bolts to their recommended torque and continued the slow thermal cycling for an additional 120 cycles (a total of 300 cycles -- approximately one year of service) without any failures. Figure 23. Typical slow thermal cycle of flanges simulating nightly cool down of components followed by slow heatup with heat trace. Figure 24. Schematic of a) ECON and b) RCON flanges. Thermal Shocking of Flanges. The most severe thermal cycling a flange could experience in a molten salt system would be a thermal shock where the flange is at one temperature and it is suddenly subjected to salt at a different temperature. This situation could occur in one of two ways: 1) when the salt temperature at the outlet of the receiver suddenly drops due to a cloud transient, or 2) at startup if the flanges were at a temperature below the salt temperature. In the first case, the salt temperature transient could be from 1050 to 550°F (566 to 288°C) in approximately five minutes. In the second case, the flange could be as cold as ambient with the salt at approximately 550°F (288°C). This situation could arise if the parasitic power consumption were being minimized at nightly shut down by turning off the heat trace followed by cold filling of the piping. In our test loop we only simulated the second thermal shock case, since it would be very difficult to simulate the transient salt temperature at the receiver outlet. We conducted these tests at two initial flange temperatures either: 300°F or ambient (~100°F) with the salt at 550°F. Prior to the start of the thermal shock tests we installed a 4 inch ring-type flange to test alongside the other flanges. In these tests we allowed the flanges to cool for several hours or overnight by lowering set point temperature of the heat trace or by turning off the heat trace completely. After the flanges had cooled to the desired temperature, we shock them by pumping 550°F salt through them. Figure 25 shows a typical temperature profile of the flanges and check valve during a shock. ## **Thermal Shock of Components** Figure 25. Typical temperature transient of the flanges during a shock. After 25 cycles at 300°F, we inspected the flanges. There did not appear to be any visible breaches of integrity. We continued the thermal shocks with the flanges at ambient temperature. The flanges experienced 146 shocks without failure, although the flanges continued to leak at a very slight rate. After all these thermal shocks, none of the flanges failed catastrophically. With continuous operation and exposure to pressurized salt, all except one of the flanges showed only minor leaking (wetting between the interfaces of the flange faces or actually dripping of salt at a rate of approximately one drop per hour). The exception is the Grayloc flange which leaked significantly, enough to form a stalagmite of salt on the floor. Leaks over a long period of time can soak the insulation and increase the thermal losses. Exposure of salt to heat trace can also cause an electrical short in the heat trace. A finite element analysis was done on the 6 inch E-CON flange to determine the stresses that developed in this flange undergoing thermal shock with salt a 550°F and the flange either initially at 77°F (25°C) or at 300°F (149°C). The details of this analysis are included in the appendix. There were two areas of concern in the flange where the stresses reached a maximum: 1) at the interface of the two flange faces at the outer most radius, and 2) on the inner surface of the flange adjacent to the gasket. The stresses developed at the interface between the two flange faces during either initial condition (77 or 300°F) were highly localized and were in excess of the yield for the material, but a chamfer exists at this location. The actual stress should be much lower with the chamfer, so that region is not a concern. On the other hand, the stresses in second region are in excess of the yield when the flange is shocked from an initial temperature of 77°F (25°C) but not in excess when shocked at 300°F (149°C). Based on this analysis, we recommend that flanges are preheated at least to 300°F (149°C) prior to initiating salt flow. These flanges are an improvement over the flanges used in the pump and valve test loops which were raised-faced flanges with a Flexitalic type gasket. Those flanges tended to leak severely under cyclic conditions. Our observations and recommendations regarding these flanges are: - The flanges held up remarkably well to the conditions to which we subjected them. There were no severe failures. The majority of the salt leaks were very slight. - Flanges should be minimized in a salt system. They should be used only for removal of high maintenance equipment such as the pumps, if at all. All welded construction is preferred, especially on hot loops. - If the piping is cold started, the flanges should be preheated to at least 300°F (149°C) prior to flowing salt through them. - The flanges tend to seal better if they are not thermally cycled. - Hot retorquing the bolts periodically may reduce the leaks. - Heat trace zones should be designed so that flanges and valves are not part of the same heat trace circuit as the rest of the riser or down comer, so that cold starting the rest of the piping can be done. ## Instrumentation Tests: Flowmeters and Pressure Transducer Flowmeters. Flowmeters were a considerable source of problems in previous molten salt experiments [2]. For example, the Category B receiver used venturi type flowmeters with differential pressure transducers using silicone oil as an intermediate fluid to measure flow. The pressure transducers had problems with silicone oil volatilizing at the cold salt temperature. In addition, venturi flowmeters only have a range of about 4:1. Because of the limited range and silicone oil problems, we investigated other designs of flow meters that could be more reliable, provide higher accuracy, and have a greater range. We chose to test two types of flowmeters: vortex shedding and ultrasonic. These
flowmeters were selected because they are common, commercially available products which can withstand the temperatures we expected to encounter in the cold side of a salt system. The vortex shedding flowmeter has wedge in the flow field and senses oscillations of the vortices which are shed from the wedge. The frequency of the oscillations is proportional to the flow rate. The ultrasonic flowmeter sends a sound wave through the moving fluid from one transducer to the other, with and against the flow. It measures the time difference between the traverses. We tested two types of ultrasonic flowmeters: a wetted type where the transducers actually send the sound wave directly into the fluid, and a clamp-on type where the transducers simply mount on the outside of the pipe and propagate the sound wave through the pipe wall. The vortex shedding flowmeter we tested was manufactured by Engineering Measurement Company, and the ultrasonics by Panametrics. Both have temperature limitations and are only rated for the cold side of a molten salt system. The ultrasonic flowmeters were calibrated with water at the factory prior to installation in the salt loop. The vortex shedding flowmeters had been calibrated under the Direct Absorption Receiver Program. We have operated the flowmeters since the beginning of this test program. The first clamp-on transducers were not made for the cold salt temperatures and their bodies (made of a "high" temperature phenolic material) melted. The manufacturer replaced them with all metal transducers. We also experienced some problems with the cables to the wetted transducers. Once we worked through the bugs in the hardware and programming, the ultrasonic flow meters worked reasonably well. The clamp-on flowmeter uses a petroleum couplant between the transducer and the pipe wall which allows the sound wave to penetrate through the pipe and into the fluid. After approximately a week or two of intermittent service at the cold salt temperatures (above 500°F), the couplant dried out and caused inaccuracies in its readings. A new application of couplant restored the contact between the transducer and the pipe wall. A comparison between the flowmeters is shown in Figure 26 during a varying flow condition. The vortex shedding responds much faster and stabilizes better to changes in flow rate. For control purposes, the vortex shedding would be the preferred flowmeter. The ultrasonic flowmeter took some time to tune and to get operating properly, partly due to the faulty cable. By changing the parameters (such as the number of samples it averages for a reading) in the software of the electronics for the ultrasonic flowmeters, we were able to change its response. Figure 26. Response of vortex and ultrasonic flowmeters during a varying flow condition. The flowmeters were compared with calibration tanks in the salt loop. Since the volumes of the calibration tanks are essentially constant with time, and the accuracy of the bubbler level measurement devices is good (\pm 3.8%), we chose to compare the flowmeters with the calibration tank flow. The uncertainty of the flow measurement has two components: the bias (also called systematic) errors and the random errors [10]. The bias errors affect each measurement the same amount (at a given condition) and represent the offset from the "true" value. Random errors are the errors that change in a random fashion with repeated measurement. The random errors are not correlated with each other, and their limit can be measured if several data points are taken. Since the true bias and random errors are not known, their estimates are approximated by limits of each. The bias limit equals the square root of the sum of squares of each elemental bias limit (b_i) : $$B = [\Sigma b_i^2]^{1/2} \tag{19}$$ The random limit equals: $$S = \left(\frac{t_{95}S_x}{\sqrt{N}}\right) \tag{20}$$ where t_{95} is the Student's t statistic at 95% confidence, S_x is the standard deviation of the data set, and N is the number of data points [10]. For the root-sum-square uncertainty model, the uncertainty is found by combining the bias and random limits as follows: $$U_{RSS} = \pm \left[B^2 + S^2 \right]^{1/2} \tag{21}$$ This model provides an interval around the test average that will contain the true value ≈95% of the time. In the flow tests, the flowmeter readings were compared with a reference—the calibration tanks. The bias errors relative to the reference can be measured. However, the reference (the calibration tanks) also has bias errors which we could not measure. Table 9 lists each bias error source and estimated magnitude for the calibration tank flow measurement. The calibration tanks use bubblers to sense level. The amount of time to fill between two levels in each tank is measured and the flow rate calculated. Since the volumes of calibration tanks were not measured when the Panel Research Experiment was fabricated, exact volumes are not known. However, the dimensions were determined from drawings of the tanks. The volume was calculated, accounting for an overflow standpipe. Even if the tanks have significant amounts of eccentricity (5% change in the diameter) causing the tank to become elliptical, the volume of each is not significantly affected (it changes by less than 0.5%). Other bias sources of errors are thermal expansion of the tank volume between ambient and 550°F, salt density variations due to temperature, and the bubbler calibration. Table 9. Bias Limit Sources for Calibration Tank Flow Measurement. | Error Source | Magnitude | |---|-------------| | 1. Tank Eccentricity (tank cross section is elliptical: minor axis is 95% tank radius, major axis 105% radius). | 0.5% | | 2. Tank Thermal Expansion (change in tank volume from | 1.5% | | ambient to 550°F). | 1.370 | | 3. Salt Property Variations (change in density and thus level between 550 and 650°F). | 1.8% | | 4. Bubbler Calibration (approximately 0.5 inch in 18 inches). | <u>3.0%</u> | | Total Bias Limit Calibration Tank Flow (Root Sum Square) | 3.8% | The flowmeters were compared with the calibration tanks at several flow rates. Starting at 100% flow, we allowed the flow to stabilize, then closed the drain valves to the calibration tanks. The bubblers measured the level in each tank as a function of time. The elapsed time for the salt to fill the tank between the lower and upper level settings is measured in each tank to calculate the flowrate. The total flowrate is the sum of the two calibration tank flows. Figure 27 shows the results of the comparison of the flowmeters against the calibration tank flowrate. Each data point represents the average of several readings during the calibration run. Figure 28 shows the measured bias errors (relative to the calibration tank flowrate) for each flowmeter as a function of flow. The bias errors represent the systematic errors in the measurements. Note how the bias errors are a function of the flow rate. The implication of this dependency is that calibration constant for each flow meter is off by a fixed percentage. The random errors are shown in Figure 29. The random errors were calculated from the data using Equation 20. The random errors are quite small, indicating the flowmeters give consistent readings over the range of the flows tested. The root-sum-square uncertainties, U_{RSS} , for each flow meter as a function of flow rate are shown in Table 10. The U_{RSS} accounts for the bias errors of the reference source—the calibration tanks. ### Flowmeter Calibration Figure 27. Comparison of the vortex and ultrasonic flowmeters against the calibration tank flowrate. ## **Bias Errors for Flowmeters** Figure 28. Measured bias errors (relative to the calibration tank flowrate) for each flowmeter as a function of flow. ## **Random Errors for Flowmeters** Figure 29. Measured random errors for each flowmeter as a function of flow. Table 10. Root-sum-square Uncertainty (U_{RSS}) for Each Flowmeter. | Flowrate,
L/min | Vortex,
FT-720 | Wetted
Ultrasonic,
PF-001 | Clamp-on
Ultrasonic,
PF-002 | Vortex,
FT-730 | Vortex,
FT-800 | |--------------------|-------------------|---------------------------------|-----------------------------------|-------------------|-------------------| | 102.6 | ± 9.8% | ±3.9% | ± 8.5% | ± 9.9% | ± 5.3% | | 155.4 | 11.6 | 4.2 | 12.8 | 11.6 | 7.3 | | 197.4 | 12.6 | 4.6 | 13.0 | 12.5 | 8.5 | | 244.6 | 15.1 | 6.4 | 13.3 | 15.6 | | The large uncertainties observed are primarily due to the large bias errors. By periodically calibrating the flowmeters against a calibrated reference (such as calibration tanks or the cold surge tank of receiver with a *calibrated* bubbler - this is important), the majority of bias error limits can be calibrated out resulting in a root-sum-square uncertainty with a magnitude of the uncertainty equal to the calibrated reference. Overall uncertainties (U_{RSS}) of less than $\pm 5\%$ can be obtained with these flowmeters. The random error limits were much smaller and did not contribute significantly to the overall uncertainty under steady conditions. Other observations and recommendations regarding flowmeters: The vortex shedding flowmeter worked exceedingly well (very reliable) in the molten salt environment and should be used whenever possible. The ultrasonic flowmeters were less reliable. - It is essential that provisions to calibrate the flowmeters in situ are designed into a molten salt system (e.g., <u>calibrated</u> level indicators in the cold tanks). - For calibration purposes, the tank volume should be measured before installation and the bubbler must be calibrated. - The clamp-on ultrasonic flowmeters are useful for temporarily (< 1 week) measuring flow in areas where there is no flow measurement or to verify flow measurement of an existing flowmeter and where the effort or expense
and down time does not justify installation of a welded in flowmeter. During the check out phase of the receiver and salt system or during performance monitoring may be the time when clamp-on ultrasonic flowmeters could be useful on a very temporary basis or as a temporary backup if one of the permanent flowmeters were to fail and the plant was ready to run. - The flow rate only needs to be measured on the cold side. There should be no need to measure flow on the hot side. Pressure Transducer. We have tested an impedance-type pressure transducer and a NaK-filled pressure transducer in the salt loop to determine how well they work in molten salt. The silicone oil used in pressure transducers in previous molten salt tests tended to volatilize. The NaK-filled pressure transducers made by Taylor worked well in the pump and valve loop once snubbers were used to eliminate pressure pulsations which fatigued the membrane. Unfortunately, NaK-filled pressure transducers are difficult to find anymore. The impedance-type pressure transducer we tested in our loop is made by Kaman, and is good for temperatures up to 1200°F. It senses small displacements in its membrane and correlates them to pressure. It is self temperature compensating. Although we don't have any method to calibrate the pressure transducers in our system, the impedance-type pressure transducer was calibrated at the factory at 550, 750, and 1050°F. The impedance-type pressure transducer in our loop experienced the same thermal cycling and shock as the flanges, and did not fail or give erroneous readings. The pressure measurement in Figure 22 was from the impedance-type pressure transducer. ## Comments regarding pressure transducers: - The impedance-type pressure transducers work well but are expensive (~\$5k each). - NaK-filled pressure transducers are hard to find. - To keep instrumentation costs down, minimize the number of salt pressure measurements needed. - The pressure transducers should be oriented so the salt can drain from them. Experience from previous molten salt experiments has shown, that if salt is allowed to freeze on the membrane, then thawed, the thawing process causes the membrane to rupture. # IV. Ongoing and Further Research The work conducted so far has answered many of the questions regarding how far salt can flow through cold pipes during a cold fill scenario and the thermal stresses that develop when components and piping are thermally shocked, and some of the effects of freezing and thawing. We have also tested instrumentation that are an improvement over previous instruments. Ongoing and further research is directed towards understanding the freeze/thaw phenomenon, validating transient freezing models, and testing improved components and instrumentation. A description of each of these follows. # Simple Element Freeze/Thaw Tests (Ongoing) A two-chamber oven was built to investigate the salt freeze/thaw phenomenon in typical receiver tubes. The purpose of the simple-element freeze/thaw experiments is to quantitatively measure in a controlled setup the permanent deformation inflicted to samples of receiver tubes undergoing freezing and thawing. When nitrate salt changes from the solid to the liquid phase the volume increases, causing an expansion of a given mass of salt. During the expansion process, the tube material can yield resulting in a plastic deformation of the tube material. In these tests, several receiver tubes of various diameters and wall thicknesses filled with nitrate salt undergo several freeze/thaw cycles to measure the deformation of tubes. Preliminary results indicate under the most severe case (freezing the lower half of a tube, then freezing the upper half, followed by thawing the lower part with a stop in the upper half to prevent sliding of the solid salt) the tubes will rupture after 12 cycles. ### **Ball Valves Test** Ball valves are desirable for use as drain and fill valves because they are relatively compact and in the fully opened position the flow restriction is small relative to other types of valves, such as globe valves. We have pressure cycled a 2 inch Mogas ball valve to assess its functionality and leak rate in a molten salt environment. The valve was closed and pressurized to 60 psi (410 kPa) for five minutes followed by flow for five minutes. After each 50 cycles, the leak rate was measured with the valve in the closed position and pressure on the valve. The amount of salt that leaks by was measured every 0.5 hour. After 300 cycles the leak rate was measured to be approximately 15 grams of salt per half hour. # **Transient Freezing Experiments** The correlation for transient freezing in pipes used to calculate penetration depths is based on experiments where the pipe wall is cooled externally to maintain a constant wall temperature. In reality, pipes have a finite heat capacitance. The effects of the pipe heat capacitance on the penetration depths for molten salt penetration depths is an area that could be investigated further. ## Impedance Heating System For long runs of piping, impedance heating could have advantages over mineral insulated (MI) cable. With impedance heating, the pipe wall becomes the heater by passing a low A-C voltage (<80 volts) through it. One lead of the electrical cables is connected to the electrical midpoint of the pipe, and the other is divided in two, with each of these connected to an end of the pipe that is to be heated. The cables run on the outside of the pipe and are easy to access. We plan to test an impedance heating system in our salt loop. ## **Multiport Valve** A multiport valve allows flow from one line to be distributed to several lines. It has a single actuator to control the valve. A multiport valve could be used in place of several drain and fill valves, thus reducing the complexity associated with controlling and maintaining several valves. Although this valve is not a commercial product, a small company in Colorado (TedCo) has designed such a valve for molten salt applications. This type of valve should be investigated further. # V. References - 1. N. E. Bergan, Testing of the Molten Salt Electric Experiment Solar Central Receiver in an External Configuration, Sandia National Laboratories, SAND86-8010, October 1986. - 2. D. C. Smith and J. M. Chavez, A Final Report on the Phase I Testing of a Molten Salt Cavity Receiver, Volume II The Main Report, Sandia National Laboratories, SAND87-2290, May 1992. - 3. C. E. Tyner, Status of the Direct Absorption Receiver Panel Research Experiment: Salt Flow and Solar Test Requirements and Plans, Sandia National Laboratories, SAND88-2455, March 1989. - 4. F. P. Incorpera, D. P. De Witt, Fundamentals of Heat and Mass Transfer, second edition, John Wiley & Sons, pp. 181-191, 1985. - 5. A. S. Mujumdar, R. A. Mashelkar, *Advances in Transport Processes*, John Wiley & Sons, Vol. III, pp. 35-117, 1984. - 6. J. N. Goodier, "Thermal Stress," ASME J. Appl. Mech., Vol. 4, no. 1, March 1937. - 7. A. H. Burr, Mechanical Analysis and Design, Elsevier Science Publishing Co., Inc., 1982. - 8. H. E. Boyer and T. L. Gail, editors, *Metals Handbook Desk Edition*, American Society for Metals, 1985. - 9. F. B. Cheung and L. Baker, Jr., "Transient Freezing of Liquids in Tube Flow," *Nuclear Science and Engineering*, Vol. 60, pp. 1-9, 1976. - 10. R. H. Dieck, *Measurement Uncertainty Methods and Applications*, Instrument Society of America, 1992. - 11. W. C. Young, Roark's Formulas for Stress and Strain, sixth edition, McGraw-Hill, pp. 722-724, 1989. - 12. E. E. Rush, J. M. Chavez, C. W. Matthews, P. Bator, An Interim Report on Testing the Molten Salt Pump and Valve Loops, Sandia National Laboratories, SAND89-2964, April # **Appendix A. Finite Element Analysis of Flange Undergoing Thermal Shock** The following is memo written by Scott Rawlinson describing a finite element analysis of an ECON type 6 inch flange undergoing thermal shock at two different initial conditions: 25 and 149°C. # Sandia National Laboratories Albuquerque, New Mexico 87185-1127 date: July 27, 1994 to: Jim Pacheco, MS-0703 Org. 6216 ocit Routin from: Scott Rawlinson, MS-1127 Org. 6215 5-3137 subject: Finite Element Results for Salt Flange To ensure the reliability of some aspects of Solar Two, you are concerned about stresses in several critical components, one of which is the flange coupling. As an alternate method of thermal conditioning at night, some of the salt line may be drained and allowed to cool. At startup these lines will be at ambient temperature or they will be preheated to a temperature below the salt freezing point and will undergo a significant thermal shock. The purpose of this memo is to document the finite element analysis (FEA) results on the flanges undergoing thermal shock that will be used in these molten salt loops. I used the COSMOS/M finite element program to model the pipe flange. This program can be used on a PC and according to a survey done by our analysis group about three years ago, is one of the better FEA programs. The program has been continuously updated and improved since that time. I used the latest version, 1.70. The developers of this code, Structural Research and Analysis Corporation (SRAC), verify its results using numerous test case models. The system being modeled is two E-CON flanges that are bolted together at 45 degree intervals. A step is machined into each of the mating flanges. A gasket is placed in this notch that is formed from these steps. The model was developed to determine: (1) stresses at steady-state conditions; (2) stresses that would occur if 290 °C salt suddenly flowed through this pipe connection without any heat trace (at ambient temperature); and (3) stresses that would occur if 290 °C salt suddenly flowed through this pipe connection after the flanges are preheated to 149 °C (300 °F). Therefore a transient solution is required for (2) and (3). The envelope of the FEA model was developed from the sketch
you supplied, using data from Reflange. Several iterations of the model were developed. The first model was developed in an older version, 1.65A. Then the newer version arrived, and although it did not contain any changes that should affect this particular model, I developed the model in the newer version. In addition, after knowing what loading would occur, I decided that gap elements should be placed between the flange and the gasket. Otherwise, the gasket would appear to be part of the flange, adding to its strength -- this would not be realistic. Only the results using the gap elements, separating the gasket from the flanges, will be presented. A summary of the parameters in the FEA model is given below: - Element type (for flanges and gasket): 4-node planar, "PLANE2D", axisymmetric - Average element size: 2-mm - Element type (gap between flange and gasket): 2-node "GAP" - Force/pressure boundary conditions: 28,300 N at bolt hole location - Flux/Temperature boundary conditions: - Convection along entire length of inner pipe - Convection coeff = 550 W/m²-K - Bulk fluid temp: 290 °C - Displacement boundary conditions: Zero displacement in y direction at midpoint of gasket - Flange material properties (SS316) [1,2]: - Modulus of elasticity: 193 GPa - Poisson's ratio: 0.3 - Coefficient of thermal expansion: 17.5 x 10⁻⁶ m/m-K - Density: 8000 kg/m³ - Specific Heat at Constant Pressure: 505 J/kg-K - Thermal conductivity: 15.6 W/m-K - Gasket material properties (17-4PH) [3]: - Modulus of elasticity: 193 GPa - Poisson's ratio: 0.3 - Coefficient of thermal expansion: 12.1 x 10⁻⁶ m/m-K - Density: 7832 kg/m³ - Specific Heat at Constant Pressure: 505 J/kg-K - Thermal conductivity: 12.1 W/m-K Note: Material properties were taken as constant and were calculated at the average between an ambient temperature of 25 °C and the operating temperature of 290 °C. The boundary conditions stated above require some explanation. Since the pipe flange is modeled axisymmetrically, the proper bolt load must be calculated. COSMOS/M assumes axisymmetric problems are based on one radian. Therefore the proper bolt load is: $$F = F_b \frac{\#bolts}{2\pi}$$ The force in the bolt was given as 4000-5000 lb. from Bob Lathan at Reflange, Inc.. I used 5000 lb. = 22,242N, or an equivalent load of about 28,300N, using the above equation. When I first developed the thermal model, I placed 290 °C boundary conditions (salt temperature) along the inside of the pipe. The resultant stresses were extremely high in this region. However, I realized that was not the proper boundary condition. The inside of the pipe will not instantaneously reach 290 °C -- it will reach that temperature much more slowly through the boundary layer. Therefore I re-analyzed the problem using convective boundary conditions. The correlation I used to determine the convection coefficient is based on turbulent flow in circular tubes and is given as [4]: $$\overline{h} = .023 \frac{k}{D} \operatorname{Re}_{D}^{4/5} \operatorname{Pr}^{0.3}$$ for $0.7 \le Pr \le 160$ $ReD \ge 10,000$ $L/D \ge 60$ where k = thermal conductivity D = pipe diameter L = pipe length $Re_D = Reynolds number$ Pr = Prandtl number Using your stated flowrate of 100 gpm and using the properties of salt at 290 °C from [5], I calculated a convection coefficient of 552 W/m²-K 550 W/m²-K (the above assumptions were met). This number is very close to your calculated valve based on experimental results from the smaller pipe flange at time \geq 90 seconds. Since the problem is transient in nature, a timestep is needed. The critical timestep is calculated as (information supplied by SRAC): $$\Delta t_{cr} \leq \frac{2}{1-2\theta} \frac{\Delta x^2 \rho c_p}{k}$$ where $\Delta x = \text{smallest mesh size}$ ρ = density c_p = specific heat at constant pressure θ = stability parameter Using the values of material properties and stability factor to give the smallest possible stable timestep, I calculated a critical timestep of 0.86 seconds. I used a 0.5 second timestep in the analysis. My assumptions in the analysis were as follows: - Constant material properties (linear problem) (1) - (2) Constant convection coefficient - No external thermal losses (insulated) - Bolt load does not change with time or temperature - No friction at gasket/flange interface (it will become apparent later that this value is irrelevant) - Flowrate = 100 gpm (6) # Steady-State Results (Ambient Temperature): The results of the steady-state analysis for 25 °C are shown in Figures 1a through 1d. All stresses discussed below are Von-Mises stresses, a common stress criterion used to predict failure. Figure 1a illustrates the model's element mesh, force, and displacement boundary conditions. Two areas, regions A and B are also illustrated -- these will be referred to later. Figures 1b and 1c are exaggerated displacement plots. The pipe flanges tend to be clamped together due to the bolt loads. This plot appears to show that the gasket is separating from the lower pipe flange. However, remember that this is an exaggerated plot on a scale on the order of several hundred. I was concerned that the apparent non-symmetry indicated a problem, so I consulted personnel at SRAC -- they said that sometimes this happens in a deformed plot when the displacements are very small, resulting in a very distorted plot with the huge scale factor. This is what happened in this case. In fact, he checked the entire model and found no problems. Figure 1d is a Von-Mises stress plot of the center of the bolted connection. The maximum stress is 175 MPa, and occurs where the two flange bodies contact due to the bolt forces (region A). This stress is well below the yield point of SS316 at ambient temperature. ## Transient Results for No Preheat: Next, the convective boundary condition was applied along the inside of the pipe wall. Since the temperature distribution changes with time, the resultant stresses will also change. I examined the results at t = 0.5, 1, 5, 10, 20, 30, 60, 120, 180, and 240 seconds. To observe how the stress patterns develop with time, I included the results at t = 0.5, 5, 10, 30, 60, 120, and 240 seconds in Figures 2 through 8. The maximum stress occurs at the same location as the steady-state results, but is higher due to the additive effect of the temperature or convective boundary conditions. Because the pipe is being heated from the inside of the pipe, this inner region expands faster than the outer region, which tends to compress the contact line even greater than with only bolt loads. The following table summarizes the stresses in the two areas of concern: Table I - FEA Results for Case Without Preheat | Time
(seconds) | Von-Mises
Stress, Region
A (MPa) | Corresponding
Temperature,
Region A (°C) | Yield Strength,
Region A
(MPa) | Von-Mises
Stress, Region
B (MPa) | Corresponding
Temperature,
Region B (°C) | Yield Strength,
Region B
(MPa) | |-------------------|--|--|--------------------------------------|--|--|--------------------------------------| | 0.0 | 175 | 25 | 240 | 35 | 25 | 240 | | 0.5 | 180 | 25 | 240 | 90 | 37 | 240 | | 1.0 | 171 | 25 | 240 | 90 | 44 | 240 | | 5.0 | 178 | 25 | 240 | 142 | 69 | 240 | | 10.0 | 214 | 25 | 240 | 172 | 81 | 240 | | 20.0 | 279 | 25 | 240 | 196 | 98 | 240 | | 30.0 | 341 | 25 | 240 | 239 | 107 | 240 | | 60.0 | 527 | 25 | 240 | 265 | 128 | 240 | | 120.0 | 537 | 50 | 240 | 323 | 161 | 240 | | 180.0 | 542 | 58 | 240 | 325 | 178 | 240 | | 240.0 | 547 | 67 | 240 | 328 | 187 | 240 | These results at the contact point (region A) indicate that the yield strength is easily exceeded. However, I asked if this was actually chamfered at this point. It turns out that it is, which would eliminate this high stress point. More of a concern is the stresses along the inner pipe adjacent to the gasket. For times > 30 seconds, stresses exceed the yield point in this region (the yield point is constant from 25-200 °C). Based on this, it is apparent that local yielding may occur if you thermally shock this bolted connection. Notice that maximum stresses are nearly level at 240 seconds. As the temperature distribution evens out, the stresses will decrease and eventually return to the stresses with bolt loading only (since the expansion will be equal throughout the flange assembly). Therefore, the stresses at t= 240 seconds are about as high as can be expected. Finally, I looked at any gap that may occur between the flange and gasket surfaces. There is a slight gap at t=240 seconds but is nearly undetectable -- less than $\cong 0.1$ -mm. Because of the effect of the bolt force and thermal loading, the gasket is never compressed. Any stresses in the gasket are only due to the thermal gradient. Because the gasket is never constrained, the coefficient of friction used is not relevant. ### Transient Results with Preheat: I re-ran the model assuming the entire flange was preheated to a uniform temperature of $149 \,^{\circ}\text{C}$ (300 °F). I examined the results at t = 0.5, 30, 60, 120, 180, and 240 seconds. The results are displayed in Figures 9 through 14. The following table summarizes the Von-Mises stresses in regions A and B. | Time
(seconds) | Von-Mises
Stress, Region
A (MPa) | Corresponding Temperature, Region A (°C) | Yield Strength,
Region A
(MPa) | Von-Mises
Stress, Region
B (MPa) | Corresponding Temperature, Region B (°C) | Yield Strength,
Region B
(MPa) | |-------------------|--|--|--------------------------------------|--|--|--------------------------------------| | 0.5 | 177 | 150 | 240 | 18 | 150 | 240 | | 30.0 | 266 | 150 | 240
 133 | 193 | 240 | | 60.0 | 361 | 150 | 240 | 145 | 204 | 240 | | 120.0 | 454 | 162 | 240 | 182 | 221 | ≅ 240 | | 180.0 | 495 | 170 | 240 | 198 | 230 | ≅ 240 | | 240.0 | 504 | 180 | 240 | 202 | 235 | ≅ 240 | Table I - FEA Results for Case Without Preheat to 149 °C As with the case with no preheat, the highest stresses occurred at the point of contact between the two flange bodies. Again, this point was ignored because there is actually a chamfer at this location. The other area of concern, region B, has much more acceptable stresses. A maximum Von-Mises stress of 202 MPa occurs at t=240 seconds. The corresponding temperature at that point and time is approximately 235 °C. The yield strength of SS316 at this temperature point is nearly 240 MPa, therefore the stress level is acceptable. Note that as with the case with no preheat, the stresses have very nearly peaked and would begin to decrease with time to the levels of that in the steady-state condition. ### **Conclusions:** Based on these results of this model, it appears that local yielding may occur (without preheat) along the inner pipe adjacent to the gasket. It is possible that a full 3-D model may indicate otherwise, but it is not likely since the region in question is far from the bolts. Therefore, it is not recommended that this flange connection be thermally shocked from ambient conditions. However if heat trace is used to preheat the flanges to 149 °C (300 °F), the stresses would remain below the yield point of the material.. #### References: - 1. American Society for Metals, Engineering Properties of Steel, pp. 292-296, ASM, 1982. - 2. Incropera, F. P., and DeWitt, D.P., <u>Fundamentals of Heat Transfer</u>, p765, Wiley, New York, 1981. - 3. Kattus, J.R., Aerospace Structural Metals Handbook, code 1501, March, 1978. - 4. Incropera, F. P., and DeWitt, D.P., <u>Fundamentals of Heat Transfer</u>, p406-407, Wiley, New York, 1981. - 5. Smith, David C., Chavez, James M., <u>Final Report on Phase I Testing of a Molten Salt Cavity Receiver</u>, Vol II The Main Report, Table 2-II, p 2-4, SAND 87-2290, May 1992. Attachments with all copies: Figures 1 through 14 Copy to: Chuck Lopez, SCE Bill Gould, Bechtel Alex Zavoico, Bechtel Dick Holl, Jenna Baskets Bob Lathan, Reflange Mark Marko, Rockwell Tom Tracey, Ted Co. MS-0703 Jim Chavez, 6216 MS-0703 Craig Tyner, 6216 MS-0703 Greg Kolb, 6216 MS-0704 Paul Klimas, 6201 MS-1127 Chris Cameron, 6215 MS-1127 Scott Rawlinson, 6215 (2) File K.3, 6215 ### Appendix B. Fabrication of Heat Trace Circuits The heat trace for large systems is usually designed by the supplier. Each zone is sized based on the heating load and the piping diagrams. The length and power rating of a heat trace cable are sized based on the power required to maintain a pipe at given temperature and the power supply voltage. For a given voltage and heat trace cable length, the MI cable resistance density can be selected to provided the desired power. As a rule of thumb, we try to limit the power wattage density to less than 50 W/ft of MI cable length. Figures B-1 through B-4 are photographs of heat trace installed on a section of piping, a valve body, the header of a receiver panel, and above the jumper tubes in a receiver panel. To maintain the integrity of the electrical circuit, only, tube benders should be used to bend the heat trace cable. See Figure B-5. After the heat trace is installed, it is covered with metal foil to prevent insulation from getting between the heater and the pipe causing the heater to overheat. The metal foil also helps to direct the radiant heat from the heat trace to the pipe or component. The metal foil can either be wrapped around the pipe and heat trace or tack welded over the heat trace to the pipe. A critical area in heat trace circuit fabrication is the hot to cold junction. This junction makes a transition from the power lead (copper cable) to the heater (NiCr cable). Most of the failures of heat trace circuits can be attributed to a failure at the hot to cold junction. Below is an outline of the fabrication of hot-to-cold junctions. - 1. First, a splice is drilled out to fit over the MI cable. See Figure B-6. - 2. Cut the MI cable by scoring it three times, but not cutting it all the way through because it may cause a short of the conductor wire. Snap off the cut piece. - 3. Remove 3/8 inch of the sheath to expose the inner wire of the MI cable. Peel the sheath to expose the Magnesium Oxide (MgO) and conductor wire (Figure B-7.) - 4. File the inner conductor wire flat. Everything must be kept clean to make sure the silver solder adheres. Clean with emery cloth (Figure B-8). - 5. Test (Meger Test) the insulation quality of each MgO MI cable by measuring the resistance between the conductor and the sheath. The resistance should be at least 5 M Ω preferably 20 M Ω . - 6. Clean everything that has to be brazed: the conductors and sheath. - 7. Check the splice and stress fitting for fit. - 8. Slip the stress fitting and splice over the MI cable. - 9. Put flux on the conductor of the cold lead (copper wire) to help the brazing process. - 10. Put solder on with a torch. - 11. Check the resistance again to make sure there are no shorts. - 12. Line up the hot (NiCr) and cold (Cu) leads (Figure B-9). - 13. Melt the solder from the cold (Cu) side and let it flow towards the hot (NiCr) side. - 14. Remove flux residue with pliers. Check integrity of joint. Buff with emery cloth. - 15. Check resistance again for shorts. - 16. Clean any outgassing of flux residue on the surface of the MgO by taking out the top surface of the MgO. The MgO is very hydroscopic. - 17. Slide the splice over the junction until the junction can be seen through the breather hole. Figure B-1. Heat trace installed on 2 inch pipe before metal foil was installed. It is snaked to allow for thermal expansion. Figure B-2. Heat trace installed on valve body prior to being covered with metal foil. Figure B-3. Heat trace on receiver panel header with metal foil covering the cable. Figure B-4. Heat trace on jumper tubes in receiver panel. Figure B-5. Tube bender used for bending MI cable. Figure B-6. Splice is drilled to fit over MI cable. Figure B-7. Sheath is peeled away to expose magnesium oxide (MO) and the conductor wire. Figure B-8. The conductor wire must be cleaned so the silver solder will adhere. Figure B-9. The heater wire - NiCr, (on the left) and cold lead - Cu (on the right) are lined up. - 18. Braze the heater side of the splice to the sheath first. Don't have both sides of the MI cable clamped tight otherwise stress will build in the joint. Allow the junction to grow. Braze the hot side by first heating the splice because it has more thermal mass than the sheath, then heating the surrounding cable to bring all parts to temperature at once. Flow solder around the splice. Repeat for cold side (Figure B-10). - 19. Check resistance again. - 20. Use a screw to cap off the breather hole in the slice by first putting a kink in the threads two or three threads up to prevent the screw from going in too far and screwing it in the breather hole. Clip of the screw flush with the surface of the splice. File it down. Use a round tail file to make groves in splice for solder to adhere. - 22. Flux area. Seal vent hole with solder. - 22. Use a wet rag (Figure B-11) to determine if junction is sealed by measuring resistance. If water penetrated the seal, the resistance would decrease. #### Don'ts with Heat Trace: - 1. Don't weld near heat trace. Weld splatter could burn a hole in the sheath. - 2. Don't hammer heat trace to fit it in tight spots (Figure B-12). - 3. Don't use pliers or files to bend the MI cable (Figures B-13 and B-14). Use a tube bender (Figure B-5). Figure B-10. The spice is brazed to the cable sheath. Figure B-11. Use a wet rag to determine if the junction is sealed. Figure B-12. Do not hammer heat trace. Figure B-13. Do not use pliers to bend heat trace. Figure B-14. Do not use a file on the heat trace sheath. # Appendix C. Heat Transfer Coefficient for Circumferentially Varying Heat Flux The impetus behind establishing a method to estimate accurately heat transfer coefficients is so that the flux limitations on receiver tubes can be set using thermal fatigue data based on the maximum temperature the tube material will experience during normal operation. Since the receiver tubes in a central receiver are heated on one side and insulated on the other, asymmetric heating will affect the heat transfer and thus the tube-temperature distribution. In the Handbook of Heat Transfer Fundamentals there is a description of the effects of circumferentially varying heat flux distribution on the Nusselt number (the nondimensional heat transfer coefficient, Nu=hD/k) for a specific flux distribution, but not a general case. In the journal article referenced by the handbook¹, the methodology to estimate the Nusselt number for an arbitrarily varying flux distribution is described. Basically, the authors describe an analytical derivation where they solve the energy equation by breaking the arbitrary flux distribution into the average flux around the tube plus the variation from the average. The authors claim the theoretical results are within 10% of experimental data for $0.7 \le Pr \le 75$. The model accounts for variations in the radial and circumferential thermal eddy diffusivities for turbulent flow ($\epsilon_{H\rho}$ and $\epsilon_{H\theta}$) which are based on experimental data. The local Nusselt number, $Nu(\theta)$, can be calculated if the flux variation can be expressed in terms of a Fourier series. In the case of a receiver tube, the flux distribution varies approximately with cosine of the angle from the tube crown assuming the flux is specular (parallel rays). See Figure C-la). Normalizing the flux distribution by the average flux, $q''_0 = q''_{net}/\pi$, the distribution can be represented as $q''(\theta)/q''_0 = 1 +
F(\theta)$ where: $$F(\theta) = 0 \qquad 0^{\circ} \le \theta \le 90^{\circ}$$ $$0 \qquad 90^{\circ} \le \theta \le 270^{\circ}$$ $$\pi \cos(\theta) \qquad 270^{\circ} \le \theta \le 360^{\circ}.$$ $F(\theta)$ is represented by the Fourier series: $$F(\theta) = \sum_{n=1}^{\infty} F_n(\theta) = \sum_{n=1}^{\infty} a_n \cos(n\theta)$$ where $$a_1 = \pi/2$$ $$a_n = \frac{\sin((1-n)\pi/2)}{1-n} + \frac{\sin((1+n)\pi/2)}{1+n}.$$ Figure C-1b) shows the comparison of the flux distribution to Fourier series representation (n=0 to 6). Once the Fourier series representation is known, the fully developed, local Nusselt number is calculated from: $$Nu_{\omega}(\theta) = \frac{2(q''(\theta)/q''_{o})}{G_{o} + \sum_{n=1}^{\omega} G_{n}F_{n}(\theta)} = h(\theta)D/k$$ ¹"Turbulent Heat Transfer in a Circular Tube with Circumferentially varying Thermal Boundary Conditions," *J. Heat. Mass. Transfer*, Vol. 17, pp 1003-1018, (1974). Figure C-1. a) Flux distribution around an asymmetrically heated tube with insulation on the unilluminated side, and b) comparison of flux distribution to Fourier series representation (six terms). where G_o and G_n are found from solutions to the energy equation and are functions of the Prandtl, Pr, and Reynolds, Re, numbers. They are tabulated in the referenced article. Figure C-2 shows a comparison of the Nusselt number computed by the above method to that computed by the Dittus Boelter equation - a commonly used correlation for uniformly heat tubes $(Nu=0.023Re^{0.8}Pr^{0.4})$. As can be seen, the analytical estimate of the heat transfer coefficient is greater in value. The authors also state for Pr=8, the dependence of the Nusselt number upon Reynolds number exceeds the power of 0.8 and thus the Dittus-Boelter equation tends to gives more conservative results the higher the Reynolds number. This has been cited by other researchers. According to the referenced article, the deviations between the derivation and experimental data do not exceed 10% and are generally much less. Note, the Pr and Re number for nitrate salts vary from approximately 3.2 and 100,000, respectively, at 1050°F to 10.2 and 30,000, respectively, at 550°F. This method will give an accurate estimate of localized heat transfer coefficients for a non-uniformly heated tube. #### Nu(θ), Pr=10, Re=30,000 Figure C-2. Comparison of analytical calculation of Nusselt number which accounts for variations in flux to that determined by the Dittus-Boelter equation for Pr=10 and Re=30,000. $Nu(\theta)$ drops to zero between 90° to 180°. ## Appendix D. Strain Equations for a Receiver Tube Under High Flux Assuming a flux profile on the tube that follows a cosine function (Eq. D-1), a relation can be found between the tube strain and flux, tube material properties, and heat transfer coefficient. The plane strain in the tube is the sum of the strain in the tube wall due to the temperature difference across the wall and the strain due to the tube front-to-back temperature difference (Eq. D-2). The flux profile, strain equation, ε , and the tube inside and outside crown temperatures are defined below (assuming thin walled tubes): $$q''(\theta) = q''_{net}\cos(\theta)$$ (D-1) $$\varepsilon = \alpha \left[\left(\frac{T_{o,c} - T_{i,c}}{2(1 - \upsilon)} \right) + \left(\frac{T_{o,c} + T_{i,c}}{2} - T_{avg} \right) \right]$$ (D-2) $$T_{o,c} = \frac{q''_{nel} t_{wall}}{k} + T_{i,c}$$ (D-3) $$T_{i,c} = T_s + \frac{q''_{net}}{h_c} \tag{D-4}$$ The average tube temperature can be approximated by: $$T_{avg} = \frac{q''_{net}}{\pi h_c} + \frac{q''_{net} t_{wall}}{2 \pi k} + T_s$$ (D-5) Substituting these into the strain equation yields: $$\varepsilon = \frac{\alpha q''_{net}}{\pi} \left[\frac{t_{wall}}{2k} \left(\frac{\pi (2 - \upsilon) - (1 - \upsilon)}{(1 - \upsilon)} \right) + \frac{(\pi + 1)}{h_c} \right]$$ (D-6) Eq. D-6 shows how the flux, tube thickness, material properties and heat transfer coefficient at the crown affect the strain. Also note that the heat transfer coefficient is a function of the salt velocity and temperature. Assuming the control system has anticipatory capabilities, the flow rate and thus the heat transfer coefficient will be tied to the incident flux. At nominal operating conditions, a deviation in the heat transfer coefficient of 10% will only result in a 5% change in strain. ## Appendix E. Molten and Solid Nitrate Salt Properties The following properties are for molten and solid nitrate salt. Table E-1 shows the density, heat capacity, thermal conductivity, absolute and kinematic viscosities, Prandtl number, and thermal diffusivity as a function of temperature for molten salt. These data were compiled from various sources. Many properties were obtained for an equimolar ratio of sodium nitrate (46% by weight) and potassium nitrate (54% by weight). We have assumed the difference is not significant. For further details on salt properties please refer to A Review of the Chemical and Physical Properties of Molten Alkali Nitrate Salts and Their Effect on Materials Used for Solar Central Receivers, R.W. Bradshaw and R.W. Carling, SAND87-8005, printed April 1987. #### Molten Nitrate Salt Composition: Sodium Nitrate NaNO₃ 60% by weight Potassium Nitrate KNO₃ 40% by weight Physical Properties (300-600°C, T is in °C): Density (kg/m³): $\rho = 2090 - 0.636 \text{ T}$ Heat Capacity (J/kg•K): Cp = 1443 + 0.172 T Thermal Conductivity (W/m•K): $k = 0.443 + 1.9 \times 10^{-4} \text{ T}$ Absolute Viscosity (mPa·s): $\mu = 22.714 - 0.120 \text{ T} + 2.281 \text{x} 10^4 \text{ T}^2 - 1.474 \text{x} 10^{-7} \text{ T}^3$ Other Molten Salt Properties: Isotropic Compressibility (NaNO₃) at the melting point: $2x 10^{-10} \text{ m}^2/\text{N}$ Speed of Sound: NaNO₃: 1763.3 m/s (5785.1 ft/s) at 336°C (637°F) KNO₃: 1740.1 m/s (5709 ft/s) at 352°C (666°F) Change in Sound Speed with Temperature: NaNO₃: 0.74 m/s•K KNO₃: 1.1 m/s•K Phase Change Nitrate Salt Properties Freezing Point: Solidifies at 221°C (430°F) Start to crystallize at 238°C (460°F) Heat of Fusion - (based on molecular average of heat of fusion of each component): $$h_{sl} = 161 \text{ kJ/kg}$$ Change in Density Upon Melting: $$\Delta V/V_{solid}$$ =4.6% $\Rightarrow V_{liquid}$ = 1.046 V_{solid} ### Solid Salt Density, p: NaNO₃: 2260 kg/m³ at room temperature KNO₃: 2190 kg/m³ at room temperature Heat Capacitance, Cp: NaNO₃: 37.0 cal/K·mol = 1820 J/kg·K near melting point KNO₃: 28.0 cal/K•mol = 1160 J/kg•K near melting point Thermal Conductivity, k: KNO₃: 2.1 W/m•K Table E-1. Molten Nitrate Salt Properties: 60% NaNO₃, 40% KNO₃. | Γ | Ţ | | ρ | | Ср | | k | | μ | | ν | | Pr | α | | |---|----------|------|--------|----------|---------|-----------|------------|------------|------------|-----------|-------------|-----------|---------|-----------|-------------| | | Temperat | ure | Den | sity | Heat Ca | pacity | Thermal Co | nductivity | Absolute \ | /iscosity | Kinematic \ | /iscosity | Prandtl | Thermal D | oiffusivity | | | С | F | Kg/m^3 | lbm/ft^3 | J/kg/K | 3tu/lbm/F | W/m/K | Btu/h/ft/F | Pa s | lbm/ft/h | m^2/s | ft^2/h | | m^2/s | ft^2/h | | Γ | 270 | 518 | 1918 | 119.8 | 1489 | 0.3558 | 0.493 | 0.2850 | 0.00404 | 9.78 | 2.11E-06 | 0.082 | 12.20 | 1.73E-07 | 0.00669 | | 1 | 280 | 536 | 1912 | 119.4 | 1491 | 0.3562 | 0.495 | 0.2861 | 0.00376 | 9.10 | 1.97E-06 | 0.076 | 11.33 | 1.74E-07 | 0.00673 | | ı | 290 | 554 | 1906 | 119.0 | 1493 | 0.3566 | 0.497 | 0.2872 | 0.00350 | 8.47 | 1.84E-06 | 0.071 | 10.52 | 1.75E-07 | 0.00677 | | ı | 300 | 572 | 1899 | 118.6 | 1495 | 0.3570 | 0.499 | 0.2883 | 0.00326 | 7.89 | 1.72E-06 | 0.067 | 9.77 | 1.76E-07 | 0.00681 | | ı | 310 | 590 | 1893 | 118.2 | 1496 | 0.3574 | 0.501 | 0.2894 | 0.00304 | 7.36 | 1.61E-06 | 0.062 | 9.09 | 1.77E-07 | 0.00685 | | ı | 320 | 608 | 1886 | 117.8 | 1498 | 0.3578 | 0.503 | 0.2905 | 0.00284 | 6.87 | 1.51E-06 | 0.058 | 8.47 | 1.78E-07 | 0.00689 | | ı | 330 | 626 | 1880 | 117.4 | 1500 | 0.3582 | 0.505 | 0.2916 | 0.00266 | 6.43 | 1.41E-06 | 0.055 | 7.90 | 1.79E-07 | 0.00694 | | ı | 340 | 644 | 1874 | 117.0 | 1501 | 0.3586 | 0.507 | 0.2927 | 0.00249 | 6.02 | 1.33E-06 | 0.051 | 7.38 | 1.80E-07 | 0.00698 | | ı | 350 | 662 | 1867 | 116.6 | 1503 | 0.3591 | 0.509 | 0.2938 | 0.00234 | 5.65 | 1.25E-06 | 0.048 | 6.91 | 1.81E-07 | 0.00702 | | ı | 360 | 680 | 1861 | 116.2 | 1505 | 0.3595 | 0.510 | 0.2949 | 0.00220 | 5.32 | 1.18E-06 | 0.046 | 6.48 | 1.82E-07 | 0.00706 | | ı | 370 | 698 | 1855 | 115.8 | 1507 | 0.3599 | 0.512 | 0.2960 | 0.00207 | 5.02 | 1.12E-06 | 0.043 | 6,10 | 1.83E-07 | 0.00710 | | ı | 380 | 716 | 1848 | 115.4 | 1508 | 0.3603 | 0.514 | 0.2971 | 0.00196 | 4.75 | 1.06E-06 | 0.041 | 5.76 | 1.84E-07 | 0.00715 | | ı | 390 | 734 | 1842 | 115.0 | 1510 | 0.3607 | 0.516 | 0.2982 | 0.00186 | 4.51 | 1.01E-06 | 0.039 | 5.46 | 1.86E-07 | 0.00719 | | 1 | 400 | 752 | 1836 | 114.6 | 1512 | 0.3611 | 0.518 | 0.2993 | 0.00178 | 4.30 | 9.68E-07 | 0.038 | 5.18 | 1.87E-07 | 0.00723 | | ١ | 410 | 770 | 1829 | 114.2 | 1514 | 0.3615 | 0.520 | 0.3004 | 0.00170 | 4.11 | 9.29E-07 | 0.036 | 4.95 | 1.88E-07 | 0.00728 | | 3 | 420 | 788 | 1823 | 113.8 | 1515 | 0.3619 | 0.522 | 0.3015 | 0.00163 | 3.94 | 8.94E-07 | 0.035 | 4.73 | 1.89E-07 | 0.00732 | | 1 | 430 | 806 | 1817 | 113.4 | 1517 | 0.3623 | 0.524 | 0.3026 | 0.00157 | 3.80 | 8.64E-07 | 0.033 | 4.55 | 1.90E-07 | 0.00736 | | ı | 440 | 824 | 1810 | 113.0 | 1519 | 0.3628 | 0.526 | 0.3037 | 0.00152 | 3.67 | 8.39E-07 | 0.032 | 4.39 | 1.91E-07 | 0.00741 | | ı | 450 | 842 | 1804 | 112.6 | 1520 | 0.3632 | 0.528 | 0.3048 | 0.00147 | 3.56 | 8.16E-07 | 0.032 | 4.24 | 1.92E-07 | 0.00745 | | ١ | 460 | 860 | 1797 | 112.2 | 1522 | 0.3636 | 0.529 | 0.3059 | 0.00143 | 3.47 | 7.97E-07 | 0.031 | 4.12 | 1.93E-07 | 0.00750 | | ı | 470 | 878 | 1791 | 111.8 | 1524 | 0.3640 | 0.531 | 0.3070 | 0.00140 | 3.38 | 7.80E-07 | 0.030 | 4.01 | 1.95E-07 | 0.00754 | | ı | 480 | 896 | 1785 | 1,11.4 | 1526 | 0.3644 | 0.533 | 0.3081 | 0.00137 | 3.31 | 7.66E-07 | 0.030 | 3.91 | 1.96E-07 | 0.00759 | | ı | 490 | 914 |
1778 | 111.0 | 1527 | 0.3648 | 0.535 | 0.3092 | 0.00134 | 3.24 | 7.53E-07 | 0.029 | 3.82 | 1.97E-07 | 0.00763 | | ı | 500 | 932 | 1772 | 110.6 | 1529 | 0.3652 | 0.537 | 0.3103 | 0.00131 | 3.18 | 7.42E-07 | 0.029 | 3.74 | 1.98E-07 | 0.00768 | | ı | 510 | 950 | 1766 | 110.2 | 1531 | 0.3656 | 0.539 | 0.3114 | 0.00129 | 3.12 | 7.31E-07 | 0.028 | 3.66 | 1.99E-07 | 0.00773 | | ı | 520 | 968 | 1759 | 109.8 | 1532 | 0.3660 | 0.541 | 0.3125 | 0.00127 | 3.06 | 7.20E-07 | 0.028 | 3.59 | 2.01E-07 | 0.00777 | | ı | 530 | 986 | 1753 | 109.4 | 1534 | 0.3664 | 0.543 | 0.3136 | 0.00124 | 3.01 | 7.09E-07 | 0.027 | 3.51 | 2.02E-07 | 0.00782 | | | 540 | 1004 | 1747 | 109.0 | 1536 | 0.3669 | 0.545 | 0.3147 | 0.00122 | 2.95 | 6.97E-07 | 0.027 | 3.43 | 2.03E-07 | 0.00787 | | | 550 | 1022 | 1740 | 108.6 | 1538 | 0.3673 | 0.547 | 0.3158 | 0.00119 | 2.88 | 6.84E-07 | 0.027 | 3.35 | 2.04E-07 | 0.00791 | | | 560 | 1040 | 1734 | 108.2 | 1539 | 0.3677 | 0.548 | 0.3169 | 0.00116 | 2.81 | 6.69E-07 | 0.026 | 3.26 | 2.05E-07 | 0.00796 | | ı | 570 | 1058 | 1727 | 107.8 | 1541 | 0.3681 | 0.550 | 0.3180 | 0.00113 | 2.72 | 6.52E-07 | 0.025 | 3.15 | 2.07E-07 | 0.00801 | | | 580 | 1076 | 1721 | 107.4 | 1543 | 0.3685 | l . | 0.3191 | 0.00109 | 2.63 | 6.32E-07 | 0.024 | 3.04 | 2.08E-07 | 0.00806 | | | 590 | 1094 | 1715 | 107.0 | 1544 | 0.3689 | 0.554 | 0.3202 | 0.00104 | 2.52 | 6.08E-07 | 0.024 | 2.91 | 2.09E-07 | 0.00811 | | | 600 | 1112 | 1708 | 106.7 | 1546 | 0.3693 | 0,556 | 0.3213 | 0.00099 | 2.40 | 5.80E-07 | 0.022 | 2.76 | 2.10E-07 | 0.00816 | 9 # Appendix F. Selected Sets of Data and Other Information | Thermocouple Layout on Panels | 101 | |--|-----| | Thermocouple Layout on Components | 102 | | Ultrasonic Flow Meter Parameters | 103 | | Component Part Numbers and Weights | 105 | | Selected Sets of Data: | | | - Panel Cold Fill Test | 107 | | - Cold Fill Test of 2 inch Pipe | 112 | | - Flow Meter Calibration Data Summary | 114 | | - Flow Meter Calibration Data | 118 | | - Panel Temperature Data During Freezing | 130 | | - Checkvalve Cycling Data | 142 | | - Thermal Shock Data for Components | 149 | | - Data for Slow Cool Down of Components with Fan | 152 | | - Data Slow Heat Up of Components with Heat Trace Circuits | 153 | # SETUP INFORMATION FOR THE PANAMETRICS ULTRASONIC FLOWMETER PROMPT SETTING System Units METRIC Volumetric Units liters Time Units . minutes Decimal Digits 2 Totalizer Units liters Decimal Digits 2 Analog Out Units Volumetric Analog Out Zero 0.0 liters/min (4 mA) Full Scale 500.0 liters/min (20 mA) Error Handling Force Low Response Time 30 readings Fluid Type Other (for Molten Sodium Nitrate-60% and Potassium Nitrate-40%) Fluid Sound Speed 1800.0 m/s (nitrate salt, 1812 m/s was measured when clamp on flowmeter was work) Reynolds Correction Active Kin. Viscosity 1.863 E-6 m^2/s @ 288 C (550F) nitrate salt Meter Factor K 1.000 Transducer # 91 for the wetted flow cell (Channel 1) 116 for the clamp on transducer (Channel 2) The setup for each type of transducer is different and continues on the next page. The Following Apply to the CLAMP ON TRANSDUCERS. (Note the clamp on transducer temperature should not exceed 288 C (550 F). It should be removed before operating at higher temperatures.) Pipe Temperature 93 C (Wedge Temperature - measured half way up wedge) Wall Thickness 3.91 mm (0.154 in for 2" dia SCH 40 SS piping) Pipe I.D. 52.50 mm (2.067 in) # Traverses 2 Pipe Material Stainless Steel Pipe Type Round Zero Cutoff 0.3 m/s Xducer Spacing S 58.00 mm (enter actual dimension) This is the space needed for the clamp on transducers as computed from the parameters entered into the computer. If the actual spacing doesn't match this value, the value can be overwritten to match the actual physical spacing. The Following Apply to the WETTED TRANSDUCERS. (Note the wetted transducer temperature should be monitored and the sensor itself - which is out of the fluid - should not exceed 288 C (550 F). It should be removed before operating at higher temperatures.) Path Length P 256.4816 mm (10.0977 in from Panametrics) Axial Dimension L 157.5054 mm (6.2010 in from Panametrics) Pipe I.D. 52.50 mm (2.067 in) Pipe Type Round Zero Cutoff 0.3 m/s Type Parameter 909 to enter parameters for wetted transducer 91: Transducer Number 91 Transducer type Wetted Tranducer Frequency 1.0 MHz Transducer Tw (delay) 36 µsec (or 36.7 per Mike Pouglia of Panametrics) Transducer THETA 1 N/A Transducer Wedge Soundspeed N/A m/sec (ft/sec) Metal Clamp-on Flow transducers Numbers: . CTS-1.0-HT CTS-1.0-HT 1192256 CTS. 1.0 MHz S/N 693286 XDCR#21 XDCR #21 on elbow: 2R0308 #### Part Numbers on Components in Molten Salt Experiments Tee and cap for Corrosion Experiments: E-CON E0204-300 S-2063 316 ISZ E-CON E0204-300 S-2063 316 ISZ 2" Flange: Clamp: **GRAYLOC 2** 182F304 GNS0218 CANADA SN48302 Body (2 of these): PN115405 GRAYLOC® 2GR20 BW 2SCH40 SA182-F316L G1316 S07037700 Checkvalve: **REFLANGE V-CON 3-900** 316 216302 (Clamp side): F04 S-3063 4" Flange (on checkvalve): (Clamp): **REFLANGE C-04** (Body): R-CON F04-0304 S-3063 316 216302 4" Flange: (Clamp): **REFLANGE C-04** (Body, 2): R-CON S4063 316 91461 6" Flange (8 bolt): (Body, 2): E-CON E0604-300 S-6065 316 AJM E-CON E0604-300 S-6065 316 LDI Panametrics Flow Meter - Electronics Model 6468-22-1000-0 Serial Number 791 Software Version 4.D #### Weight of Components 31 lbs: from elbow to blind flange for corrosion coupons to first half of 2" grayloc flange 14.5 lbs: 2" grayloc clamp 39 lbs: 2nd half of 2" grayloc flange + 2x3 reducer + 3" V-CON checkvalve + half of 3" inner 4" outer R₂-CON flange 27 lbs: 2nd half of 3" inner, 4" outer R-CON flange to 1st half of 4" R-CON flange 27 lbs: 1st R-CON 4" clamp 29lbs: 2nd R-CON 4" clamp 42 lbs: 2nd half of 4" R-CON flange + 4x6 reducer + 1st half of 6" E-CON flange. 42 lbs: 2nd half of 6" E-CON flange + 6"x2" reducer + elbow Total weight: 251 lbs Total length outer edge of elbow to outer edge of elbow: 100" Added 2-1-94 4" ANSI Ring Type flange, 300#, oval grove, oval ring, stainless steel Ring Type Flange added between 4" R-CON Flanges 43.1 lbs: 2nd half of 3" inner, 4" outer R-CON flange to 1st half of 4" Ring-type flange 36.5 lbs: 2nd half of 4" Ring-type flange to 1st half of 4" R-CON flange New Total Weight: 303.6 lbs Panel Cold Fill Test: 12/01/93 | CRTF | Panel Col | d Fill Test, 1 | 12/01/93 | - | | | |--------|--|--|--------------|--------------|--------------|-------------| | TEST | | 1st pass | | 3rd pass | 4th pass | Upper he | | Time | | TEW4 | TEW17 | TEE12 | TEE9 | TEWUH19 | | hour | Time | DEG F | | 9.4494 | 475 | 48 | 48 | 46 | 46 | 80 | | 9.4508 | 480 | 48 | 48 | 46 | 46 | 80 | | 9.4522 | · | 48 | 48 | 46 | 46 | 80 | | 9.4536 | 490 | 48 | 48 | 46 | 46 | 80 | | 9.455 | | 48 | 48 | 46 | 46 | 80 | | 9.4564 | · | 48 | 48 | 46 | 46 | 80 | | 9.4581 | 505 | 48 | 48 | 46 | 46 | 80 | | 9.4594 | | 48 | 48 | 46 | 46 | 80 | | 9.4608 | · | 48 | 48 | 45 | 46 | 80 | | 9.4622 | | 48 | 48 | 45 | 45 | 80 | | 9.4636 | | 48 | 48 | 45 | 45 | 80 | | 9.465 | | 48 | 48 | 45 | 45 | 80 | | 9.4664 | + | 48 | 49 | | | 80 | | 9,4678 | ÷ | ļ. <u>. </u> | 49 | | | 80 | | 9.4692 | · | | 49 | | | | | 9.4706 | + | | | | 45 | 80 | | 9.4717 | | | 49 | | 45 | 80 | | 9.4731 | + | | 49 | 45 | 45 | 80 | | 9,4744 | ···· | | | | | 80 | | 9.4758 | *** | | 49 | 45 | 45 | 80 | | 9,4772 | | 121 | 49 | 45 | 45 | 80 | | 9.4786 | 580 | 283 | 49 | 45 | | | | 9.48 | 585 | 432 | 49 | 45 | | · | | 9.4814 | 590 | 542 | 104 | | | | | 9.4828 | 595 | 582 | 231 | 45 | | | | 9.4842 | 600 | 590 | 366 | 45 | 45 | 98 | | 9.4856 | 605 | | | | | | | 9.4869 | 610 | 586 | | | | | | 9.4883 | | | | | | | | 9.4897 | 620 | | | | | | | 9.4911 | 625 | ···· | , | | | | | 9.4925 | | | | | | | | 9,4939 | | | | | | | | 9.4953 | 640 | 576 | 520 | | | | | 9.4967 | | | | | | | | 9,4983 | | · · · · · · · · · · · · · · · · · · · | | | | | | 9.4997 | | | | | | | | 9,5011 | | | | | | | | 9.5025 | · | , | | | | | | 9.5039 | + | · | 531 | | | | | 9.5053 | 675 | 571 | 532 | | | | | 9.5067 | + | · | 533 | | | · | | 9.5081 | 685 | | | | ··· | | | 9.5094 | 690 | | | | | | | 9.5108 | 695 | 570 | 541 | 494 | 507 | 488 | Panel Cold Fill Test: 12/01/93 | CR | RTF | Panel Col | d Fill Test, 1 | | · · · · · · · · · · · · · · · · · · · | | | |-----|--------|-----------|----------------|----------|---------------------------------------|----------|----------| | TES | ST | | 1st pass | 2nd pass | 3rd pass | 4th pass | Upper he | | Tim | ne 📑 | | TEW4 | TEW17 | TEE12 | TEE9 | TEWUH19 | | họ | ur | Time | DEG F | | | 9.5122 | 700 | 570 | 541 | 504 | 518 | 500 | | | 9.5136 | 705 | 570 | 543 | 505 | 519 | 505 | | | 9.5147 | 710 | 570 | 543 | 512 | 527 | 514 | | | 9.5161 | 715 | 570 | 543 | 518 | 532 | 523 | | | 9.5175 | 720 | 570 | 544 | 521 | 534 | 529 | | | 9.5189 | 725 | 570 | 544 | 523 | 537 | 534 | | | 9.5203 | 730 | 570 | 544 | 525 | 539 | 538 | | | 9.5217 | 735 | 570 | 545 | 526 | 540 | 543 | | | 9.5231 | 740 | 570 | 545 | 528 | 542 | 545 | | | 9.5244 | 745 | 570 | 545 | 530 | 543 | 548 | | | 9.5258 | 750 | 570 | 546 | 532 | 544 | 551 | | | 9.5272 | 755 | 570 | 546 | 533 | 545 | 553 | | | 9.5286 | 760 | 570 | 546 | 535 | 546 | 555 | | | 9.5303 | 765 | 570 | 547 | 536 | 547 | 557 | | [- | 9.5317 | 770 | 570 | 547 | 537 | 549 | 558 | | | 9.5331 | 775 | 569 | 547 | 538 | 550 | 559 | | [| 9.5344 | 780 | 569 | 547 | 538 | 550 | 559 | | | 9.5358 | 785 | 569 | 548 | 539 | 551 | 561 | | | 9.5372 | 790 | 569 | 548 | 540 | 551 | 562 | | | 9.5386 | 795 | 569 | 548 | 540 | 551 | 562 | | Ī | 9.54 |
800 | 569 | 548 | 542 | 552 | 563 | | | 9.5414 | 805 | 569 | 548 | 542 | 552 | 563 | | Ī | 9.5425 | 810 | 569 | 550 | 543 | 553 | 564 | | | 9.5439 | 815 | 569 | 550 | 543 | 553 | 564 | | | 9.5453 | 820 | 569 | 550 | 543 | 553 | 564 | | [- | 9.5467 | 825 | 569 | 550 | 544 | 553 | 564 | | | 9.5481 | 830 | 569 | 550 | 544 | 555 | 564 | | | 9.5494 | 835 | 569 | 550 | 544 | 555 | 566 | | | 9.5508 | 840 | 569 | 550 | 545 | 555 | 566 | | | 9.5522 | 845 | 569 | 550 | 545 | 555 | 566 | | | 9.5536 | 850 | 569 | 550 | 545 | 555 | 566 | | | 9.555 | 855 | 569 | 550 | 545 | 555 | 566 | | | 9.5564 | 860 | 569 | 550 | 545 | 556 | 566 | | | 9.5581 | 865 | 569 | 550 | 546 | 556 | 566 | | | 9.5594 | 870 | 568 | 550 | 546 | 556 | 566 | | | 9.5608 | 875 | 568 | 550 | 546 | 556 | 566 | | | 9.5622 | 880 | 568 | 550 | 546 | 556 | 566 | | | 9.5636 | 885 | 568 | 550 | 546 | 556 | 566 | | | 9.565 | 890 | 568 | 550 | 546 | 556 | 566 | | | 9.5664 | 895 | 567 | 550 | 548 | 556 | 567 | | | 9.5678 | 900 | 567 | 550 | - | | 567 | | | 9.5689 | 905 | 567 | 550 | | | 567 | | | 9.5703 | 910 | 567 | 550 | - | 557 | 567 | | | 9.5717 | 915 | • | 550 | | 557 | 567 | | 1 | 9.5731 | 920 | 567 | 550 | •- • | • | 567 | Panel Cold Fill Test: 12/01/93 | CRTF | Panel Col | d Fill Test, | | <u> </u> | l | | |--------|-------------|---|----------|---------------------------------------|-------------|---------------------------------------| | TEST | | 1st pass | 2nd pass | | | Upper he | | Time | | TEW4 | TEW17 | TEE12 | TEE9 | TEWUH19 | | hour | Time | DEG F | | 9.5744 | 925 | 567 | 550 | 548 | 557 | 567 | | 9.5758 | 930 | 567 | 550 | 548 | 557 | 567 | | 9.5772 | 935 | 567 | 550 | 548 | 556 | 567 | | 9.5786 | 940 | 567 | 550 | 548 | 554 | 567 | | 9.58 | 945 | 567 | 550 | 548 | 552 | 567 | | 9.5814 | 950 | 567 | 550 | 548 | 549 | 567 | | 9.5831 | 955 | 567 | 550 | 548 | 548 | 567 | | 9.5844 | 960 | 567 | 550 | 548 | 547 | 567 | | 9.5858 | 965 | 567 | 550 | 548 | 546 | 567 | | 9.5872 | 970 | 567 | 550 | 548 | 546 | 567 | | 9.5886 | 975 | . 567 | 550 | 548 | 545 | 567 | | 9.59 | 980 | 566 | 550 | 548 | 545 | 567 | | 9.5914 | 985 | 566 | 550 | 548 | 545 | | | 9.5928 | 990 | 566 | 550 | 550 | 545 | | | 9.5942 | 995 | 565 | 550 | | • | · · · · · · · · · · · · · · · · · · · | | 9,5953 | | 565 | 550 | · | 543 | | | 9.5967 | | 565 | 550 | 550 | | | | 9.5981 | 1010 | · · - · · · · · · · · · · · · · · · · · | 550 | | | | | 9.5994 | 1015 | · · | 550 | | | 567 | | 9.6008 | | | 550 | | | 566 | | 9.6022 | | 564 | 550 | · · · · · · · · · · · · · · · · · · · | | | | 9.6036 | 1030 | | 550 | 550 | | 566 | | 9.605 | 1035 | 564 | 550 | 550 | 557 | 566 | | 9.6064 | 1040 | 564 | 550 | 550 | 557 | 566 | | 9.6078 | 1045 | 564 | 550 | 550 | | 566 | | 9.6092 | 1050 | 564 | 550 | 549 | | | | 9.6106 | 1055 | 564 | 550 | 549 | | 566 | | 9.6122 | 1060 | 564 | 550 | 549 | 557 | 566 | | 9.6136 | 1065 | 564 | 550 | 549 | 557 | 566 | | 9.615 | 1070 | 564 | 550 | 549 | 557 | | | 9.6164 | 1075 | 564 | 550 | | | 566 | | 9.6178 | 1080 | 564 | 550 | 549 | 557 | 565 | | 9.6192 | 1085 | 564 | 550 | 549 | 557 | 565 | | 9.6206 | 1090 | 564 | 550 | 549 | 557 | 565 | | 9.6219 | 1095 | 564 | 550 | 549 | 557 | 565 | | 9.6233 | 1100 | 564 | 550 | 549 | 557 | 565 | | 9.6244 | 1105 | 564 | 550 | 549 | 557 | 565 | | 9.6258 | 1110 | 564 | 550 | 550 | 557 | 565 | | 9.6272 | 1115 | 564 | 549 | 550 | 557 | 565 | | 9.6286 | | 564 | 549 | 550 | 557 | 565 | | 9.63 | | 564 | 549 | 550 | 557 | 565 | | 9.6314 | | 564 | 549 | 550 | 557 | 565 | | 9.6328 | | 564 | 549 | 550 | 558 | 565 | | 9.6342 | · | 564 | 549 | 550 | 558 | 566 | | 9.6356 | · | | 550 | | 558 | 566 | Panel Cold Fill Test: 12/01/93 | CRTF | Panel Col | d Fill Test, | | | 4.1. | | |--------|-------------|--------------|-------------|-------------|---------------------------------------|-------------| | TEST | | 1st pass | 2nd pass | | 4th pass | Upper he | | Time | <u>+</u> | TEW4 | TEW17 | TEE12 | TEE9 | TEWUH19 | | hour | Time | DEG F | · | DEG F | DEG F | DEG F | | 9.6369 | | · | 550 | 550 | · | 566 | | 9.6383 | | | 550 | | 558 | 566 | | 9.64 | | | 550 | | 558 | 566 | | 9.6414 | | | 550 | | 558 | 566 | | 9.6428 | | | 550 | | 558 | . 566 | | 9.6442 | | | 550 | | 558 | 566 | | 9.645 | | | | 551 | 558 | 566 | | 9.6469 | | | | 551 | · · · · · · · · · · · · · · · · · · · | 566 | | 9.6483 | | | 550 | 551 | 558 | 566 | | 9.6497 | | | 550 | 551 | 559 | · | | 9.651 | | · | 550 | | 559 | | | 9.6522 | | · | 550 | 551 | | | | 9.653 | | | 550 | 551 | | • | | 9.655 | • | | 550 | | | | | 9.656 | | | | | | | | 9.6578 | | | 551 | 551 | | | | 9.659 | 2 1230 | 574 | 555 | 551 | | | | 9.660 | 5 1235 | 576 | 557 | 551 | | · | | 9.6619 | 9 1240 | 577 | 559 | 551 | 560 | 567 | | 9.663 | 3 1245 | 578 | 561 | 554 | 561 | 568 | | 9.664 | 7 1250 | 579 | 562 | 555 | 562 | 570 | | 9.666 | 1 1255 | 579 | 562 | 558 | 563 | 571 | | 9.667 | 5 1260 | 580 | 563 | 558 | 566 | 572 | | 9.668 | 9 1265 | 580 | 563 | 559 | 566 | 573 | | 9.670 | 3 1270 | 580 | 565 | 560 | 567 | 574 | | 9.671 | 7 1275 | 580 | 565 | 560 | 568 | 574 | | 9.673 | 1 1280 | 580 | 565 | 561 | 568 | 575 | | 9.674 | 4 1285 | 580 | 565 | 561 | 570 | 576 | | 9.676 | 1 1290 | 580 | 565 | 563 | 570 | 578 | | 9.677 | 5 1295 | 580 | 565 | 563 | 571 | 578 | | 9.678 | | 580 | 566 | 563 | 571 | 578 | | 9.680 | 3 1305 | 580 | 566 | 564 | 571 | 579 | | 9.681 | 7 1310 | 577 | 566 | 564 | 571 | 579 | | 9.683 | | | | · | 571 | 579 | | 9.684 | | • | | | | 579 | | 9.685 | | + | | • | | 579 | | 9.687 | | | | | | 579 | | 9.688 | | | · | · | | - L | | 9.6 | | | • | | | | | 9.691 | | • | | | | | | 9.692 | | | • | | | | | 9.693 | | · | | | | | | 9.695 | | + | | | | | | 9.696 | | | | | • | | | 9.698 | | | | | | | Panel Cold Fill Test: 12/01/93 | CRTF | Panel Col | d Fill Test, | 12/01/93 | | | | |--------|-----------|--------------|----------|----------|----------|----------| | TEST | | 1st pass | 2nd pass | 3rd pass | 4th pass | Upper he | | Time | | TEW4 | TEW17 | TEE12 | TEE9 | TEWUH19 | | hour | Time | DEG F | | 9.6994 | 1375 | 564 | 550 | 553 | 560 | 570 | | 9.7008 | 1380 | 564 | 550 | 553 | 560 | 569 | | 9.7022 | 1385 | 564 | 550 | 552 | 559 | 569 | | 9.7036 | 1390 | 564 | 550 | 552 | 559 | 568 | | 9.705 | 1395 | 564 | 550 | 552 | 559 | 568 | | 9.7064 | 1400 | 564 | 550 | 552 | 559 | 568 | Cold Fill Test of 2 inch Pipe | _ | Cold Pipe Test Schedule 40, 2in pipe | | | | | | | | | | |------------------|--------------------------------------|------------|------------|----------|-------------|----------|---------------------------------------|-------|--|--| | | pt. 24, 19 | | | | | | , 524 F | : | | | | | pi. 24, 17 | Outsic | | | | | leg F | | | | | - | hannel | 439 | | | | 443 | | 445 | | | | | s:Min:Sec | 407 | 140 | 771 | 772 | 440 | 777 | -1-10 | | | | ''' | 9:16:55 | 367 | 262 | 103 | 99 | 96 | 126 | 613 | | | | - | 9:17:00 | | 263 | 103 | 99 | | | 613 | | | | | 9:17:05 | 363 | | | 99 | 96 | | 613 | | | | - | | 362 | 263 | 103 | 99 | | | 613 | | | | - | 9:17:10 | 362 | 263 | 103 | 98 | 96
96 | | 613 | | | | - | 9:17:15
9:17:20 | 362
361 | | 103 | | | | | | | | | 9:17:25 | 363 | 263
263 | 104 | | | | | | | | - | 9:17:23 | | | | 99 | | 126 | | | | | · | | 363 | 262 | 103 | 99 | | | | | | | - | 9:17:35 | 361 | 262 | 103 | | | | | | | | | 9:17:40 | | | | | | | | | | | } | 9:17:45 | | 281 | 144 | | | | | | | | | 9:17:50 | 444 | 302 | | | 124 | | | | | | | 9:17:55 | 462 | 320 | 240 | 191 | 152 | | 592 | | | | | 9:18:00 | 475 | 341 | 292 | 230 | | | | | | | | 9:18:05 | ~~ | 358 | 344 | | • | | | | | | | 9:18:10 | 493 | 377 | 393 | | • | | | | | | - | 9:18:15 | 496 | 391 | 421 | | | | | | | | | 9:18:20 | _496 | 405 | 445 | 416 | | | | | | | 1 | 9:18:25 | 499 | 415 | 458 | | | 420 | | | | | ļ | 9:18:30 | 500 | 425 | | | | 451 | | | | | | 9:18:35 | + | | | | • | | | | | | | 9:18:40 | | | | | | | | | | | L | 9:18:50 | 507 | 455 | | | · | | | | | | . | 9:18:55 | 507 | 460 | 501 | 501 | | • | | | | | | 9:19:00 | _508_ | 465 | | | • | · | • | | | | | 9:19:05 | | 468 | | | | | • | | | | | 9:19:10 | 508 | 472 | | | | · · | | | | | | 9:19:15 | 509 | 475 | | 512 | | | | | | | | 9:19:20 | 509 | 478 | 511 | 513 | _515 | 512 | 532 | | | | | 9:19:25 | 511 | 480 | 511 | 513 | 515 | 512 | _532 | | | | | 9:19:30 | 511 | 483 | 514 | 515 | 517 | 514 | 532 | | | | | 9:19:35 | 511 | 485 | 514 | 517 | 518 | 515 | 532 | | | | | 9:19:40 | 511 | 487 | 515 | 517 | 519 | 516 | 532 | | | | | 9:19:45 | 510 | 488 | 516 | 519 | 519 | 515 | 532 | | | | | 9:19:50 | 513 | 490 | 517 | 519 | 519 | · | • | | | | - | 9:19:55 | 511 | 491 | 517 | 518 | · | · | · | | | | | 9:20:00 | 513 | 493 | 517 | 519 | | | · | | | | | 9:20:05 | 513 | 495 | | | | | ·- · | | | | - | 9:20:10 | 515 | 495 | 518 | 521 | | | • | | | | | 9:20:15 | 514 | 497 | 519 | | | | • | | | | | 9:20:20 | 514 | 497 | 520 | | · | + | • | | | | - | 9:20:25 | 516 | 498 | 519 | + | 522 | · · · · · · · · · · · · · · · · · · · | | | | | | 9:20:30 | 514 | | | 522 | · | | • | | | | | 9:20:35 | | | | • | • | · · · · · · · · · · · · · · · · · · · | •- | | | | | 7.20.00 | 010 | 7// | <u> </u> | | <u> </u> | 520 | | | | Cold Fill Test of 2 inch Pipe | Cold Pipe | Test | | Sche | dule 4 | 0, 2in | pipe | | | | |-------------|--------|-----------------------------|---------|--------|--------|---------|-----|--|--| | Sept. 24, 1 | 993 | | Salt Te | empe | rature | , 524 [| - | | | | | Outsid | ide Pipe Temperature, deg F | | | | | | | | | Channel | 439 | 440 | 441 | 442 | 443 | 444 | 445 | | | | Hrs:Min:Sec | | | | | | | | | | |
9:20:40 | 516 | 501 | 520 | 522 | 523 | 521 | 532 | | | | 9:20:45 | 517 | 502 | 520 | 523 | 523 | 522 | 532 | | | | 9:20:50 | 516 | 503 | 521 | 524 | 523 | 521 | 533 | | | | 9:20:55 | 516 | 503 | 520 | 524 | 524 | 522 | 533 | | | | 9:21:00 | 517 | 503 | 521 | 524 | 524 | 523 | 533 | | | | 9:21:05 | 516 | 504 | 521 | 524 | 524 | 523 | 533 | | | | 9:21:10 | 519 | 504 | 522 | 525 | 524 | 523 | 533 | | | | 9:21:15 | 518 | 505 | 522 | 524 | 524 | 522 | 533 | | | | 9:21:20 | 516 | 505 | 522 | 525 | 524 | 523 | 533 | | | | 9:21:25 | 517 | 505 | 522 | 525 | 525 | 523 | 533 | | | | 9:21:30 | 517 | 507 | 523 | 526 | 525 | 523 | 533 | | | | 9:21:35 | 517 | 507 | 523 | 526 | 525 | 524 | 533 | | | | 9:21:40 | 518 | 507 | 523 | 525 | 525 | 524 | 533 | | | | 9:21:45 | 517 | 507 | 523 | 525 | 526 | 524 | 534 | | | | 9:21:50 | 516 | 507 | 523 | 526 | 525 | 524 | 533 | | | | 9:21:55 | 518 | 508 | 523 | 526 | 525 | 525 | 533 | | | | 9:22:00 | 517 | 508 | 523 | 526 | 525 | 524 | 533 | | | | 9:22:05 | 519 | 508 | 523 | 526 | 526 | 525 | 533 | | | | 9:22:10 | 518 | 509 | 523 | 527 | 526 | 525 | 533 | | | | 9:22:15 | 519 | 507 | 523 | 526 | 525 | 523 | 532 | | | | 9:22:20 | 519 | 509 | 524 | 526 | 527 | 525 | 533 | | | | 9:22:25 | 518 | 510 | 524 | 527 | 527 | 525 | 533 | | | | 9:22:30 | 518 | 509 | 523 | 526 | 525 | 524 | 533 | | | | | Total Bias | and Rando | m Uncertai | nty Percent | s and Urss | Uncertainti | ies | | | | |--------------|------------|---------------------|------------|---------------------|------------|-----------------|------------|---------------------|------------|---------------------| | Flow | FT-720 Vo | rtex Flow | PF-001 W | etted Ultra | PF-002 Cla | l
ampon Ultr | FT-730 Vo | rtex | FT-800 Vo | intex | | L/min | 4-22 | Random
t95S/N^.5 | Bias
Bi | Random
t95S/N^.5 | i | | Bias
Bi | Random
t95S/N^.5 | Bias
Bi | Random
t95S/N^.5 | | Average | | | Ì | | | | - | į | | | | Flow, It/mir | % | % | % | % | % | % | % | % | % | % | | 102.58 | 9.76 | 0.63 | | | | 0.50 | 9.90 | 0.47 | 5.29 | 0.44 | | 155.40 | 11.58 | 0.29 | 4.14 | 0.51 | 12.78 | 0.55 | 11.55 | | 7.29 | 0.27 | | 197.41 | 12.56 | 0.18 | 4.56 | 0.44 | 12.97 | 0.42 | 12.50 | 0.22 | 8.48 | 0.21 | | 244.65 | 15.09 | 0.21 | 6.35 | 0.31 | 13.27 | 0.30 | 15.62 | | | | | Flow | Urss | | | 102.5759 | 9.77976 | | 3.878089 | _ | 8.485958 | | 9.91473 | | 5.310453 | | | 155.3991 | 11.58529 | | 4.168351 | | 12.79488 | | 11.55541 | | 7.295545 | | | 197.4063 | 12.55799 | | 4.581304 | | 12.97705 | | 12.49935 | | 8.48723 | | | 244.6471 | 15.08722 | | 6.358041 | | 13.27571 | | 15.62751 | | | | | | Bias and R | landom Un | certainty Pe | rcents Rela | ative to Bub | bler Refere | ence | | | | |--------|------------|-----------|--------------|-------------|--------------|-------------|-----------|-----------|-----------|-----------| | ľ | | | | | | | | | - | | | Flow | FT-720 Vo | rtex Flow | PF-001 We | etted Ultra | PF-002 Cla | ampon Ultr | FT-730 Vo | rtex | FT-800 Vo | rtex | | L/min | Bias | Random | | | Bi | t95S/N^.5 | | Lt/min | % | % | % | % | % | % | % | % | % | % | | 245.07 | 15.52159 | 0.475089 | 6.862377 | 0.662462 | -11.1397 | 0.488859 | 15.82366 | 0.481864 | | | | 245.07 | 13.99688 | 0.239153 | 4.261886 | 0.230269 | -12.9097 | 0.200013 | 14.08849 | 0.290354 | | | | 196.22 | 12.42478 | 0.232202 | 3.896936 | 1.145752 | -10.4407 | 0.944796 | 12.56068 | 0.435271 | 7.226531 | 0.348303 | | 191.20 | 13.99572 | 0.071855 | 4.027049 | 0.149455 | -10.8986 | 0.125255 | 13.66786 | 0.060468 | 9.22606 | 0.171739 | | 155.47 | 12.56275 | 0.753997 | 4.490394 | 1.213737 | -8.18096 | 1.074611 | 12.56275 | 0.674396 | 7.159739 | 0.480827 | | 155.19 | 10.07565 | 0.12859 | 1.012406 | 0.081947 | -12.3653 | 0.25961 | 10.29978 | 0.201509 | 5.663095 | 0.24198 | | 102.99 | 8.110337 | 1.133905 | 0.300727 | 0.940323 | -6.15803 | 0.721195 | 8.490264 | 0.658884 | 3.086858 | 0.699224 | | 102.16 | 9.834467 | 0.130553 | -0.22997 | 0.152059 | -8.94488 | 0.272782 | 9.767941 | 0.282077 | 4.198763 | 0.17449 | | 154.91 | 10.90267 | 0.179409 | -0.45872 | 0.614047 | -14.4883 | 0.671667 | 10.51535 | 0.412473 | 5.932066 | 0.129107 | | 156.03 | 10.16607 | 0.099755 | 1.122052 | 0.125268 | -13.7377 | 0.177755 | 10.1898 | 0.27912 | 6.035729 | 0.236388 | | 200.13 | 11.02 | 0.299602 | 1.208081 | 0.386784 | -13.964 | 0.498647 | 10.88372 | 0.25495 | 7.597939 | 0.187905 | | 202.08 | 10.38117 | 0.10355 | 0.711803 | 0.070636 | -14.2525 | 0.116727 | 10.46034 | 0.114129 | 6.214532 | 0.137835 | | 246.46 | 13.39638 | 0.089405 | 3.323362 | 0.277316 | -14.7587 | 0.349742 | 14.27843 | 0.499605 | | | | 242.00 | 15.44113 | 0.048174 | 5.7871 | 0.059108 | -12.0118 | 0.152921 | 16.38737 | 0.134167 | | | | | Bias and R | andom Un | certainty Le | vels Relativ | ve to Bubble | er Referenc | e | | | | |--------|------------|-----------|--------------|--------------|--------------|-------------|-----------|-----------|-----------|-----------| | | | | | | | | | | | | | Flow | FT-720 Vo | rtex Flow | PF-001 We | etted Ultra | | | FT-730 Vo | rtex | FT-800 Vo | rtex | | L/min | Bias | Random | | | Bi | t95S/N^.5 | | Lt/min | 245.07 | 38.04 | 1.164281 | 16.82 | 1.623467 | -27.30 | 1.198025 | 38.78 | 1.180883 | | | | 245.07 | 34.30 | 0.586083 | 10.44 | 0.564311 | -31.64 | 0.490163 | 34.53 | 0.711559 | | | | 196.22 | 24.38 | 0.455627 | 7.65 | 2.248196 | -20.49 | 1.853879 | 24.65 | 0.85409 | 14.18 | 0.68344 | | 191.20 | 26.76 | 0.137384 | 7.70 | 0.285752 | -20.84 | 0.239483 | 26.13 | 0.115611 | 17.64 | 0.328358 | | 155.47 | 19.53 | 1.172231 | 6.98 | 1.886982 | -12.72 | 1.670686 | 19.53 | 1.048475 | 11.13 | 0.747537 | | 155.19 | 15.64 | 0.199558 | 1.57 | 0.127173 | -19.19 | 0.402888 | 15.98 | 0.312721 | 8.79 | 0.375527 | | 102.99 | 8.35 | 1.167861 | 0.31 | 0.968482 | -6.34 | 0.742792 | 8.74 | 0.678615 | 3.18 | 0.720163 | | 102.16 | 10.05 | 0.133369 | -0.23 | 0.15534 | -9.14 | 0.278667 | 9.98 | 0.288162 | 4.29 | 0.178255 | | 154.91 | 16.89 | 0.277923 | -0.71 | 0.951224 | -22.44 | 1.040483 | 16.29 | 0.638965 | 9.19 | 0.2 | | 156.03 | 15.86 | 0.155645 | 1.75 | 0.195453 | -21.43 | 0.277347 | 15.90 | 0.435503 | 9.42 | 0.36883 | | 200.13 | 22.05 | 0.599587 | 2.42 | 0.774063 | -27.95 | 0.997932 | 21.78 | 0.510226 | 15.21 | 0.376051 | | 202.08 | 20.98 | 0.209255 | 1.44 | 0.142743 | -28.80 | 0.235883 | 21.14 | 0.230634 | 12.56 | 0.278538 | | 246.46 | 33.02 | 0.220348 | 8.19 | 0.683476 | -36.37 | 0.86198 | 35.19 | 1.231332 | | | | 242.00 | 37.37 | 0.11658 | 14.00 | 0.14304 | -29.07 | 0.370062 | 39.66 | 0.324677 | | | | Percent | FT-720 Vo | rtex Flow | PF-001 W | etted Ultra | PF-002 Cla | ampon Ultr | FT-730 Vo | rtex | FT-800 Vo | rtex | East Cal | West Cal | Total Cal | Num of pts | t95 | |---------|-----------|-----------|----------|-------------|------------|------------|-----------|-------|-----------|-------|----------|----------|-----------|-------------|----------| | Flow | | | | | | | Ave | Std | Ave | Std | | | | N | | | | L/min | | | | | | | | | | | | | | | | | T -1 | | | 100 | 283.10 | 5.11 | 261.88 | 7.12 | 217.77 | 5.26 | 283.84 | 5.18 | | | 103.55 | 141.51 | 245.07 | 77.00 | 2 | | 100 | 279.37 | 2.57 | 255.51 | 2.48 | 213.43 | 2.15 | 279.59 | 3.12 | | | 103.55 | 141.51 | 245.07 | 77.00 | 2 | | 80 | 220.60 | 0.83 | | 4.09 | 175.73 | 3.37 | 220.87 | 1.55 | 210.40 | 1.24 | 89.88 | 106.34 | 196.22 | 15.00 | 2.131 | | 80 | 217.96 | 0.56 | | 1.17 | 170.36 | 0.98 | 217.33 | 0.47 | 208.84 | 1.34 | 91.55 | 99.65 | 191.20 | 67.00 | 2 | | 60 | 175.00 | 2.51 | 162.45 | 4.05 | | 3.58 | 175.00 | 2.25 | 166.60 | 1.60 | 84.01 | 71.45 | 155.47 | 20.00 | 2.086 | | 60 | 170.83 | 0.68 | | 0.43 | 136.00 | 1.37 | 171.17 | 1.06 | 163.98 | 1.27 | 84.01 | 71.18 | 155.19 | 46.00 | 2 | | 40 | 111.35 | 2.71 | 103.30 | 2.24 | 96.65 | 1.72 | 111.74 | | 106.17 | 1.67 | 77.87 | 25.12 | 102.99 | 23.00 | 2.069 | | 40 | 112.20 | 0.68 | | 0.79 | 93.02 | 1.41 | 112.14 | 1.46 | 106.45 | 0.90 | 77.87 | 24.28 | 102.16 | 103.00 | 2 | | 60 | 171.80 | | | 2.61 | 132.47 | 2.85 | 171.20 | | 164.10 | 0.55 | 84.29 | 70.62 | 154.91 | 30.00 | 2 | | 60 | 171.89 | 0.57 | 157.78 | 0.72 | 134.59 | 1.02 | 171.93 | 1.60 | 165.44 | 1.36 | 84.29 | 71.73 | 156.03 | 54.00 | 2 | | 80 | 222.18 | 1.72 | 202.55 | 2.22 | 172.18 | 2.87 | 221.91 | 1.47 | 215.33 | 1.08 | 90.71 | 109.41 | 200.13 | 33.00 | 2 | | 80 | 223.06 | 0.74 | | 0.50 | 173.28 | 0.83 | 223.22 | 0.82 | 214.64 | 0.98 | 91.27 | 110.81 | 202.08 | 50.00 | | | 100 | 279.48 | 0.51 | 254.65 | 1.58 | 210.09 | 2.00 | 281.65 | 2.85 | | | 104.95 | 141.51 | 246.46 | 23.00 | 2.069 | | 100 | 279.36 | 0.48 | 256.00 | 0.59 | 212.93 | 1.54 | 281.65 | 1.35 | | | 100.48 | 141.51 | 242.00 | 69.00 | 2 | Bias Errors | : | | | | | | | | | | | | | | | | Tank Dim: | 0.5 | | | | | | | | | | | | | | | | Therm.Exp | 1.5 | | | | | | | | | | | | | | | | Bubble Ca | 3 | | | | | | | | | | | | | | | | Prop. Vary | 1.8 | | | | | | | | | - | | | | | | | | | | | | | | , | | | | | | | | | | Bias RMS | 3.839271 | Flow meter calibration data. | | CRTF | NET- | | 99 P | lay | DATA | FILE;
1994 | 11:28:4 | 12 am; | | | | | | | |------------------------|-------------|--------------------|-------------------|---------------|----------------|---------------|---------------|-------------|-------------|-------------------|-------------------|---------------------|---------------------------------------|-------------------|-------| | me | Time | Time | Time | | T720 | PF-001 | PF-002 | FT730 | FT800 | PT72 | 0 C/ | LE.FLOCALW. | FL(FCV80 | 00 LT700 | LT899 | | ST | hour | min | sec | | /min | Lt/min | Lt/min | Lt/min | Lt/min | PSIG | | | Lt/min | inch | Inch | | | | | | | | | | | | | | | | | | | .5341 | | 11 | 32 | 3 | 288 | | | | | 57 | 56 | | _ 0 | 55 | 22 | | .5355 | | 11 | 32 | 8: | 288 | | | | | 60 | 56 | | .0). | 55 | 22 | | .5369 | | 11 | 32 | 13 | 288 | | | | | 57 | 56 | | 0 | _ 55 _ | 22 | | 1.5383 | | 11 | 32 |
18 | 283 | | | | 38 | 64 | 56 | 0 | 0 | 61 | 22. – | | .5397 | | 11. | 32 | 23 | 283 | | | | 32 | 56 | 57 | 0 | 0 | 61 | 22. | | .5411 | | 11. | 32 | 28 | 283 | | | | 32 | 62 | 57 | | 0 | 61 | 22 | | 1.542 | | 11 | 32 | 33 | 283 | | | | | 62 | 57
57 | 0 | 0 | 61 | 22 | | .5438 | | 11 | 32 | 38: | 283 | | | | 32 | 62 ⁱ | | | 0 | 55 | 22 | | 1.5452 | | 11. | 32 | 43 | 283 | | | | 32 | 56 | 57 | | 0. | 62 | 21 | | 1.5466 | | 11. | 32 | 48. | 283 | | | | 32 | 59 | <u>57</u> | | - 0; | 62 | 21. | | 5480 | | 11 | 32 | 53 | 283 | | | | 32 | 63 | | <u>0</u> | 0 | 62 | 21 | | 1 5494 | - | 11 | 32 | 58 | 283 | | | | 82 | 63 | <u>57</u>
57 | - -0 | 0 | 62 | 20 | | 1.5508 | | 11. | 33 | 3 | 283 | | | ⊸ | B2
B2 | 59 | <u>57</u> .
57 | 0 | <u>o</u> , | 62 | 20 | | 1.5522 | | 11. | 33 | 8. | 283 | | | | 82
 | 61 | - <u>57</u> . | . <u>v</u> . | ö. | 62 | 20 | | 1.5536 | | .11. | 33 | 13. | 283 | | | | 82 | | 57 | - 0 | <u>o</u> | 55 | 19 | | 11.55 | | 11 | 33 | 18 | 280 | | | | 82
82 | 57
62 | - 57 | | · 👸 | 62. | 19 | | 1 5563 | | 11. | 33 | 23 | 280 | | | | 81 | 59' | 57 | 0 | − 0 | 62 | 19. | | 1.5577 | | 11 | 33 | 33 | 280
280 | | | | B1 | 57 | 57 | 0 | 0 - | 62 | 18 | | 1.5591 | | 11 | 33 | 38 | | | | | 81
B1 | 62 | 57 | 0 | Ö, | 62 | 18 | | 1.5605 | | 11. | 33 | 43 | 280
280 | | <u> </u> | | 81
81 | 65 | - 57 - | | - 6 | 62 | 18 | | 1.5619 | | . <u>11</u> | 33 | 48 | 280 | • | | | 81
81 | 61 | . <u>57</u> . | - <u>o</u> . | Ŏ. | 62 | 18 | | 1.5633 | | | | | | · | | | 81 <u>.</u> | 60 | 57 | | . 0 | 62
62 | 18 | | 1.5647 | | 11 | 33 | 53 | 280 | | | | 81 | 59 | 57 | 0 | <u>0</u> | 56 | 18 | | 1.5661 | | 11 | 33 | 58 | 280 | | | | 81 | 63 | 57 | | - 0 | 63 | 18 | | 11.567 | | 11 | 34. | <u>3</u>
8 | 280 | | | | 81
81 | 60 | 57 | | - 0 | 57 | 18 | | 1 5688 | | 11. | $\frac{34}{24}$. | | | | | | 81 | 62 | 57 | | <u></u> | 62 | 18 | | 1.5702 | | <u>.11</u> | 34 | 13 | 280 | | | | 81 | 53 | 57 | | 0 - | 53 | 18 | | 1.5719 | | | _34 | 19
24 | 28 | | | | 82 | 66 | 57 | | | 66 | 18 | | 1.5733 | | 11 | 34 | | 28 | | | | 82
82 | 64 | 57 | | - 0 | 66 | 19 | | 1.5747 | | 11. | 34 | 29 | 28 | | | | 82 | 61 | 57 | 0 | - 0 - | 66, | 19. | | 1.5761 | | 11. | 34 | 34 | 28 | | | | 82 | | 57 | | 0 | 57
 | 20 | | 11.577 | | 11 | 34 | 39 | 28 | | | | | 61 | 57 | <u>o</u> | · · · · · · · · · · · · · · · · · · · | 63 | 20 | | 1.5788 | | 11. | 34 | 44. | 28 | | | | 82 | 61. | 57 | 0 | - 0 | 57 | 20 | | 1.5802 | | .11 | 34 | 49 | 28 | | | | 82 | 61 | 57 | | - 0 | 57 | 21 | | 1.5816 | | 11 | 34 | 54 | 28 | | | | 82!
82' | 60 | 57 | | | 63 | 21 | | 1.5830 | | 11, | 34 | 59 | _ 28 | | | | 82 | | 57 | 0 | - ö | 63 | 21 | | 1.5844 | | 11. | 35 | 4 | 28 | | | | 82 | 60 | 57 | 0 ; | 0 | 63 | 21 | | 11.5858 | | 11, | 35
35 | - 9 | 28 | | | | 82 | 61 | - 57 - | 0 | - <u>0</u> . | 63 | 21 | | 1.5872 | | 11 | 35 | 14 | 280 | | | | 43 | 61 | 56 | | 0 | 63 | 22 | | 1.5886 | _+ | | · | 24 | 33 | | | | 29 | 61 | 43, | 0 | 0 | 57 | 22 | | <u>11.5</u>
11.5913 | | . <u>11.</u>
11 | 35
35 | 29 | 34 | | | | 51 | 52 | 38 | | o, | 57 | 22 | | 1.5913 | | | 35 | 34 | 34 | | | | 57 | 57 | 34 | 5 | <u>0</u> ; | 57 | 22 | | | | 11 | | | | • | | | 63 | 57. | 32 | 0, | 0 | 50 | 23 | | 1.5941 | | 11. | <u>35</u>
35 | 39_
44 | 349 | · | | | 63 | 47 | 30 | | 0 | 50 | 23 | | 1.5955 | | | 35 | 44- | 35 | | | | 69 | 47 | 31 | 0, | 0. | 24 | 23 | | 1.5969 | | · 11 | | | | | | | 44 | - 1 /2 | 41 | | | 5 | 23 | | 1.5983 | | 11 | 35 | 54 | 34 | | | | 26 | 2 | 48 | Ö | 0. | 5 | 23 | | 1.5997 | | 11. | 35
36 | <u>59</u> | _ 32
31 | | | | 99 | 2 | 57 | 0 | - 0- | 5 | 23 | | 1.6011 | | | | | · - | | | | 82 | | 64 | | 0 | 5 | 23 | | 11.602 | | 11. | 36
36 | 14 | <u>30</u> | | | | 59 | 2 | 71 | 0 | - <u>ō</u> | 5 | 23 | | 1.6052 | | -11 | 36 | 19 | 27 | · | | | 46 | - 2 | / | | 0 | 5
5 | 23 | | 1.6052 | | 11 | 36 | 24 | 27 | | | | 21 | - 2 | 80 | —— 0 ·-· | 0 | 5 | 23 | | 1.6080 | | - 11 | 36 | 29 | 26 | | | | 11 | 2 | 82 | | .0. | 5
5 | 23 | | 1.6094 | | 11. | 36 | 34 | 26 | | | | 5. | 2 | 85: | 0 | - 0 - | 5 | 23 | | 1.6108 | | 11 | 36 | 39 | | ··· | | | 16 | -2 | 86 | | . 0 | 5
5 | 24 | | 1.6122 | | 11 | 36 | 44 | 26 | | | | 32 | 26 | 66 | | 0 | 44 | 24 | | 1 6136 | | 11 | 36 | 49 | 32 | - | | | 16: | 63 | 50 | | · -0 1 · - | 63 | 24 | | 11.61 | | 11. | 36 | 54 | 33 | | | | 39 | 58 | 41. | | · 0 | 57 | 23 | | 1.6163 | | 11 | 36 | 59 | 31 | | | | 100 | 54 | 43 | | 0 | - 51 | 23 | | 1.6177 | | 11 | 37 | ⁵⁹ | 30 | | | | 100 | 54 · | 48 | <u>o</u> | 0, | 57 | 23 | | 1.6177 | | 11 | 37 | 9 | 29 | | | | 93 | 57 | 50 | | 0 | 57
57 | 23 | | | | | | | | | | | | 62 | 53 | 0 | 0 | 65 | 23 | | 1.6205 | | 11. | 37 | . 14 | 29 | | | | 88 | | | | 0 | 58 | 22 | | 1.6219 | | | 37 | 19 | 28 | | | | 88 | 63 | 54 | 0 | 0 | 63 | 22 | | 1 6233 | | 11. | 37 | 24 | 28 | | | | 88 | 63 | 55 _. | | - | | | | 1.6247 | | _11_ | 37 | 29 | 28 | | | | 88 | 59 | 55 | - 0 | 0 | 63 _. | 22 | | 1.6261 | | <u> 11</u> | 37 | 34 | 28 | | | | 82 | 66 | 56 | <u>-</u> 0. | 0. | | 22 | | 11.627 | | 11 | 37 | 39 | 28 | | | | 182 | 62 | 57 | <mark>0</mark> . | | 63 | 22 | | 1.6288 | | 11 | 37 | -44 | 28 | | | | 82 | 62. | 57
 | _ 0 | _ 0 | 63 | 22. | | 1.6302 | | 11. | 37 | 49 | 28 | | | | 82 | 62 | 57 | 0: | 0 | 63 | 22 | | 11.6316 | | 11 | 37 | . 54_ | 28 | | | | 82 | 65 | . 57 | 0 | 0 | 63 | 22 | | 1.6330 | | | 37 | 59 | 28 | | | | 82 | 59 | _ 57 | · <u>0</u> | 0_ | 63 | 22. | | 1.6344 | | 11 | 38 | 4 | 28 | · · | 59 22 | | 82 | 63 _. | 57 | 0 | 0, | 63 | 22 | | | 83 | 11 | 38 | 9 | 28 | 2 25 | 9 22 | 20 2 | 282 | 63 | 57 | 0 | 0 | 63 | 22 | Flow meter calibration data. | 44.00700 | 441 | 001 | 4.41 | 0001 | orol | 0001 | 0001 | 59] | 57 | Ol | 0 | 63 | 22 | 16 | |--|-----|-----|------|------|------|------|------|------------------|-----|------------|----------------|-----|-----|----------| | 11.63722 | 11 | 38 | 14 | 282 | 259 | 220 | 282 | | 56 | - 0 | 0 | 68 | 22 | 17 | | 11.63861 | 11 | 38 | 19 | 303 | 259 | 220 | 235 | 67 | | | 0 | 60 | 22 | 17 | | 11,64 | 11 | 38 | 24 | 342 | 277 | 220 | 103 | 58 | 40 | 0 | | | | 18 | | 11.64139 | 11 | 38 | 29 | 350 | 288 | 237 | 121 | 54 | 35 | 0 | 0 | 53 | 22 | | | 11.64278 | 11 | 38 | 34 | 356 | 295 | 243 | 135 | 53 | 31 | 0 | 0 | 53 | 22 | 18 | | 11.64417 | 11 | 38 | 39 | 356 | 306 | 243 | 141 | 53 | 29 | 0 | 0 | 53 | 22 | 19 | | 11.64556 | 11 | 38 | .44 | 356 | 311 | 234 | 146 | 49 | 27 | 0 | 0 | 47 | 22 | 19 | | 11.64694 | 11 | 38 | 49 | 362 | 323 | 214 | 146 | 46 | 26 | 0 | 0 | 47 | 22 | 20 | | | | | | | 323 | 201 | 152 | 46 | 24 | 0 | 0 | 47 | 22 | 20 | | 11.64833 | 11 | 38 | 54 | 362 | | | | | | | | | | 21 | | 11.64972 | 11 | 38 | 59 | 362 | 323 | 201 | 152 | 42 | 24 | 0 | 0 | 41 | 23 | | | 11.65111 | 11 | 39 | 4 | 362 | 329 | 196 | 158 | 34 | 23 | 0 | 0 | 35 | 23 | 21 | | 11.6525 | 11 | 39 | 9 | 368 | 317 | 188 | 158 | 50 | 22 | 0 | 0 | 47 | 23 | 20 | | 11.65389 | 11 | 39 | 14 | 368 | 312 | 188 | 164 | 45 | 22 | 0 | 0 | 47 | 23 | 19 | | 11.65528 | 11 | 39 | 19 | 368 | 312 | 188 | 164 | 41 | 21 | 0 | 0 | 40 | 23 | 17 | | | | | 24 | 368 | 312 | 178 | 164 | 44 | 20 | 0 | 0 | 40 | 23 | 15 | | 11.65667 | 11 | 39 | | | | | | | | | 0 | 46 | 23 | 14 | | 11.65806 | 11 | 39 | 29 | 368 | 331 | 172 | 164 | 47 | 20 | 0 | | | | | | 11.65944 | 11 | 39 | 34 | 368 | 331 | 172 | 169 | 48 | 20 | 0 | 0 | 46 | 24 | 11 | | 11.66083 | 11 | 39 | 39 | 368 | 336 | 178 | 169 | 66 | 20 | 0 | 0 | 63 | 24 | 10 | | 11.66222 | 11 | 39 | 44 | 368 | 329 | 178 | 162 | 5 | 23 | 0 | 0 |
4 | 24 | 8 | | 11.66361 | 11 | 39 | 49 | 362 | 329 | 178 | 148 | 1 | 28 | 0 | 0 | 4 | 24 | 4 | | 11,665 | 11 | 39 | 54 | 362 | 319 | 178 | 135 | 1 | 32 | 0 | 0 | 4 | 24 | 0 | | | | | | | | | | - i - | 38 | 0 | 0 | 4 | 24 | 0 | | 11.66639 | 11 | 39 | 59 | 349 | 319 | 178 | 120 | | | | | 4 | 24 | 0 | | 11.66778 | 11 | 40 | 4 | 343 | 319 | 178 | 106 | 1 | 42 | 0 | 0 | | | | | 11.66917 | 11 | 40 | 9 | 338 | 319 | 183 | 94 | 1 | 47 | 0 | 0 | 4 | 24 | 0 | | 11.67056 | 11 | 40 | 14 | 330 | 312 | 183 | 82 | 1 | 51 | 0 | 0 | 4 | 24 | 0 | | 11.67194 | 11 | 40 | 19 | 316 | 309 | 196 | 68 | 1 | 56 | 0 | 0 | 0 | 24 | 0 | | 11.67333 | 11 | 40 | 24 | 325 | 303 | 213 | 74 | 36 | 50 | 0 | 0 | 39 | 24 | 0 | | 11.67472 | 11 | 40 | 29 | 348 | 298 | 221 | 118 | 42 | 38 | 0 | 0 | 42 | 24 | ō | | The state of s | | | | | | | | | | 0 | 0 | 48 | 24 | | | 11.67611 | 11 | 40 | 34 | 355 | 298 | 230 | 131 | 47 | 34 | | | | | | | 11.6775 | 11 | 40 | 39 | 328 | 300 | 235 | 291 | 51 | 32 | 0 | 0 | 48 | 24 | 0 | | 11.67889 | 11 | 40 | 44 | 322 | 294 | 235 | 313 | 54 | 36 | 0 | 0 | 54 | 23 | 0 | | 11.68028 | 11 | 40 | 49 | 314 | 288 | 235 | 313 | 51 | 41 | 0 | 0 | 54 | 23 | | | 11.68167 | 11 | 40 | 54 | 308 | 288 | 235 | 307 | 54 | 43 | 0 | 0 | 54 | 23 | 0 | | 11.68306 | 11 | 40 | 59 | 301 | 288 | 235 | 307 | 54 | 46 | 0 | 0 | 54 | 23 | 0 | | | 11 | 41 | 4 | 301 | 288 | 230 | 301 | 54 | 49 | ō | 0 | 55: | 23 | 0 | | 11.68444 | | | 9 | | 282 | 230 | 295 | 57 | 50 | 0 | 0 | 55 | 23 | | | 11.68583 | 11 | 41 | | 295 | | | | | | | | | | 0 | | 11.68722 | 11 | 41 | 14 | 295 | 275 | 230 | 295 | 57 | 52 | 0 | 0 - | 56 | 23 | | | 11.68861 | 11 | 41 | 19 | 290 | 275 | 230 | 289 | 57 | 53 | 0 | 0 | 56 | 23 | | | 11,69 | 11 | 41 | 24 | 290 | 275 | 225 | 289 | 60 | 54 | 0 | 0 | 56 | 23 | 0 | | 11.69139 | 11 | 41 | 29 | 290 | 269 | 225 | 289 | 60 | 54 | 0 | 0 | 62 | 23 | 0 | | 11.69278 | 11 | 41 | 34 | 290 | 269 | 225 | 289 | 60 | 55 | 0 | 0 | 62 | 23 | O | | 11.69417 | 11 | 41 | 39 | 283 | 269 | 225 | 289 | 60 | 55 | 0 | 0 | 62 | 22 | C | | | 11 | 41 | 44 | 283 | 263 | 225 | 283 | 63 | 56 | 0 | 0 | 62 | 22 | <u> </u> | | 11.69556 | | | | | | | | | 56 | 0 | 0 | 62 | 22 | 0 | | 11.69694 | 11 | 41 | 49 | 283 | 263 | 225 | 283 | 601 | | | | | | | | 11.69833 | 11 | 41 | 54 | 283 | 263 | 219 | 283 | 62 | 56 | 0 | 0 | 62 | 22 | | | 11.69972 | 11 | 41 | 59 | 283 | 263 | 219 | 283 | 65 | 56 | 0 | 0 | 62 | 22 | | | 11.70111 | 11 | 42 | 4 | 283 | 263 | 219 | 283 | 63 | 56 | 0 | 0 | 62 | 22 | C | | 11,7025 | 11 | 42 | 9 | 283 | 263 | 219 | 283 | 63 | 56 | 0 | 0 | 62 | 22 | C | | 11.70389 | 11 | 42 | 14 | 283 | 263 | 219 | 283 | 59 | 57 | 0 | 0. | 62 | 22 | C | | 11.70528 | 11 | 42 | 19 | 283 | 263 | 219 | 283 | 66 | 57 | 0 | 0 | 62 | 22 | C | | 11.70667 | 11 | 42 | 24 | 283 | 263 | 219 | 283 | 62 | 57 | 0 | 0 | 62 | 22 | | | | | | | | | | | | 57 | | | 59 | 22 | <u>c</u> | | 11.70806 | 11 | 42 | 29 | 283 | 263 | 219 | 283 | 59 | | 0 | | | | | | 11.70944 | 11 | 42 | 34 | 283 | 263 | 219 | 283 | 66 | 57 | 0 | 0 | 67 | 22 | | | 11.71083 | 11 | 42 | 39 | 281 | 263 | 219 | 283 | 63 | 57 | 01 | 0 | 60 | 22 | | | 11.71222 | 11 | 42 | 44 | 281 | 263 | 219 | 282 | 59 | 57 | 0 | 0 | 60 | 22 | 0 | | 11.71361 | 11 | 42 | 49 | 281 | 260 | 219 | 282 | 62 | 58 | 0) | O ¹ | 66 | 22 | C | | 11.715 | 11 | 42 | 54 | 281 | 260 | 217 | 282 | 61 | 58 | 0 | 0 | 58 | 22 | <u> </u> | | 11.71639 | 11 | 42 | 59 | 281 | 260 | 217 | 282 | 56 | 581 | 0 | 0 | 58 | 22 | C | | 11.71778 | 11 | 43 | 41 | 281 | 260 | 217 | 282 | 63 | 58 | 0 | 0 | 58 | 22 | C | | 11.71917 | 11 | 43 | 9 | 281 | 260 | 217 | 282 | 63 | 58 | 0. | 0. | 65 | 22 | C | | | | 43 | 14 | 281 | 260 | 217 | 282 | 66 | 58 | 0 | 0: | 65. | 22 | | | 11.72056 | 11 | | | | | | | ~ | 581 | 0 | 0 | 65. | 22 | | | 11.72194 | 11 | 43 | 19 | 281 | 260 | 217 | 282 | 64 | | | | | | | | 11.72333 | 11' | 43 | 24 | 281 | 260 | 217 | 282 | 64 | 58 | 0! | 0 | 65 | 22 | C | | 11.72472 | 11 | 43 | 29 | 281 | 260 | 217 | 282 | 64 | 58 | 0: | 0 | 65 | 22 | C | | 11.72583 | 11 | 43 | 33 | 281 | 260 | 217 | 282 | 61 | 58 | 0 | 0 | 65 | 22 | | | 11.72722 | 11 | 43 | 38 | 281 | 260 | 217 | 282 | 64 | 58 | 0; | 0 | 65 | 22 | | | 11.72861 | 11 | 43 | 43 | 282 | 260 | 217 | 282 | 60 | 58 | 0, | 0 | 59 | 22 | | | 11.73 | 11 | 43 | 48 | 282 | 257 | 217 | 282 | 60 | 58 | 0) | 0 | 59. | 22 | | | | | | | | | | | 57 | 58 | 0 | | 59 | 22 | | | 11.73139 | 111 | 43 | 53 | 282 | 257 | 217 | 282 | | | | | | | | | 11.73278 | 11 | 43 | 58 | 282 | 257 | 217 | 282 | 61! | 58 | <u>0</u> ; | 0, | 65 | 22 | | | 11.73417 | 11 | 441 | 31 | 282 | 257 | 217 | 282 | 60: | 58 | 0 | 0, | 59 | 21 | | | 11.73556 | 11 | 44 | 8 | 282 | 257 | 217 | 282 | 64 | 58 | Ο, | 0 | 59 | 21 | (| | 11.73694 | 11 | 44 | 13 | 282 | 257 | 217 | 282 | 57 | 58 | 0 | 0 | 59 | 20 | 8 | | 11.73833 | 11 | 44 | 18 | 282 | 257 | 217 | 282 | 59 | 58 | 0, | 0: | 59 | 20 | 10 | | | | | | | 257 | | | 62 | 58 | 0 | 0 | 66 | 20 | 13 | | 11.73972 | 11 | 44 | 23 | 282 | | 217. | 282 | | | | | 59 | 19 | 15 | | 11.74111 | 11 | 44 | 28 | 282 | 257 | 217 | 282 | 58 | 58 | 0 | <u>0</u> ; | | | | | 11.7425 | 11 | 44 | 33 | 282 | 257 | 217 | 282 | 60 | 58 | 0, | 0; | 59 | 19, | 15 | | 11.74389 | 11 | 44 | 38 | 282 | 257 | 217 | 282 | 67 | 58 | 0 | 0 | 66 | 19 | 20 | | | 11 | 441 | 431 | 280 | 257 | 217 | 284 | 62 | 58 | 0: | 0; | 60 | 18. | 22 | | 11.74528 | | | | -501 | | | | | | | | | | | Flow meter calibration data. | 11.74667 | 11 | 44 | 48 | 280 | 257 | 217 | 284 | 64 | 57 | 0 | 0 | 60 | 18 | 24 | |--|----------------------------------|----------------------------------|--------------------------|--|--|--------------------------|--------------------------|--------------------------|----------------------|----------------|------------------|--------------------------|----------------------|------------------| | 11.74806 | 11 | 44 | 53 | 280 | 263 | 213 | 284 | 61 | 57 | 0 | 0 | 60 | 18 | 27 | | 11.74944 | 11 | 44 | 58 | 280 | 263 | 213 | 284 | 57 | 57 | 0 | 0 | 60 | 18 | 27 | | 11.75083 | 11 | 45 | 3 | 280 | 263 | 213 | 284 | 61 | 57 | 0 | 0, | 60 | 18 | 27 | | 11.75222 | 11 | 45 | 8 | 280 | 263 | 213 | 284 | 66 | 57 | 0 | 0 | 66 | 19 | 25 | | 11.75361 | 11 | 45 | 13 | 280 | 263 | 213 | 284 | 66 | 57 | 0 | 00 | 66 | 19 | 21 | | 11.755 | 11 | 45 | 18 | 280 | 258 | 213 | 284 | 62 | 57 | 0 | 0 | 60 | 19 | 18 | | 11.75639 | 11 | 45 | 23 | 280 | 258 | 213 | 284 | 62 | 57 | 0 | 0 | 60 | 20 | 13 | | 11.75778 | 11 | 45 | 28 | 280 | 258 | 213 | 284 | 62 | 57 | 0 | 0, | 60 | 20 | 10 | | 11.75917 | 11 | 45 | 33 | 280 | 258 | 213 | 284 | 58 | 57 | 0 | 0 | 60 | 21 | 7 | | 11.76056 | 11. | 45 | 38 | 280 | 258 | 213 | 284 | 59 | 57 | 0 | 0. | 60 | 21 | | | 11.76194 | 11 | 45 | 43 | 281 | 258 | 213 | 280 | 59 | 57 | 0 | 0 | 60 | 21 | | | 11.76333 | 11 | 45 | 48 | 281 | 258 | 213 | 280 | 59 | 58 | 0 | 0 | 60 | 21 | | | 11.76472 | 11 | 45 | 53 | 281 | 258 | 213 | 280 | 63 | 58 | 0 | 0 | 60 | 22 | - (| | 11.76611 | 11 | 45 | 58 | 281 | 258 | 213 | 280 | 62 | 58 | 0 | 0 | 60 | 22 | — - ` | | 11.7675 | 11 | 46 | 3 | 281 | 258 | 213 | 280 | 59 | 58 | 0 | 0 | 60 | 22 | | | 11.76889 | '' | 46 | 8 | 281 | 258 | 213 | 280 | 59 | 58 | 0 | 0 | 60 | 22 | ` | | 11.77028 | | 46 | | 281 | 258 | | | | 58 | 0 | 0 | | 22 | | | | 11, | | 13 | | | 213 | 280 | 60 | | | | 60 | | | | 11.77167 | 11 | 46 | 18 | 281 | 258 | 213 | 280 | 55 | 58 | 0 | 0 | 58 | 22 | | | 11.77306 | 11. | 46 | 23 | 281 | 258 | 213 | 280 | 59 | 58 | 0 | 0 | 58 | 22 | | | 11.77444 | 11 | 46 | 28 | 281 | 258 | 213 | 280 | 63 | 58 | 0 | 0' | 65 | 22 | | | 11.77583 | 11 | 46 | 33 | 281 | 258 | 213 | 280 | 60 | 58 | 0 | 0 | 58 | 22 | 9 | | 11.77722 | 111 | 46 | 38 | 281 | 258 | 213 | 280 | 60 | 58 | 0 | 0 | 58 | 22 | (| | 11.77861 | 11 | 46 | 43 | 282 | 258 | 213 | 282 | 60 | 58 | 0 | 0 | 58 | 22 | _ (| | 11.78 | 11 | 46 | 48 | 282 | 258 | 213 | 282 | 65 | 58 | 0 | 0 | 65 | 22 | (| | 11.78139 | 11 | 46 | 53 | 282 | 258 | 216 | 282 | 60 | 58 | 0 | 0 | 59 | 22 | (| | 11.78278 | 11 | 46 | 58 | 282 | 258 | 216 | 282 | 57 | 58 | 0 | 0 | 59 | 22 | (| | 11.78417 | 11 | 47 | 3 | 282 | 258 | 216 | 282 | 62 | 58 | 0 | 0 | 59 | 22 | | | 11.78556 | 11 | 47 | 8 | 282 | 258 | 216 | 282 | 58 | 58 | 0 | 0 | 59 | 22 | (| | 11.78694 | 11 | 47 | 13 | 282 | 258 | 216 | 282 | 62 | 58 | 0 | 0 | 65 | 22 | | | 11.78833 | 11 | 47 | 18 | 282 | 258 | 216 | 282 | 61 | 58 | 0 | | 65 | 22 | | | 11.78972 | 11 | 47 | 23 | 282 | 258 | 216 | 282 | 61 | 58 | 0 | 0 | 65 | 22 | | | 11.79111 | 11 | 47 | 28 | 282 | 258 | 216 | 282 | 62 | 58 | 0 | 0; | 58 | 22 | | | 11.79278 | 11 | 47 | 34 | 282 | 258 | 216 | 282 | 63 | 58 | 0 | <u> </u> | 58 | 22 | | | 11.79417 | 11 | 47 | 39 | 281 | 258 | 216 | 282 | 60 | 58 | 0 | 0 | 58 | <u></u> . | | | 11.79556 | 11 | 47 | 44 | 281 | 258 | 216 | 282 | 59 | 58 | 0 | 0: | 58 | 21 | | | 11.79694 | 11 | 47 | 49 | 281 | 258 | 216 | | 56 | 58 | 0 | 0, | 58 | | | | | | | | | | | 282 | | | | | | 21 | 5 | | 11.79833 | 11 | 47 | 54 | 281 | 258 | 215 | 282 | 63 | 58 | 0 | 0. | 64 | _21 | } | | 11.79972 | 11. | 47 | 59 | 281 | 258 | 215 | 282 | 57 | 58 | 0 | 0 | _57 | 20 | | | 11.80111 | 11 | 48 | 4 | 281 | 258 | 215 | 282 | 57 | 58 | 0 | 0 | _ 57 | 20 | _ 12 | | 11.8025 | 11 | 48 | 9 | 281 | 258 | 215 | 282 | 60 | . 58 | 0: | 0 | . 57 | 19 | 14 | | 11.80389 | 11 | 48 | 14: | 281 | 258 | 215 | 282 | 59 | 58 | 0 | 0 | 62 | 19 | 16 | | 11.80528 | 11 | 48 | 19 | 281 | 256 | 215 | 282 | 57 | 58 | 0 | 0 | 62 | 19 | 18 | | 11.80667 | 11 | 48 | 24, | 281 | 256 | 215 | 282 | 60' | 58 | 0 | 0 | 62 | 18 | 20 | | 11.80806 | 11 | 48 | 29 | 281 | 256 | 215 | 282 | 63 | 58 | 0 | 0 | 62 | 18 | 23 | | 11.80944 | 11 | 48 | 34 | 281 | 256 | 215 | 282 | 59 | 58 | 0 | 0 | 62 | 18 | 25 | | 11.81083 | 11 | 48 | 39 | 280 | 256 | 215 | 282 | 64 | 58 | 0 | 0, | 62 | 18 | 27 | | 11.81222 |
11 | 48 | 44 | 280 | 256 | 215 | 281 | 64 | 58 | 0 | · · · · · | 62 | 18 | 28 | | 11.81361 | 11 | 48 | 49 | 280 | 256 | 215 | 281 | 64 | 57 | 0 | 0; | 62 | 18 | 26 | | 11.815 | 11 | 48 | 54 | 280 | 256 | 214 | 281 | 59 | 57 | 0 | 0 | 62 | 18 | 27 | | 11.81639 | 11 | 48 | 59 | 280 | 256 | 214 | 281 | 63 | 57 | 0 | 0 | 61 | 19 | 24 | | 11.81778 | 11 | 49 | 4 | 280 | 256 | 214. | 281 | 60 | 57 | 0' | 0 | 59 | 19 | 2 | | 11.81917 | 11 | 49 | 9 | 280 | 256 | 214 | 281 | 57 | 57 | 0 | | 59 | 19 | 17 | | 11.82056 | | 49 | 14 | 280 | 256 | 214 | 281 | 60 | 57 | 0 | 0 | 60 | 20 | 14 | | | | | | | | | | | | | | | ~ | | | 11.82194 | 11 | 49 | 19, | 280 | 256 | 214 | 281 | 60 | 57 | 0: | 0. | 60 | | } | | 11.82333 | 11. | 49 | 24 | 280 | 256 | 214 | 281 | 98 | 57 | 0 | | 98. | 21 | : | | 11.82472 | 11 | 49 | 29 | 280 | 256 | 214 | 281 | 123 | 57 | 0 | 0. | 123 | 21 | 3 | | 11.82611 | | 49 | 34 | 280 | 256 | 214 | 281 | 127 | 57 | 0 | 0, | 127 | 21 | | | 11.8275 | 11 | 49 | 39 | 281 | 256 | 214 | 281 | 125 | 58 | 0 | 0. | 121 | 21 | (| | 11.82889 | | 49 | 44 | 281 | 256 | 214 | 280 | 120 | 58 | 0 | 0, | 121 | 22_ | 0 | | 11.83028 | 11 | 49 | 49 | 281 | 256 | 214 | 280 | 211 | 58 | 0 | 0 | 188 | 22 | | | 11.83167 | 11 | 49 | 54 | 281 | 256 | 212 | 280 | 226 | 59 | 0 | 0 | 223 | 22 | | | 11.83306 | 11 | 49 | 59 | 281 | 256 | 212 | 280 | 236 | 59 | 0 | 0 | 231 | 22 | Ţ, | | 11.83444 | 11 | 50 | 4 | 281 | 256 | 212 | 280 | 236 | 59 | 0 | o | 236 | 22 | (| | 11.83583 | 11 | 50 | 9 | 281 | 256 | 212 | 280 | 239 | 59 | 0 | 0 | 236 | 22 | - (| | 11.83722. | 11 | 50 | 14 | 281 | 256 | 212 | 280 | 237 | 59 | 0 | 0 | 242 | 22 | Č | | 11.83861 | 11 | 50 | 19, | 281, | 255 | 212 | 280 | 260 | 60 | 0 | | 254 | 22 | Ö | | | 11 | 50 | 24 | 275 | 255 | 212 | 280 | 270 | 61 | 0 | 0 | 270 | 22 | - 6 | | 11.84 | 11 | 50 | 29 | 275 | 255 | 212 | 274 | 270 | 61 | 0 | 0 | 270 | 22 | ` | | | | 50 | 34 | 275 | 255 | 212 | 274 | 272 | 62 | | 0 | 270 | 22 | | | 11.84139 | 11 | | 39 | 275 | 255 | 212 | 274 | 272 | 62 | 0 | 0 | 270 | | | | 11.84139
11.84278 | 11 | 50 | 051 | | 255 | | | | | | · | | 22 | | | 11.84139
11.84278
11.84417 | 11 | 50 | 44 | | (33 | 212 | 274 | 272 | 62 | 0 | . 0 | 270 | 22 | (| | 11.84139
11.84278
11.84417
11.84556 | 11 | 50 | 44 | 275 | | 010 | 0741 | 070 | | | ^ | 070 | | | | 11.84139
11.84278
11.84417
11.84556
11.84694 | 11
11
11 | 50
50 | 49 | 275 | 250 | 212, | 274 | 272 | 62 | 0 | 0 | 270 | 22 | | | 11.84139
11.84278
11.84417
11.84556
11.84694
11.84833 | 11
11
11
11 | 50
50
50 | 49
54 | 275
275 | 250
250 | 209 | 274 | 272 | 62 | 0 | 0 | 270 | 22 | . (| | 11.84139
11.84278
11.84417
11.84556
11.84694
11.84833
11.84972 | 11
11
11
11
11 | 50
50
50
50 | 49
54
59 | 275
275
275 | 250
250
250 | 209
209 | 274
274 | 272
272 | 62
62 | 0 | 0 | 270
270 | 22
22 | (| | 11.84139
11.84278
11.84417
11.84556
11.84694
11.84833
11.84972
11.85111 | 11
11
11
11
11 | 50
50
50
50
51 | 49
54
59
4 | 275
275
275
275 | 250
250
250
250 | 209
209
209 | 274
274
274 | 272
272
268 | 62
62
63 | 0
0
0 | 0
0
0 | 270
270
268 | 22
22
22 | · · · · · (| | 11.84139
11.84278
11.84417
11.84556
11.84694
11.846833
11.84972
11.85111
11.8525 | 11
11
11
11
11
11 | 50
50
50
50
51
51 | 49
54
59
4
9 | 275
275
275
275
275
275 | 250
250
250
250
250
250 | 209
209
209
209 | 274
274
274
274 | 272
272
268
257 | 62
62
63
63 | 0
0
0 | 0
0
0
0 | 270
270
268
257 | 22
22
22
22 | (
(| | 11.84139
11.84278
11.84417
11.84556
11.84694
11.84833
11.84972
11.85111 | 11
11
11
11
11 | 50
50
50
50
51 | 49
54
59
4 | 275
275
275
275 | 250
250
250
250 | 209
209
209 | 274
274
274 | 272
272
268 | 62
62
63 | 0
0
0 | 0
0
0 | 270
270
268 | 22
22
22 | · · · · · (| Flow meter calibration data. | | <u> </u> | 1441011 | uaia. | | | _ | | | | | | | | | |----------|----------------|----------|----------------|-------------------|------------|------------|------------|------------------|----------|--------------|----------------|------|-----|---------------| | 11.85667 | 11: | 51 | 24 | 268 | 250 | 209 | 268 | 244 | 66 | 0 | 0 | 244 | 22 | 0 | | 11.85806 | 11 | 51 | 29 | 268 | 250 | 209 | 268 | 244 | 67 | 0 | 0 | 244 | 22 | 0 | | 11.85944 | 11 | 51 | 34 | 263 | 244 | 209 | 268 | 244 | 68 | 0 | 0; | 245 | 22 | 0 | | 11.86083 | 11 | 51 | 39 | 263 | 244 | 204 | 262 | 239 | 70 | 0 | 0) | 238 | 22 | 0 | | 11.86222 | 11 | 51 | 44 | 263 | 244 | 204 | 262 | 239 | 71) | 0 | 0 | 238 | 22 | | | 11.86361 | 11, | 51 | 49 | 256 | 244 | 204 | 256
256 | 239 | 72
73 | 0 | 0 | 238 | 22 | 0 | | 11.865 | 11 | 51 | 54 | 256 | | 204 | | 242 | 73 | 0 | 0 | 238 | 22 | - 0 | | 11.86639 | 11 | 51 | 59 | 256 | 239 | 204 | 256
256 | 239 | 74 | 0 | 0 | 236 | 22 | - 0 | | 11.86778 | 11 | 52 | 4 | 256 | 239 | 199 | 250 | 228 | 76 | 0 | 0 | 228 | 22; | 0 | | 11.86917 | 11 | 52 | 9 | 251 | | | | 228 | 78 | ol | 0 | 228 | 22 | 0 | | 11.87056 | 11 | 52 | 14 | 251 | 233 | 199
194 | 250
243 | 228 | 79 | 0 | 0 | 228 | 22 | - 6 | | 11.87194 | 11 | 52 | 19 | 244 | 233 | 194 | 243 | 228 | 80 | -0 | 0 | 228 | 22 | | | | 11 | 52 | 24 | 244 | 227 | 194 | 243 | 228 | 80 | 0 | ŏ | 228 | 22 | - | | 11.87472 | | 52 | 34 | 244 | 227 | 194 | 243 | 228 | 81 | 0 | 0 | 223 | 22 | 6 | | 11.87611 | 11 | 52
52 | 39 | 238 | 227 | 189 | 243 | 218 | 83 | 0 | 0 | 216 | 22 | - 6 | | 11.87889 | 11 | 52 | 44 | 232 | 222 | 189 | 238 | 216 | 85 | 0 | 0 | 216 | 22 | <u>ō</u> | | 11.88028 | 111 | 52 | 49 | 232 | 222 | 189 | 231 | 213 | 87 | 01 | 0 | 209 | 22 | 0 | | 11.88167 | 11 | 52 | 54 | 226 | 216 | 184 | 225 | 208 | 89 | 0 | Ö | 209 | 22 | ō | | 11.88306 | 11 | 52 | 59 | 226 | 216 | 184 | 225 | 208 | 90 | 0 | 0 | 209 | 22 | 0 | | 11.88444 | 11 | 53 | 4 | 221 | 211 | 184 | 225 | 208 | 90 | 0 | 0 | 209 | 22 | 0 | | 11.88583 | 11 | 53 | 9 | 221 | 211 | 178 | 221 | 208 | 91 | 0 | 0 | 209 | 22 | 0 | | 11.88722 | 11 | 53 | 14 | 221 | 206 | 178 | 221 | 208 | 91 | 0 | 0 | 209 | 22 | 0 | | 11.88861 | 11, | 53 | 19 | 221 | 206 | 178 | 221 | 211 | 91 | 0) | 0 | 209 | 22 | . 0 | | 11,89 | 11 | 53 | 24 | 221 | 206 | 178 | 221 | 211 | 91 | 0 | 0 | 209 | 22 | 0 | | 11.89139 | 11 | 53 | 29 | 221 | 206 | 178 | 221 | 211 | 91 | 0; | O _i | 209 | 22 | 0 | | 11.89278 | 11. | 53 | 34 | 221 | 206 | 178 | 221 | 211 | 91 | 0 | 0; | 212 | 22 | 0 | | 11.89417 | 11, | 53 | 39 | 221 | 206 | 173 | 221 | 211 | 91 | 0 | 0 | 212 | 22 | 0 | | 11.89556 | 11 | 53 | 44 | 221 | 200 | 173 | 221 | 211 | 91 | 0 | 0 | 212, | 221 | 0 | | 11.89694 | 11 | 53 | 49 | 221 | 200 | 173 | 221 | 211 | 91 | 0 | 0 | 212 | 22 | 0 | | 11.89833 | 11 | 53 | 54 | 221 | 200 | 173 | 221 | 211 | 91 | 0 | 0 | 212 | 22 | 0 | | 11.89972 | 11 | 53 | 59 | 221 | 200 | 173 | 221 | 211 | 92 | 0 | 0, | 212 | 22 | 0 | | 11.90111 | 11 | 54 | 4 | 219 | 200 | 173 | 221 | 211 | 92 | 0 | 0, | 212 | 22 | 0 | | 11.9025 | 11 | 54 | 9 | 219 | 200 | 173 | 218 | 211 ⁱ | 92 | 0 | O; | 212 | 22 | 0 | | 11.90361 | 11 | 54 | 13 | 219 | 200 | 173 | 218 | 211 | 92 | 0 | 0 | 212, | 22 | 0 | | 11,905 | 11 | 54 | 18 | 219 | 200 | 173 | 218 | 211 | 92 | 0 | 0 | 212 | 22 | 0 | | 11.90639 | 11 | 54 | 23 | 219 | 200 | 173 | 218 | 211 | 92 | 0] | 0 | 212 | 22 | 0 | | 11.90778 | 11 | 54 | 28 | 219 | 200 | 173 | 218 | 211 | 92 | 0 | 0 | 212 | 22 | 0 | | 11.90917 | 11 | 54 | 33 | 219 | 200 | 173 | 218 | 211 | 92 | 0 | 0 | 210 | 22 | 0 | | 11.91056 | 11 | 54 | 38 | 219 | 200 | 171 | 218 | 211 | 92 | 0 | 0 | 210 | 22 | 0 | | 11.91194 | 11 | 54 | 43 | 219 | 200 | 171 | 218 | 211 | 92 | 0 | 0 | 210 | 22 | 0 | | 11.91333 | 11 | 54 | 48 | 219 | 200 | 171 | 218 | 211 | 92 | 0 | 0 | 210 | 22 | 0 | | 11.91472 | 11 | 54 | 53 | . 219 | 200 | 171 | 218 | 211 | 92 | 0 | 0 | 210 | 22 | 0 | | 11.91611 | 11 | 54 | 58 | 219 | 200 | 171 | 218 | 211 | 92
92 | 0 | 0 | 210 | 21 | 2 | | 11.9175 | 11 | 55 | 3 | 218 | 200 | 171 | 218 | 211 | 92 | 0 | 0 | 210 | 211 | 7 | | 11.91889 | 11 | 55 | 8 | 218 | 200 | 171 | 218 | 210 | 92 | 0 | 0 | 210 | 20 | 8 | | 11.92028 | 11 | 55
55 | 13
18 | 218 | 200 | 171 | 218 | 210 | 92 | 0 | 0 | 210 | 20 | 11 | | 11.92167 | 11 | 551 | 23 | 218 | 200 | 171 | 218 | 210 | 92 | 0 | 0 | 210 | 20 | 12 | | 11.92444 | 11 | 55 | 28 | 218 | 200 | 171 | 218 | 210 | 92 | | ol | 210 | 20 | 15 | | 11.92583 | 11 | 55 | 33 | 218 | 200 | 171 | 218 | 210 | 92 | ol ol | ol | 209 | 19 | 16 | | 11.92722 | 11 | 55 | 38 | 218 | 200 | 171 | 218 | 210 | 92 | 0 | 0 | 209, | 19 | 18 | | 11.92861 | 111 | 55 | 43 | 218 | 200 | 171 | 218 | 210 | 92 | 0 | 0 | 209 | 19 | 20 | | 11.93 | 11 | 55 | 48 | 218 | 199 | 171 | 218 | 210 | 92 | 0 | ol o | 209 | 191 | 23 | | 11.93139 | 11 | 55 | 53 | 218 | 199 | 171 | 218 | 210 | 92 | ol ol | o | 209 | 18 | 25 | | 11.93278 | 11 | 55 | 58 | 218 | 199 | 171 | 218 | 210 | 92 | 0 | o o | 209 | 18 | 27 | | 11.93417 | 11 | 56 | 3 | 217 | 199 | 171 | 218 | 207 | 92 | o | O | 209 | 18 | 27 | | 11.93556 | 11 | 56 | 8 | 217 | 199 | 171 | 217 | 207 | 92 | 0 | 0 | 209 | 18 | 26 | | 11.93694 | 11 | 56 | 13 | 217 | 199 | 171 | 217 | 210 | 92 | O | 0 | 209 | 19 | 21 | | 11.93833 | 11 | 56 | 18 | 217 | 199 | 171 | 217 | 210 | 92 | 0 | 0 | 209 | 19 | 17 | | 11.93972 | 11 | 56 | 23 | 217 | 199 | 171 | 217 | 207 | 92 | 0 | 0 | 209 | 20 | 13 | | 11.94111 | 11 | 56 | 28 | 217 | 199 | 171 | 217 | 207 | 92 | 0 | 0 | 209 | 20 | 8 | | 11.9425 | 11 | 56 | 33 | 217 | 199 | 171 | 217 | 207 | 92 | 0 | 0 | 207 | 21 | 5 | | 11.94389 | 11 | 56 | 38 | 217 | 199 | 170 | 217 | 207 | 92 | 0 | 0 | 207 | 21 | 1 | |
11.94528 | 11 | 56 | 43 | 217 | 199 | 170 | 217 | 207 | 92 | 0 | 0 | 207 | 21 | | | 11.94667 | 11 | 56 | 48 | 217 | 200 | 170 | 217 | 210 | 92 | 0 | 0 | 207 | 22 | | | 11.94806 | 11 | 56 | 53 | 217 | 200 | 170 | 217 | 210 | 92 | 0 | 0 | 207 | 22 | 1 | | 11.94944 | 11 | 56 | 58 | 217 | 200 | 170 | 217 | 208 | 92 | 0 | 0 | 207 | 22 | 1 | | 11.95083 | 11 | 57 | 3 | 218 | 200 | 170 | 217 | 208 | 92 | 0 | 0 | 207 | 22 | 1 | | 11.95222 | 11 | 57 | 8 | 218 | 200 | 170 | 217 | 208 | 92 | 0 | 0 | 207 | 22 | 1 | | 11.95361 | 11 | 57 | 13 | 218 | 200 | 170 | 217 | 208 | 92 | 0 | 0 | 207 | 22 | 1 | | 11,955 | 11 | 57 | 18 | 218 | 200 | 170 | 217 | 208 | 92 | 0 | 0 | 207 | 22 | 1 | | 11.95639 | 11 | 57 | 23 | 218 | 200 | 170 | 217 | 208 | 92 | 0 | 0 | 207 | 22 | 1 | | 11.95778 | 11 | 57 | 28 | 218 | 200 | 170 | 217 | 208 | 92 | 01 | 0 | 207 | 22 | 1 | | 11.95917 | 11 | 57 | 33 | 218 | 200 | 170 | 217 | 208 | 92 | 0) | 0 | 209 | 221 | 1 | | 11.96056 | 11 | 57 | 38 | 218 | 200 | 170 | 217 | 208 | 92
92 | 0 | 0 | 209 | 22 | C | | | | | | | 200 | 1701 | 047 | | 091 | an i | | | | - (| | 11.96194 | 11 | 57 | 43 | 218 | 200 | 170 | 217 | 208 | | | | | | | | | 11
11
11 | 57
57 | 43
48
53 | 218
218
218 | 198
198 | 170 | 217 | 208
211 | 92 | 0 | 0 | 209 | 22 | - 0 | Flow meter calibration data. | 11.96611 | 11 | 57 | 58 | 218 | 198 | 170 | 217 | 208 | 93 | 0 | 0 | 209 | 22. | (| |--------------------|-------------|-------------------|-----------------|-------------|------------|------------|---------------|------------|-----|------------------|----------------|----------------|----------|-----| | 11.9675
1.96889 | 11. | 58 | 3 | 218 | 198 | 170 | 217 | 208 | 93 | | 0 | 209 | 22 | | | .96889 | 11 | . <u>58</u>
58 | <u>8</u> | 218'
218 | 198 | 170
170 | 217 | 208 | 93 | 0 | _0_ | 209
209 | 22
22 | Ċ | | 97167 | 11 | 58 | 18 | 218 | 198: | 170 | 217 | | | 0 | - 0. | ~ - | | Ċ | | .97306 | 11 | 58 | 23 | 218 | 198 | 170 | 217 | 208 | 93 | 0. | <u>.0</u> , _ | 209
209 | 22
22 | Ċ | | .97444 | 11 | 58 | 28 | 218 | 198 | 170 | 217 | 208 | 93 | | <u>0</u> . | 209 | 22 | , | | .97583 | 11 | 58 | 33 | 218 | 198 | 170 | 217 | 208 | 93 | 0 | 0 | 209 | 21 | | | .97722 | | 58 | 38 | 218 | 198 | 169 | 217 | 208 | 93 | 0 | | 209 | 21 | - | | .97861 | 11 | 58 | 43 | 218 | 198 | 169 | 217 | 208 | 93 | 0 | 0 | 209 | 21. | - 6 | | 11.98 | - 11 | 58 | 48 | 218 | 197 | 169 | 217 | 208 | 93 | 0:- | | 209 | 20 | ě | | .98139 | 11 | 58 | 53 | 218 | 197 | 169 | 217 | 208 | 92 | 0. | | 209 | 20 | 10 | | .98278 | 11 | 58 | 58 | 218 | 197 | 169 | 217 | 208 | 92 | 0 | 0 | 209 | 20 | 12 | | 1.98417 | 11 | 59 | 3 | 218 | 197 | 169 | 217 | 208 | 92 | · 0 - | 0 | 209 | 20 | 14 | | .98556 | 11 * | 59 | <u>_</u> | 218 | 197 | 169 | 217 | 208 | 92 | <u>0</u> - | 0 | 209 | 19 | 16 | | .98694 | 11 | 59 | 13 | 218 | 197 | 169 | 217 | 208 | 92 | _ <u>v</u> . | o. | 209 | 19 | 18 | | .98833 | 11 | 59 | 18 | 218 | 197 | 169 | 217 | 208 | 92 | 0 | . 0 | 209 | 19 | 20 | | .98972 | 11 | 59 | 23 | 218 | 197 | 169 | 217 | 208 | 92 | 0 | 0 | 209 | 19 | 23 | | .99111 | 11 | 59 | 28 | 218 | 197 | 169 | 217 | 208 | 92 | 0 | 0 | 209 | 18 | 24 | | 1.9925 | 11 | 59 | 33 | 218 | 197 | 169 | 217 | 208 | 92 | | 0 | 209 | 18 | 27 | | .99389 | 11 | 59 | 38 | 218 | 197 | 170 | 217 | 208 | 92 | 0 | 0 | 209 | 18 | 27 | | .99528 | 11 | 59 | 43 | 218 | 197 | 170 | 217 | 208 | 92 | 0 | 0 | 209 | 18 | 27 | | 1.99667 | 11 | 59 | 48 | 218 | 198 | 170 | 217 | 208 | 92 | 0 | o [.] | 208 | 19 | 25 | | 1.99806 | 11 | 59 | 53 | 211 | 198 | 170 | 210 | 187 | 96 | 0 | 0 | 187 | 19 | 19 | | 1.99944 | 11 | 59 | 58 | 206 | 198 | 170 | 204 | 187 | 98 | 0 | 0 | 187 | 20 | 15 | | 2.00083 | 12 | 0 | 3 | 199 | 192 | 170 | 204 | 187 | 99 | 0 | 0 | 187 | 20 | 10 | | 2.00222 | 12 | 0 | 8 | 199 | 192 | 164 | 198 | 187 | 100 | 0 | 0 | 187 | 21 | ē | | 2.00361 | 12 | 0 | 13 | 199 | 187 | 164 | 198 | 187 | 101 | 0 | 0 | 187 | 21 | 2 | | 12.005 | 12 | 0 | 18 | 199 | 187 | 164 | 198 | 189 | 101 | 0 | 0 | 187 | 21 | Ç | | 2.00639 | 12 | 0 | 23 | 199' | 187 | 160 | 198 | 189 | 101 | 0 | 0 | 187 | 22 | (| | 2.00778 | 12 | 0 | 28 | 199 | 187 | 160 | 198 | 180 | 102 | 0 | 0 | 176 | 22 | (| | 2.00917 | 12 | 0 | 33 | 186 | 182 | 160 | 192 | 174 | 105 | _0_ | 0 | 176 | 22 | 2 | | 2.01056 | 12 | 0 | 38 | 186 | 182 | 154 | 186 | 176 | 105 | 0_ | . 0 | 176 | 22 | C | | 2.01194 | 12 | 0 | 43 | 186 | 176 | 154 | 186 | 176 | 105 | 0 | _ 0_ | 176 | 22 | _(| | 2.01333 | 12 | 0 | 48 | 186 | 176 | 154 | 186 | 174 | 106 | 0 | 0, | 176 | 22 | C | | 2.01472 | 12 | 0 | 53 | 186 | 171 | 149 | 181 | 174 | 106 | 0 | 0 | 176 | _ 22 | C | | 2.01611 | 12 | 0 | 58 | 180 | 171 | 149 | 181 | 171 | 107 | 0 | 0, | 168 | 22 | 0 | | 12.0175
2.01889 | 12. | | 3 | 180 | 171 | 149 | 181 | 167 | 108 | 0 | . 0 | 168 | 22 | 0 | | 2.02028 | 12
12 | 1 | 8 | 180 | 166 | 149 | 175_ | 167 | 108 | 0 | .0 | 168 | 22. | 0 | | 2.02028 | 12 | | 13 | 175 | 166 | 144 | 175 | 167 | 108 | 0 | 0 | 168. | 22. | C | | 2.02306 | 12 | 1 - | <u>18</u>
23 | 175 | 166 | 144 | 175 | 167 | 109 | 0. | . 0. | 168 | 22 | 0 | | 2.02444 | 12. | | 28 | 175
175 | 166
166 | 144 | <u> 175</u> - | 167 | 109 | . 0, | 0 | 168 | 22 | 0 | | 2.02583 | 12 | 1 - | 33 | 175 | | | 175
175 | | 109 | 0. | 0 | 168 | 22 | 0 | | 2.02722 | 12 | - i | 38 | 175 | 160
160 | 144 | 175 | 167
167 | 109 | -0- | 0. | 168 | 22 | 0 | | 2.02861 | 12: | 1 | 43 | 175 | 160 | 144 | 175 | 167 | 109 | 0. | | 168 | 22 | - 0 | | 12.03 | 12 | : | 48 | 175 | 160 | 144 | 175 | 164 | 109 | | 0 | 168
168 | 22 | 0 | | 2.03139 | 12 | - i - | 53 | 175 | 160 | 144 | 175 | 167 | 109 | | 0 | 168 | 22 | 0 | | 2.03278 | 12 | | <u>55</u> | 175 | 160 | 139 | 175 | 167 | 109 | 0 | . 0. | 166 | 22
22 | 0 | | 2.03417 | 12 | 2 | 3 | 175 | 160 | 139 | 175 | 167 | 109 | <u>0</u> . | 0 | 166 | 22 | 0 | | 2.03556 | 12 | | 8 | 175 | 160 | 139 | 173 | 167 | 109 | 0 ; | 0. | 166 | 22 | 0 | | 2.03694 | 12 | <u>~</u> . | 13 | 172 | 160 | 139 | 173 | 167 | 109 | | 0 | 166 | 21 | 2 | | 2.03833 | 12 | 2 | 18 | 172 | 160 | 139 | 173 | 167 | 109 | <u>0</u> | 0. | 166 | 21 | 3 | | 2.03972 | 12 | 2 | 23 | 172 | 160 | 139 | 173 | 164 | 109 | <u>0</u> | 0 | 166 | 21 | | | 2.04111 | 12 | 2 | 28 | 172 | 160 | 139 | 173 | 164 | 109 | <u>0</u> . | . 0 | 166 | 21 | 7 | | 2.0425 | 12 | - | 33 | 172 | 157 | 139 | 173 | 164 | 109 | | 0 | 166 | 21 | g | | 2.04389 | 12 | 2 | 38 | 172 | 157 | 139 | 173 | 164 | 109 | ö | - 0 | 166 | 20 | 11 | | .04528 | 12 | 2 | 43 | 172 | 157 | 139 | 173 | 164 | 109 | 0' | 0,- | 166 | 20 | 13 | | .04667 | 12 | 2 | 48 | 172 | 157 | 139 | 173 | 164 | 109 | 0 | ŏ | 166 | 20 | 15 | | 2.04833 | 12 | 2 | 54 | 172 | 157 | 139 | 173 | 164 | 109 | <u>o</u> _ | | 166 | 20 | 18 | | 2.04972 | 12 | 2 | 59 | 172 | 157 | 136 | 173 | 164 | 109 | 0 | 0 | 162 | 19 | 19 | | 2.05111 | 12 | 3 | 4 | 172 | 157 | 136 | 173 | 164 | 109 | 0 | 0 | 162 | 19 | 21 | | 2.0525 | 12 | 3 | 9 | 172 | 157 | 136 | 171 | 164 | 109 | 0 | 0 | 162 | 19 | 23 | | 2.05389 | 12 | 3 | 14. | 170 | 157 | 136 | 171 | 164 | 109 | 0 | 0 | 162 | 19 | 25 | | .05528 | 12 | _3 | 19 | 170 | 157 | 136 | 171 | 164 | 109 | 0 | 0 | 162 | 19 | 27 | | 2.05667 | 12 | 3 | 24 | 170 | 157 | 136 | 171 | 165 | 109 | 0 | _0, | 162 | 18 | 29 | | 2.05806 | 12 | 3 | 29 | 170 | 157 | 136 | 171 | 165 | 109 | 0 | 0 | 162 | 18 | 29 | | 2.05944 | 12 | 3 | 34 | 170 | 157 | 136 | 171 | 165 | 109 | 0 | 0 | 162 | 19 | 27 | | .06083 | 12 | 3. | 39 | 170 | 157 | 136 | 171 | 165 | 109 | 0 | 0 | 162 | 20 | 21 | | 2.06222 | 12 | 3 | 44 | 170 | 157 | 136 | 171 | 165 | 109 | 0 | 0 | 162 | 20 | 16 | | 2.06361 | 12 | 3 | 49 | 170 | 157 | 136 | 171 | 165 | 109 | 0 | 0 | 162 | 20 | 10 | | 12.065 | 12 | 3 | 54 | 170 | 157 | 136 | 171 | 165 | 109 | 0 | 0 | 162 | 21 | 4 | | 2.06639 | 12 | 3 | 59 | 170 | 157 | 135 | 171 | 165 | 109 | 0 | 0 | 165 | 21 | 1 | | 2.06778 | 12 | 4 | 4 | 170 | 157 | 135 | 171 | 165 | 109 | 0 | 0 | 165 | 22 | (| | .06917 | 12 | 4 | 9 | 170 | 157 | 135 | 172 | 162 | 109 | 0 | 0 | 165 | 22 | | | | 12 | 4 | 14 | 171 | 157 | 135 | 172 | 165 | 109 | 0 | 0 | 165 | 22 | 0 | | 2.07056 | | | | | | | | | | | | | | - | | 2.07194 | 12 | 4 | 19: | 171 | 157 | 135 | 172 | 165 | 109 | 0 | 0 | 165 | 22 | 0 | | | | 4 | 19:
24 | 171
171 | 157
157 | 135 | 172 | 165 | 109 | 0 | . <u>0</u> | 165
165 | 22
22 | 0 | Flow meter calibration data. | 12.07575 12 | 12.07611 | 12 | 4 | 34 | 171 | 157 | 135 | 172 | 165 | 109 | 0 | 0 | 165 | 22 | (|
--|----------|-----|-----|-------------|-----|-----|-----------------------------------|-----|-----|-----|-------------|----|-----|----|--------------| | 20.07889 12 | | | | | | | | | | | | | | | | | 20,00000 72 | | | | | | | | | | | | 0 | | | | | 12.08556 | | | | | | 157 | 135 | | 163 | 109 | 0 | 0 | 165 | 22 | (| | 12,08464 12 5 6 717 157 177 172 168 1090 0 0 161 21 | 12.08167 | 12 | 4 | 54 | 171 | 157 | 135 | 172 | 163 | 109 | 0 | O) | 165 | | 2 | | 12,0055 12 8 9 171 157 137 170 168 108 0 0 161 21 12,00872 12 5 14 771 157 137 170 163 108 0 0 161 21 12 12,00881 12 5 2 171 157 137 170 163 108 0 0 0 161 22 12,00881 12 5 2 171 157 137 170 163 108 0 0 0 161 20 12 12 12 12 12 12 1 | 12.08306 | 12 | 4 | 59 | 171 | 157 | 137 | 172 | 163 | 109 | 0 | 0, | | | | | 12,09572 12 12 13 14 17 17 17 17 17 17 17 | 12.08444 | 12 | · 5 | 4 | 171 | 157 | 137 | 172 | 163 | 109 | | | | | | | 12.08691 12 8 19 1711 157 137 170 163 109 0 0 161 20 | 12.08583 | 12 | 5 | 9 | 171 | | 137 | 170 | | | | | | | | | 12,093 12 5 | 12.08722 | 12 | | | | | | | | | | | | | 9 | | 12,0919 12 | 12.08861 | | | | | | | | | | | | | | . 11 | | 12 12 12 13 14 17 15 15 15 17 17 17 16 16 10 10 10 16 16 18 18 18 18 18 18 | | | | | | | | | | | | | | | 13 | | | 12.09139 | | | | | | | | | | | | | | 15 | | 12,005 12 | | | | | | | | | | | | | | | 17 | | 12.05954 | | | | | | | | | | | | | | | 19 | | 12,008572 12 | | | | | | | | | | | | | | | 21 | | 12.0987 12 5 50 171 156 134 170 168 109 0 0 168 191 12.0082 12 6 3 171 156 134 170 168 109 0 0 158 181 12.0082 12 6 3 171 156 134 170 168 109 0 0 165 181 12.0081 12 6 13 170 156 134 170 168 109 0 0 165 181 12.0081 12 6 13 170 156 134 170 168 109 0 0 165 181 12.0081 12 6 13 170 156 134 170 168 109 0 0 0 165 181 12.0081 12 6 13 170 156 134 170 168 109 0 0 0 185 191 12.0089 12 6 23 170 156 134 170 168 109 0 0 0 185 191 12.0089 12 6 23 170 156 134 170 168 109 0 0 0 185 191 12.0089 12 6 23 170 156 134 170 168 109 0 0 0 150 191 12.0089 12 6 23 170 156 134 170 168 109 0 0 0 150 191 12.0089 12 6 23 170 156 134 170 168 109 109 0 0 0 150 191 12.0089 12 6 23 170 146 134 170 168 109 109 0 0 0 150 191 12.0089 12 6 23 170 146 134 170 168 140 100 0 0 120 21 12.0089 12 6 38 127 146 134 170 180 180 109 0 0 120 21 12.1194 12 6 38 127 148 170 170 170 170 180 180 0 0 120 22 12.1195 12 6 38 127 148 170 | | | | | | | | | | | | | | | 22
25 | | 12.10083 | | | | | | | | | | | | | | | 26 | | 12,10222 12 | | | | | | | | | | | | | | | 28 | | 12.10361 12 e | | | | | | | | | | | | | | | 29 | | 12.105 | | | | | | | | | | | | | | | 29 | | 12,10636 | | | | | | | | | | | | | | | 25 | | 12 17 12 6 | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | 14 | | 1211156 | | | | | | | | | | | | | | | 10 | | 7 | | | | | | | | | | | | | | | | | (| | | 12.11611 | 115 | 113 | 101 | 110 | 105 | 120 | 0 | 0 | 108 | 22 | | | | 12.11889 | | 7 | 8 | 115 | 107 | 101 | 110 | 105 | 120 | 0 | 0 | | 22 | | | 12 12 12 12 13 15 10 10 10 10 10 10 10 | 12.12028 | 12 | 7 | 13 | 115 | 107 | 101 | 110 | 107 | 120 | | | | | | | | 12.12167 | 12; | 7 | 18 | 115 | 107 | 101 | 110 | | | | | | | | | 12.12593 | 12.12306 | | | | | | | | | | | | | | | | 12.12722 12 7 38 115 102 96 1110 104 120 0 0 105 22 | 12.12444 | (| | T2,13 12 7 48 109 102 96 110 104 120 0 0 0 105 22 12,133 12 7 53 103 102 96 110 104 120 0 0 0 105 22 12,133 12 7 58 109 102 96 113 108 120 0 0 105 22 12,134 17 12 8 3 109 102 96 113 108 120 0 0 0 105 22 12,134 17 12 8 3 109 102 96 113 108 120 0 0 0 105 22 12,134 17 12 8 8 8 109 102 96 113 108 120 0 0 0 105 22 12,139 12 8 8 8 109 102 96 113 108 120 0 0 0 106 22 12,139 12 8 8 8 109 102 96 113 105 120 0 0 0 106 22 12,139 12 8 23 109 102 96 113 105 120 0 0 0 106 22 12,139 12 8 28 109 102 96 113 105 120 0 0 0 106 22 12,141 12 8 28 109 102 96 113 105 120 0 0 0 106 22 12,149 12 8 33 109 102 96 113 105 120 0 0 0 106 22 12,149 12 8 38 109 102 96 113 105 120 0 0 0 106 22 12,149 12 8 38 109 102 96 113 105 120 0 0 0 106 22 12,149 12 8 38 109 102 96 113 105 120 0 0 0 106 22 12,149 12 8 38 109 102 96 113 108 120 0 0 0 106 22 12,149 12 8 8 43 112 102 96 113 108 120 0 0 0 106 22 12,149 12 8 8 43 112 102 96 113 108 120 0 0 0 106 22 12,149 12 8 8 58 112 102 96 113 108 120 0 0 0 106 22 12,149 12 8 58 112 102 96 113 108 119 0 0 0 106 22 12,149 12 8 58 112 102 96 113 108 119 0 0 0 106 22 12,149 12 8 58 112 102 96 114 108 119 0 0 0 106 22 12,149 12 8 58 112 102 96 114 108 119 0 0 0 106 22 12,149 12 8 58 112 102 96 114 108 119 0 0 0 106 22 12,159 12 9 3 112 102 96 114 108 119 0 0 0 106 22 12,159 12 9 3 112 102 96 114 108 119 0 0 0 106 21 12,159 12 9 3 112 102 96 114 108 119 0 0 0 108 21 12,159 12 9 38 112 102 95 114 108 119 0 0 0 108 21 12,159 12 9 38 112 102 95 114 108 119 0 0 0 108 21 12,159 12 9 38 112 102 95 114 108 119 0 0 0 108 19 12,179 12 10 38 112 102 94 114 108 11 | | | | | | | · · · · · · · · · · · · · · · · · | | | | | | | | (| | 12.15199 12 | | | | | | | | | | | | | | | | | 12.13278 12 | | | | | | | | | | | | | | | } | | | | | | | | | | | | | | | | | | | 12.15556 12 | | | | | | | | | | | | | | | | | 12,13694 12 | | | | | | | | | | | | | | | | | 12,13833 | | | | | | | | | | | | | | | | | 12,13972 12 | | | | | | | | | | | | | | | | | 12.14111 | | | | | | | | | | | | 0. | 106 | | (| | 12,1425 12 | | | | | | 102 | 96 | 113 | 105 | 120 | 0 | 0 | 106 | 22 | (| | 12.14528 12 | | | 8 | 33 | 109 | 102 | 96 | 113 | 105 | 120 | 0 | 0 | 106 | 22 | | | 12.14667 | 12.14389 | 12 | 8 | 38 | 109 | 102 | 96 | 113 | 108 | 120 | 0 | | | | | | 12.14806 | 12.14528 | 12 | 8 | 43 | 112 | | | 113 | | | | | | | 1 | | 12.14944 12 | 12.14667 | | | | | | | | | | | | | | | | 12.15083 12 9 3 112 102 96 114 108 119 0 0 106 21 12.15222 12 9 8 112 102 96 114 108 119 0 0 108 21 12.1555 12 9 18 112 102 96 114 108 119 0 0 108 21 12.1556 12 9 23 112 102 96 114 108 119 0 0 108 21 12.1557 12 9 28 112 102 95 114 108 119 0 0 108 21 12.15778 12 9 33 112 102 95 114 108 119 0 0 108 21 12.15917 12 9 33 112 102 95 114 108 119 0 0 108 20 12.16916 12 9 38 112 102 95 114 108 119 0 0 108 20 12.16778 12 10 4 112 102 95 114 106 119 0 0 108 20 12.16917 12 10 9 112 102 95 112 106 119 0 0 108 20 12.16917 12 10 9 112 102 95 112 106 119 0 0 108 20 12.17056 12 10 14 112 102 95 112 106 119 0 0 108 19 12.17333 12 10 24 112 102 95 112 106 119 0 0 108 19 12.173531 12 10 28 112 102 94 112 106 119 0 0 108 19 12.17656 12 10 33 112 102 94 112 106 119 0 0 108 19 12.17361 12 10 28 112 102 94 112 106 119 0 0 108 19 12.173631 12 10 33 112 102 94 112 106 119 0 0 108 19 12.17661 12 10 38 112 102 94 112 106 119 0 0 108 19 12.17681 12 10 48 112 102 94 112 106 119 0 0 108 19 12.17681 12 10 48 112 102 94 112 106 119 0 0 108 19 12.17681 12 10 48 112 102 94 112 106 119 0 0 108 19 12.17681 12 10 48 112 102 94 112 107 119 0 0 108 19 12.18391 12 10 48 112 102 94 112 107 119 0 0 108 19 12.18656 12 11 8 112 102 94 111 107 120 0 0 108 19 12.18633 12 11 18 112 102 94 111 107 120 0 0 107 19 | 12.14806 | 12 | 8 | 53 | | | | | | | | | | | | | 12.1522 12 | 12.14944 | | | | | | | | | | | | | | | | 12.15361 12 | | | | | | | | | | | | | | | 10 | | 12.155 12 9 18 112 102 96 114 108 119 0 0 108 21 12.15639 12 9 23 112 102 95 114 108 119 0 0 108 21 12.15778 12 9 28 112 102 95 114 108 119 0 0 108 21 12.16056 12 9 38 112 102 95 114 108 119 0 0 108 20 12.16078 12 10 4 112 102 95 112
106 119 0 0 108 20 12.16917 12 10 9 112 102 95 112 106 119 0 0 108 19 12.17696 12 10 14 112 102 95 112 106 | | | | | | | | | | | | | | | 11 | | 12.15639 12 | · | | | | | | | | | | | | | | 14 | | 12.15778 12 9 28 112 102 95 114 108 119 0 0 108 21 12.15917 12 9 33 112 102 95 114 108 119 0 0 108 20 12.16056 12 9 38 112 102 95 114 106 119 0 0 108 20 12.16778 12 10 4 112 102 95 112 106 119 0 0 108 20 12.16917 12 10 9 112 102 95 112 106 119 0 0 108 19 12.17956 12 10 14 112 102 95 112 106 119 0 0 108 19 12.1794 12 10 24 112 102 94 112 106 <td></td> <td>15</td> | | | | | | | | | | | | | | | 15 | | 12.15917 | | | | | | | | | | | | | | | 17 | | 12.16056 12 9 38 112 102 95 114 106 119 0 0 108 20 12.16778 12 10 4 112 102 95 112 106 119 0 0 108 20 12.16917 12 10 9 112 102 95 112 106 119 0 0 108 19 12.17056 12 10 14 112 102 95 112 106 119 0 0 108 19 12.17194 12 10 19 112 102 95 112 106 119 0 0 108 19 12.17333 12 10 24 112 102 94 112 106 119 0 0 108 19 12.17444 12 10 28 112 102 94 112 106 | | | | | | | | | | | | | | | 18 | | 12.16778 12 10 4 112 102 95 112 106 119 0 0; 108 20 12.16917 12 10 9 112 102 95 112 106 119 0 0 108 19 12.17055 12 10 14 112 102 95 112 106 119 0 0 108 19 12.17194 12 10 19 112 102 95 112 106 119 0 0 108 19 12.17333 12 10 24 112 102 94 112 106 119 0 0 108 19 12.17444 12 10 28 112 102 94 112 106 119 0 0 108 19 12.17583 12 10 33 112 102 94 112 1 | | | | | | | | | | | | | | | 20 | | 12.16917 12 10 9 112 102 95 112 106 119 0 0 108 19 12.17056 12 10 14 112 102 95 112 106 119 0 0 108 19 12.17194 12 10 19 112 102 95 112 106 119 0 0 108 19 12.17333 12 10 24 112 102 94 112 106 119 0 0 108 19 12.17363 12 10 28 112 102 94 112 106 119 0 0 108 19 12.17583 12 10 33 112 102 94 112 106 119 0 0 108 19 12.17861 12 10 38 112 102 94 112 1 | 12.16778 | | | | | | | | | | | | | | 30 | | 12.17056 12 10 14 112 102 95 112 106 119 0 0 108 19 12.17194 12 10 19 112 102 95 112 106 119 0 0 108 19 12.17333 12 10 24 112 102 94 112 106 119 0 0 108 19 12.17444 12 10 28 112 102 94 112 106 119 0 0 108 19 12.17583 12 10 33 112 102 94 112 106 119 0 0 108 19 12.17583 12 10 38 112 102 94 112 106 119 0 0 108 19 12.17522 12 10 38 112 102 94 112 107 119 0 0 108 19 12.17861 12 10 <td>12.16917</td> <td></td> <td>108</td> <td></td> <td>31</td> | 12.16917 | | | | | | | | | | | | 108 | | 31 | | 12.17194 12 10 19 112 102 95 112 106 119 0 0 108 19 12.17333 12 10 24 112 102 94 112 106 119 0 0 108 19 12.17444 12 10 28 112 102 94 112 106 119 0 0 108 19 12.17583 12 10 33 112 102 94 112 106 119 0 0 108 19 12.17583 12 10 38 112 102 94 112 107 119 0 0 108 19 12.17722 12 10 38 112 102 94 112 107 119 0 0 108 19 12.17861 12 10 43 112 102 94 112 107 119 0 0 108 19 12.18139 12 10 <td>12.17056</td> <td></td> <td></td> <td>14</td> <td></td> <td>102</td> <td></td> <td></td> <td>106</td> <td>119</td> <td></td> <td></td> <td></td> <td></td> <td>3.</td> | 12.17056 | | | 14 | | 102 | | | 106 | 119 | | | | | 3. | | 12.17444 12 10 28 112 102 94 112 106 119 0 0 108 19 12.17583 12 10 33 112 102 94 112 106 119 0 0 108 19 12.17722 12 10 38 112 102 94 112 107 119 0 0 108 19 12.17861 12 10 43 112 102 94 112 107 119 0 0 108 19 12.18 12 10 48 112 102 94 112 107 119 0 0 108 19 12.18139 12 10 53 112 102 94 112 107 120 0 0 108 19 12.18276 12 10 58 112 102 94 111 107 | 12.17194 | | 10 | 19 | 112 | | | 112 | | | | | | | 32 | | 12.17583 12 10 33 112 102 94 112 106 119 0 0 108 19 12.17722 12 10 38 112 102 94 112 107 119 0 0 108 19 12.17861 12 10 43 112 102 94 112 107 119 0 0 108 19 12.18 12 10 48 112 102 94 112 107 119 0 0 108 19 12.18139 12 10 53 112 102 94 112 107 120 0 0 108 19 12.18278 12 10 58 112 102 94 111 107 120 0 0 108 19 12.18477 12 11 3 112 102 94 111 107 120 0 0 108 19 12.18566 12 11 8 112 102 94 111 107 120 0 0 107 19 12.18694 12 11 </td <td>12.17333</td> <td></td> <td>32</td> | 12.17333 | | | | | | | | | | | | | | 32 | | 12.17722 12 10 38 112 102 94 112 107 119 0 0 108 19 12.17861 12 10 43 112 102 94 112 107 119 0 0 108 19 12.18 12 10 48 112 102 94 112 107 119 0 0 108 19 12.18139 12 10 53 112 102 94 112 107 120 0 0 108 19 12.18278 12 10 58 112 102 94 111 107 120 0 0 108 19 12.18477 12 11 3 112 102 94 111 107 120 0 0 108 19 12.18556 12 11 8 112 102 94 111 107 120 0 0 107 19 12.18694 12 11 13 112 102 94 111 107 120 0 0 107 19 12.18833 12 11 </td <td>12.17444</td> <td></td> <td>32</td> | 12.17444 | | | | | | | | | | | | | | 32 | | 12.17861 12 10 43 112 102 94 112 107 119 0: 0 108: 19 12.18 12 10 48: 112 102 94 112 107 119 0: 0 108: 19 12.18139 12 10 53 112 102 94 112: 107 120 0 0 108: 19 12.18278 12 10 58 112 102 94 111: 107 120 0 0 0 108: 19 12.18417 12 11 3 112 102 94 111: 107 120 0 0 108: 19 12.18556 12 11 8 112 102 94 111: 107 120 0 0 107: 19 12.18694 12 11 13 112 102 94 111 107 120 0 0 107: 19 12.18833 12 11 18 112 102 94 111 107 120 0 0 107: 19 | 12.17583 | | | | | | | | | | | | | | 32 | | 12,18 12 10 48 112 102 94 112 107 119 0! 0 108 19 12.18139 12 10 53 112 102 94 112 107 120 0 0 108 19 12.18278 12 10 58 112 102 94 111 107 120 0 0 108 19 12.18477 12 11 3 112 102 94 111 107 120 0 0 0 108 19 12.18556 12 11 8 112 102 94 111 107 120 0 0 0 107 19 12.18694 12 11 18 112 102 94 111 107 120 0 0 107 19 12.18833 12 11 18 112 102 94 | 12.17722 | | | | | | | | | | | | | | 3: | | 12.18139 12 10 53 112 102 94 112 107 120 0 0 108 19 12.18278 12 10 58 112 102 94 111 107 120 0 0 108 19 12.18417 12 11 3 112 102 94 111 107 120 0 0 0 108 19 12.18556 12 11 8 112 102 94 111 107 120 0 0 107 19 12.18694 12 11 13 112 102 94 111 107 120 0 0 107 19 12.18833 12 11 18 112 102 94 111 107 120 0 0 107 19 | 12.17861 | | | | | | | | | | | | | | 3: | | 12.18278 12 10 58 112 102 94 111 107 120 0 0 108 19 12.18417 12 11 3 112 102 94 111 107 120 0 0 108 19 12.18556 12 11 8 112 102 94 111 107 120 0 0 107 19 12.18694 12 11 13 112 102 94 111 107 120 0 0 107 19 12.18833 12 11 18 112 102 94 111 107 120 0 0 107 19 | | | | | | | | | | | | | | | 3 | | 12.18417 12 11 3 112 102 94 111 107 120 0 0 108 19 12.18556 12 11 8 112 102 94 111 107 120 0 0 107 19 12.18694 12 11 13 112 102 94 111 107 120 0 0 107 19 12.18833 12 11 18 112 102 94 111 107 120 0 0 107 19 | | | | | | | | | | | | | | | 3 | | 12.18556 12 11 8 112 102 94 111 107 120 0 0 107 19 12.18694 12 11 13 112 102 94 111 107 120 0 0 107 19 12.18833 12 11 18 112 102 94 111 107 120 0 0 107 19 | | | | | | | | | | | | | | | 3: | | 12.18694 12 11 13 112 102 94 111 107 120 0 0 107 19 12.18833 12 11 18 112 102 94 111 107 120 0 0 107 19 | | | | | | | | | | | | | | | 3: | | 12.18833 12 11 18 112 102 94 111 107 120 0 0 107 19 | | | | | | | | | | | | | | | 3: | | 12,1000 | | | | | | | | | | | | | | | 3: | | | | | | | | | | | | | | | | | 3 | Flow meter calibration data. | 12.19111 | 12 | 11 | 28 | 112 | 102 | 93 | 111 | 107 | 120 | 0 | O; | 107 | 19 | 32 | |----------|------|-----|------|------|-----|-----|-----|------|-------|----------------|----------------|-----|-------------------|------------| | 12.1925 | 12 | 11 | 33 | 112 | 102 | 93 | 111 | 107 | 120 | 0 | o; | 107 | 19 | 32 | | 12.19389 | 12 | 11; | 38 | 112 | 103 | 93 | 111 | 105 | 120 | 0 | 0 | 107 | 19 | 32 | | 12.19528 | 12 | 11 | 43 . | 112 | 103 | 93 | 111 | 109 | 119 | 0 | 0 | 107 | 19 | 32 | | 12.19667 | 12 | 11 | 48 | 112 | 103 | 93 | 111 | 109 | 119 | 0 | 0 | 107 | 19 | 32 | | 12.19806 | 12 | 11 | 531 | 112 | 103 | 93 | 111 | 109 | 119 | 0 | oʻ | 107 | 19 | 32 | | 12.19944 | 12 | 11 | 58 | 112 | 103 | 93 | 113 | 106 | 119 | 0 | 0 | 107 | 19 | 32 | | 12.20083 | 12 | 12 | 3 | 112 | 103 | 93 | 113 | 106 | 119 | 0 | 0 | 107 | 19: | 32 | | 12.20222 | 12 | 12 | 8 | 112 | 103 | 93 | 113 | 106 | 119 | 0 | 0 | 108 | 19 | 32 | | 12.20361 | 12 | 12 | 13 | 112 | 103 | 93 | 113 | 106 | 119 | 0 | 0 | 108 | 19 | 32 | | 12.205 | 12 | 12 | 18 | 112 | 103 | 93 | 113 | 106 | 119 | 0 | | 108 | · — 19 | 32
31 | | 12.20639 | 12 | 12 | 23 | 112 | 103 | 92 | 113 | 106 | 119 | 0 | 0 | 108 | - 19 - | 29 | | 12.20778 | 12 | 12 | 28 | 112 | 103 | 92 | 113 | 106 | 119 | 0 | | | | | | 12.20917 | 12. | | | | | | | | | | 0; | 108 | <u>19</u> . | 25 | | | | 12 | 33 | 112 | 103 | 92 | 113 | 106 | 119 | 0 | | 108 | | 18 | | 12.21056 | 12 | 12 | 38 | 112 | 103 | 92 | 113 | 106 | 119 | 0 | 0 | 108 | 21 | 13 | | 12.21194 | 12 | 12 | 43 | 113 | 103 | 92 | 113 | 106 | 120 | 0 | 0 | 108 | 21 | 7 | | 12.21333 | 12 | 12 | 48 | 113 | 103 | 92 | 113 | 106 | 120 | 0 | 0 į | 108 | 22 | 3 | | 12.21472 | 12 | 12 | 53 | 113 | 103 | 92 | 113 | 106 | 120 | 0 | 0 | 108 | 22, | 0 | | 12.21611 | 12 | 12 | 58 | 113 | 103 | 92 | 112 | 106 | 120 | 0 | 0 | 108 | 22 | 0 | | 12.2175 | 12 | 13 | 3 | 113 | 103 | 92 | 112 | 106 | 120 | O. | 0 | 108 | 22 | ő | | 12.21889 | 12 | 13 | 8 | 113 | 103 | 92 | 112 | 106 | 120 | 0 | 0 | 107 | 22 | ō | | 12.22028 | 12 | 13: | 13 | 113 | 103 | 92 | 112 | 106 | 120 | 0 | 0 | 107 | 22 | — · š | | 12.22167 | 12 | 13 | 18 | 113 | 103 | 92 | 112 | 106 | 120 | | | 107 | 22 | ŏ | | 12.22306 | 12 | 13 | 23 | 113 | 103 | 92 | 112 | 106 | 120 | | -0. | 107 | - 22 | ŏ | | 12.22444 | 12 | 13 | 28 | 113 | 103 | 92 | 112 | 106 | 120 | | | 107 | 22 | 0 | | 12.22583 | 12 | 13 | 33 | 113 | 103 | 92 | | 106 | | | | | | | | 12.22722 | | | | | | | 112 | | 120 | 0 | | 107 | 22. | 0 | | | 12 | 13 | 38 | 113 | 102 | 92 | 112 | 106 | 120 | 0 | 0 | 107 | 22 | 의 | | 12.22861 | 12 | 13 | 43 | 112 | 102 | 92 | 112 | 106 | 120 | 0 | 0 | 107 | 22 | <u>o</u> | | 12.23 | 12 | 13 | 48 | 112 | 102 | 92 | 112 | 106 | 120 | 0, | 0 | 107 | 22 | 0 | | 12.23139 | 12 | 13 | 53 | 112 | 102 | 92 | 112 | 106 | 120 | 0 | 0 | 107 | 22 | 1 | | 12.23278 | 12 | 13 | 58 | 112 | 102 | 92 | 114 | 107 | 120 | 0 | 0 | 107 | 22 | 2 | | 12.23417 | 12 | 14 | 3 | 112 | 102 | 92 | 114 | 107; | 120 | 0, | 0 | 107 | 22 | 4 | | 12.23556 | 12 | 14 | 8 | 112 | 102 | 92 | 114 | 107 | 120 | 0 | 0 | 108 | 21 | - <u>6</u> | | 12.23694 | 12 | 14 | 13 | 112 | 102 | 92 | 114 | 107 | 120 | 0 | 0 | 108 | 21 | _ 8 | | 12.23833 | 12 | 14 | 18 | 112 | 102 | 92 | 114 | 107 | 120 | 0 | 0 | 108 | 21 | 9 | | 12.23972 | 12 | 14. | 23 | 112 | 102 | 95 | 114 | 107 |
120 | - ō | o ; | 108 | 21 | 11 | | 12.24111 | 12 | 141 | 28 | 112 | 102 | 95 | 114 | 107 | 120 | | 0 | 108 | 21 | 13 | | 12.2425 | 12 | 14: | 33 | 112 | 102 | 95: | 114 | 107 | 120 | 0: | | | | - !3 | | 12.24389 | 12 | 14 | 38 | 112 | 102 | | | | | | | 108 | 21 | 15 | | | | | | | | 95 | 114 | 107 | 120 | 01 | 0 | 108 | 21. | 16 | | 12.24528 | 12 | 14! | 43 | 113 | 101 | 95 | 114 | 107 | 120 | 0 | 0 | 108 | 21 | 18 | | 12.24667 | 12 | 14 | 48 | 113 | 101 | 95 | 114 | 107 | 120 | 0 | <u>0;</u> | 108 | 20 | 20 | | 12.24806 | 12 | 14 | 53 | 113 | 101 | 95 | 109 | 107 | 120 | 0 | 0 | 108 | 20 | 22 | | 12.24944 | 12 | 14 | 58 | 113 | 101 | 95 | 109 | 106 | 120 | <u> </u> | 0, | 108 | 20 | 23 | | 12.25083 | 12 | 15 | 3 | 113 | 101 | 95 | 109 | 106 | 120 | o j | 0 | 108 | 20 | 25 | | 12.25222 | 12 | 15 | 8 | 113 | 101 | 95 | 109 | 106 | 120 | 0 | 0. | 104 | 20 | 27 | | 12.25361 | 12 | 15 | 13 | 113 | 101 | 95 | 109 | 106 | 120 | 0 | 0' | 104 | 20 | 29 | | 12.255 | 12 | 15 | 18 | 113 | 101 | 95 | 109 | 106 | 120 | 0 | 0 | 104 | 20 | 30 | | 12.25639 | 12 | 15 | 23 | 113 | 101 | 92 | 109 | 106 | 120 | 0 | 0 | 104 | 19 | 31 | | 12.25778 | 12 | 15 | 28 | 113 | 101 | 92 | 109 | 106 | 120 | | 0 | 104 | 19 | 32 | | 12.25917 | 12 | 15 | 33 | 113 | 101 | 92 | 109 | 106 | 120 | o ; | 0 | 104 | 19 | 32 | | 12.26056 | 12 | 15 | 38 | 113 | 101 | 92 | 109 | 106 | 120 | 0 - | 0 | 104 | 19 | 32 | | 12.26194 | 12 | 15 | 43 | 111 | 101 | 92 | | | | | | | | 32 | | 12.26333 | 12 | 15 | 48 | 111 | 101 | 92 | 109 | 106 | 120 | 0 | 0 | 104 | 19. | | | 12.26472 | 12 | 15 | 53 | 111 | | | 109 | 106 | 120 | 0 | 0 | 104 | 19 | 32 | | 12.26472 | ···· | | | | 101 | 92 | 112 | 106 | 120, | 0 | 0 | 104 | - 19 | 32 | | | 12 | 15 | 58 | 111! | 101 | 92! | 112 | 107 | 120 | 0 | 0 | 104 | 19 | 32 | | 12.2675 | 12 | 16 | 3 | 111 | 101 | 92 | 112 | 107 | 120 | 0 | 0 | 104 | 19 | 32 | | 12.26889 | 12 | 16. | 8 | 111 | 101 | 92 | 112 | 107 | 120 | 0 | 0, | 106 | 19 | 32 | | 12.27028 | 12 | 16 | 13 | 111 | 101 | 92 | 112 | 107 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.27167 | 12 | 16 | 18 | 111 | 101 | 92 | 112 | 107 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.27306 | 12 | 16 | 23 | 111 | 101 | 92 | 112 | 107 | 120 | 0. | 0 | 106 | 19 | 32 | | 12.27444 | 12 | 16 | 28 | 111 | 101 | 92 | 112 | 107 | 120 | 01 | 0: | 106 | 19 | 32 | | 12.27611 | 12 | 16 | 34 | 111 | 101 | 92 | 112 | 107 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.2775 | 12 | 16 | 39 | 113 | 102 | 92 | 112 | 107 | 120 | 0, | 0: | 106 | 19 | 32 | | 12.27889 | 12 | 16 | 44 | 113 | 102 | 92 | 112 | 107 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.28028 | 12 | 16 | 49 | 113 | 102 | 92 | 112 | 107 | 120 | <u>ŏ</u> | | 106 | 19 | 32 | | 12.28167 | 12 | 16: | 54 | 113 | 102 | 92 | 113 | 107 | 120 | 0 | _ | 106 | 19 | 32 | | 12.28306 | 12 | 16 | 59 | 113 | 102 | 92 | 113 | 105 | 120 | 0 | | ~ | 19 | 32 | | 12.28444 | 12. | 17 | 4 | 113 | 102 | | | | | | 0 | 106 | | | | 12.28583 | | | | | | 92 | 113 | 105 | 120 | | 0 | 106 | 19 | 32 | | | 12 | 17 | 9 | 113 | 102 | 92 | 113 | 105 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.28722 | 12 | 17 | 14 | 113 | 102 | 92 | 113 | 105 | 120 | 0, | 0 | 106 | 19 | 32 | | 12.28861 | 12 | 17 | 19 | 113 | 102 | 92 | 113 | 105 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.29 | 12 | 17 | 24 | 113 | 102 | 91 | 113 | 105 | 120 | 0 | 0_ | 106 | 19 | 32 | | 12.29139 | 12 | 17 | 29 | 113 | 102 | 91 | 113 | 105 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.29278 | 12 | 17 | 34 | 113 | 102 | 91 | 113 | 105 | 120 | 0 | 0 | 106 | 19 | 32 | | 12.29417 | 12 | 17 | 39 | 111 | 100 | 91 | 113 | 105 | 120 | 0 | 0 | 106 | 19 | 31 | | 12.29556 | 12 | 17 | 44. | 111 | 100 | 91 | 113 | 105, | 120 | 0 | 0 | 106 | 19 | 26 | | 12.29694 | 12 | 17: | 49 | 111 | 100 | 91. | 113 | 105 | 120 | 0 | 0 | 106 | 20 | 22 | | 12.29833 | 12 | 17: | 54 | 111 | 100 | 91 | 112 | 105 | 120 | 0. | 0 | 104 | 20 | 15 | | 12.29972 | 12 | 17 | 59. | 117 | 100 | 91 | 118 | 143 | 118 | 0 | 0 | 129 | 21 | 10 | | | | | | | | | | | . , . | ٠. | U | | | 10 | Flow meter calibration data. | 12.3025 12 18 9 166 123 106 160 160 111 0 0 159 22 12.30382 12 18 14 166 131 112 160 160 111 0 0 159 22 12.30562 12 18 19 166 136 117 166 160 111 0 0 159 22 12.30562 12 18 24 166 136 117 166 160 111 0 0 159 22 12.30562 12 18 29 166 142 122 166 160 111 0 0 0 160 22 12.30561 12 18 29 166 142 122 166 164 109 0 0 0 166 22 12.30581 12 18 39 171 148 127 166 164 109 0 0 0 166 22 12.30581 12 18 39 171 148 127 166 164 109 0 0 0 166 22 12.30581 12 18 39 171 148 127 166 164 109 0 0 0 166 22 12.30581 12 18 34 171 148 127 165 164 109 0 0 0 166 22 12.30581 12 18 34 171 148 127 165 164 109 0 0 0 166 22 12.30581 12 18 54 171 153 127 172 164 109 0 0 0 166 22 12.31591 12 18 59 171 153 127 172 164 109 0 0 0 166 22 12.31591 12 18 59 171 153 132 172 164 109 0 0 0 166 22 12.31791 12 19 59 171 153 132 172 164 109 0 0 0 166 22 12.31791 12 19 9 171 153 132 172 164 109 0 0 0 166 22 12.31917 12 19 9 171 153 132 172 164 109 0 0 0 166 22 12.32591 12 19 14 171 153 132 172 164 109 0 0 0 166 22 12.32591 12 19 14 171 153 132 172 164 109 0 0 0 166 22 12.32591 12 19 14 171 153 132 172 164 109 0 0 166 22 12.32591 12 19 14 171 153 132 172 164 109 0 0 166 22 12.32591 12 19 14 171 153 132 172 164 109 0 0 166 22 12.32591 12 19 14 171 153 132 172 164 109 0 0 0 166 22 12.32591 12 19 14 171 153 132 172 164 109 0 0 0 166 22 12.32591 12 19 14 171 153 | | | | | | | | | | | | | | | | |--|----------|----|-----|----|-----|-------------|-------------|-----|-----|-------|-------------|-------------|-----|-----|-------------| | 12,500, 12 | 12.30111 | | 18 | 4 | 160 | 105 | 99 | 160 | 160 | 111 | 0 | 0 | 159 | 21 | | | 12.5066 12 16 19 166 136 117 166 160 111 0 0 0 160 22 12.5060 12 16 29 166 160 142 122 166 160 161 100 0 0 0 166 22 12.5060 12 16 16 16 16 16 16 1 | 12.3025 | 12 | 18 | 9 | 166 | 123 | 106 | 160 | 160 | 111 | 0 | 0 | 159 | 22 | 1 | | 12,0000 12 | 12.30389 | 12 | 18 | 14 | 166 | 131 | 112 | 160 | 160 | 111 | 0 | 0 | 159 | 22 | 1 | | 12,00964 12 | 12.30528 | 12 | 18 | 19 | 166 | 136 | 117 | 166 | 160 | 111 | 0 | 0 | 159 | 22 | 1 | | 12,0094 12 18 34 17 148 127 168 164 109 0 | 12.30667 | 12 | 18 | 24 | 166 | 136 | 122 | 166 | 160 | 111 | 0 | 0 | 160 | 22 | | | 12.51068 | 12.30806 | 12 | 18 | 29 | 166 | 142 | 122 | 166 | 164 | 109 | 0 | 0 | 166 | 22 | | | 12.51068 | 12.30944 | 12 | 18 | 34 | 171 | 148 | 127 | 166 | 164 | 109 | 0 | 0 | 166 | 22 | | | 12.51921 12 | | | | | | | | | | | | | | | | | 12,3169 12 | | | | | | | | | | | | | | | | | 12.3155 | | | | | | | | | | | | | | | | | 12.31698 | | | | | | | | | | | | | | | | | 12.31976 | | | | | | | | | | | | | | | | | 12.31917 12. 198 | | | | | | | | | | | | | | | | | 12.20506 | | | | | | | | | | | | | | | | | 12.83940 | | | | | | | | | | | | | | | | | 12,83253 | | | | | | | | | | | | | | | | | 12,22472 | | | | | | | | | | | | | | | | | 12,82611 | | | | | | | | | | | | | | | | | 12.3276 12 | | | | | | | | | | | | | | | | | 12.38980 | | | ··· | | | | · ··· | | | | | | | | | | 12,3016 12 | | | | | | | | | | | | | | | | | 12.33167 | | | | | | | | | | | | | | | | | 12.33946 | | | | | | | | | | | | | | | | | 12.33454 12 20 4 172 156 135 172 164 109 0 0 164 22 12.33593 12 20 0 172 156 135 172 164 109 0 0 164 22 12.33592 12 20 14 172 156 135 172 164 109 0 0 164 22 12.33591 12 20 14 172 156 135 172 164 109 0 0 164 21 12.33691 12 20 24 172 156 135 172 164 109 0 0 164 21 12.34139 12 20 29 172 156 135 172 164 109 0 0 164 21 12 234 139 12 20 34 173 156 135 172 164 109 0 0 164 21 12 234 139 12 20 34 173 156 135 172 164 109 0 0 164 21 12 234 139 172 20 39 173 156 135 172 164 109 0 0 164 21 12 234 139 12 20 44 173 156 135 172 164 109 0 0 164 21 12 234 139 12 20 44 173 156 135 172 164 109 0 0 164 20 12 234 139 12 20 49 173 157 135 169 164 109 0 0 164 20 12 234 139 12 20 54 173 157 135 169 164 109 0 0 164 20 12 234 139 12 20 54 173 157 135 169 164 109 0 0 164 20 12 234 132 12 20 54 173 157 135 169 164 108 0 0
164 20 12 234 12 20 54 173 157 135 169 164 108 0 0 164 20 12 234 12 20 24 41 73 157 135 169 164 108 0 0 164 20 12 234 232 22 24 41 773 157 135 169 164 108 0 0 164 20 12 234 234 234 234 234 234 234 23 | | | | | | | | | | | | | | | | | 12,33953 12 20 9 172 156 135 172 164 109 0 0 164 22 12,33722 12 20 14 172 156 135 172 164 109 0 0 164 22 12 12,33981 12 20 19 172 156 135 172 164 109 0 0 164 21 12 12,34139 12 20 29 172 156 135 172 164 109 0 0 164 21 12 12,34139 12 20 29 172 156 135 172 164 109 0 0 164 21 12 12,34139 12 20 39 173 156 135 172 164 109 0 0 164 21 12 12,34179 12 20 39 173 156 135 172 164 109 0 0 164 21 12 12,34171 12 20 39 173 156 135 172 164 109 0 0 164 21 12 12,3456 12 20 44 173 156 135 172 164 109 0 0 164 21 12 12,3456 12 20 44 173 156 135 169 164 109 0 0 164 20 12 12,3456 12 20 49 173 157 135 169 164 109 0 0 164 20 12 12,34531 12 20 49 173 157 135 169 164 109 0 0 164 20 12 12,34531 12 20 59 173 157 135 169 164 109 0 0 164 20 12 12,34531 12 20 59 173 157 135 169 164 109 0 0 164 20 12 13 13 13 13 13 13 13 13 13 13 | | | | | | | 135 | | 164 | 109 | 0 | 0 | 164 | 22 | | | 12,339583 12 20 9 172 156 135 172 164 109 0 0 164 22 12,33972 12 20 14 172 156 135 172 164 109 0 0 164 22 12,33861 12 20 19 172 156 135 172 164 109 0 0 164 21 12,3413 12 20 24 172 156 135 172 164 109 0 0 164 21 12,3413 12 20 29 172 156 135 172 164 109 0 0 164 21 12,3413 12 20 29 172 156 135 172 164 109 0 0 164 21 12,3413 12 20 34 173 156 135 172 164 109 0 0 164 21 12,3417 12 20 39 173 156 135 172 164 109 0 0 164 21 12,3456 12 20 44 173 156 135 169 164 109 0 0 164 20 12,34584 12 20 49 173 157 135 169 164 109 0 0 164 20 12,34584 12 20 49 173 157 135 169 164 109 0 0 164 20 12,34581 12 20 49 173 157 135 169 164 109 0 0 164 20 12,34531 12 20 54 173 157 135 169 164 109 0 0 164 20 12,34531 12 21 24 27 34 37 35 36 36 36 36 36 36 36 | 12.33444 | 12 | 20 | 4 | 172 | 156 | 135 | 172 | 164 | 109 | 0 | . 0 | 164 | 22 | | | 12.33722 | | | | 9 | | | | | | | | | | | | | 12.38986 | 12.33722 | 12 | 20 | 14 | 172 | 156 | 135 | | 164 | 109 | | | 164 | | | | 12,344 12 | | | | | | | | | | | | | | | | | 12,34978 12 20 29 172 156 135 172 164 109 0 0 164 21 | | | | | | | | | | | | | | | | | 12,34278 | | | | | | | | | | | | | | | | | 12.34417 | | | | | | | | | | | | | | | | | 12.34556 12 20 44 173 156 135 169 164 109 0 0 164 20 12.34894 12 20 54 173 157 135 169 164 109 0 0 164 20 12.34933 12 20 54 173 157 135 169 164 109 0 0 164 20 12.34911 12 21 4 173 157 135 169 164 109 0 0 164 20 12.3511 12 21 4 173 157 135 169 164 109 0 0 164 19 12.3525 12 21 9 173 157 135 169 164 109 0 0 164 19 12.3525 12 21 9 173 157 135 169 164 109 0 0 164 19 12.3525 12 11 14 173 157 135 169 164 109 0 0 164 19 12.3525 12 12 19 173 157 135 169 164 109 0 0 164 19 12.3525 12 12 19 173 157 135 169 164 109 0 0 164 19 12.3525 12 12 19 173 157 135 169 164 109 0 0 164 19 12.3526 12 21 24 173 157 135 169 164 108 0 0 164 19 12.3526 12 21 24 173 157 135 169 164 108 0 0 164 19 12.3526 12 21 24 173 157 135 169 164 108 0 0 164 18 12.3526 12 21 34 172 157 135 169 164 108 0 0 164 18 12.3526 12 21 34 172 157 135 169 164 108 0 0 164 18 12.3526 12 21 34 172 157 135 169 164 108 0 0 164 18 12.3526 12 21 44 172 157 135 169 164 108 0 0 164 18 12.3526 12 21 44 172 157 135 169 164 108 0 0 164 18 12.3526 12 12 14 172 157 135 169 164 108 0 0 164 18 12.3526 12 13 47 172 157 135 169 164 108 0 0 164 18 12.3526 12 13 47 172 157 135 171 164 108 0 0 164 18 12.3526 12 13 47 172 157 135 171 164 108 0 0 164 18 12.3526 12 21 47 172 157 134 171 165 109 0 0 164 20 12.3526 12 22 34 172 157 134 171 165 109 0 0 164 2 | | | | | | | | | | | | | | | 10 | | 12.34694 | | | | | | | | | | | | | | | 12 | | 12.34893 | | | | | | | | | | | | | | | | | 12.34972 | | | | | | | | | | | | | | | 1- | | 12.3511 12 | | | | | | | | | | | | | | | 1! | | 12.3525 12 | | | | | | | | | | | | | | | 18 | | 12.38589 12 | | | | | | | | | | | | | | | 19 | | 12,35528 12 21 19 173 157 135 169 164 108 0 0 164 19 12,35600 12 21 24 173 157 135 169 164 108 0 0 0 164 18 12,35601 12 21 34 172 157 135 169 164 108 0 0 164 18 12,35603 12 21 39 172 157 135 169 164 108 0 0 164 18 12,36083 12 21 39 172 157 135 169 164 108 0 0 164 18 12,3622 12 21 44 172 157 135 169 164 108 0 0 164 18 12,3622 12 21 49 172 157 135 171 164 108 0 0 164 20 12,365 12 21 49 172 157 135 171 164 108 0 0 164 20 12,365 12 21 54 172 157 135 171 164 108 0 0 164 20 12,365 12 21 59 172 157 134 171 165 109 0 0 164 21 12,36778 12 22 4 172 157 134 171 165 109 0 0 164 21 12,36778 12 22 9 172 157 134 171 165 109 0 0 164 22 12,3793 12 22 14 172 157 134 171 165 109 0 0 164 22 12,3793 12 22 24 172 157 134 171 165 109 0 0 164 22 12,3793 12 22 24 172 157 134 171 165 109 0 0 164 22 12,3772 12 22 29 172 157 134 171 165 109 0 0 164 22 12,3773 12 22 24 172 157 134 171 165 109 0 0 164 22 12,3793 12 22 24 172 157 134 171 165 109 0 0 164 22 12,3793 12 22 24 172 157 134 171 165 109 0 0 164 22 12,3793 12 22 24 172 157 134 171 165 109 0 0 164 22 12,3793 12 22 24 172 157 134 171 165 109 0 0 166 22 12,3794 12 22 29 172 157 134 171 165 109 0 0 166 22 12,3792 12 22 38 171 157 134 171 165 109 0 0 0 165 22 12,3793 12 22 23 371 157 134 171 165 109 0 0 0 165 22 12,3866 12 23 38 171 158 134 173 167 109 0 | | | | | | | | | | | | | | | 2: | | 12.35667 12 21 24 173 157 135 169 164 108 0 0 164 19 12.35944 12 21 34 172 157 135 169 164 108 0 0 164 18 12.35943 12 21 34 172 157 135 169 164 108 0 0 164 18 12.36222 12 21 44 172 157 135 169 164 108 0 0 164 18 12.36361 12 21 44 172 157 135 169 164 108 0 0 164 19 12.36361 12 21 49 172 157 135 171 164 108 0 0 164 20 12.36536 12 21 59 172 157 135 171 164 108 0 0 164 20 12.36539 12 21 59 172 157 135 171 165 108 0 0 164 20 12.36539 12 21 59 172 157 134 171 165 109 0 0 164 21 12.36978 12 22 4 172 157 134 171 165 109 0 0 164 21 12.36978 12 22 14 172 157 134 171 165 109 0 0 164 22 12.37056 12 22 14 172 157 134 171 165 109 0 0 164 22 12.37194 12 22 19 172 157 134 171 165 109 0 0 164 22 12.37333 12 22 24 172 157 134 171 165 109 0 0 164 22 12.37333 12 22 24 172 157 134 171 165 109 0 0 164 22 12.37472 12 22 29 172 157 134 171 165 109 0 0 164 22 12.37581 12 22 33 171 157 134 171 165 109 0 0 165 22 12.37681 12 22 38 171 157 134 171 165 109 0 0 165 22 12.38069 12 22 33 171 157 134 171 165 109 0 0 165 22 12.38069 12 22 43 171 157 134 171 165 109 0 0 165 22 12.38069 12 23 38 171 157 134 171 165 109 0 0 165 22 12.38060 12 23 38 171 158 134 173 165 109 0 0 165 22 12.38060 12 23 38 171 158 134 173 167 109 0 0 165 22 12.38060 12 23 38 171 158 134 173 167 109 0 0 165 22 12.38060 12 23 36 171 158 134 173 167 | | | | | | | | | | | | | | | 23 | | 12,35500 12 | | | | | | | | | | | | | | | 2 | | 12,39544 12 | | | | | | | | | | | | | | | 2 | | 12.36083 | | | | | | | | | | | | | | | 29 | | 12.36222 12 | | | | | | | | | | | | | | | 2 | | 12.36561 12 | | | | | | | 135 | 169 | 164 | 108 | 0 | 0 | 164 | 18 | 2 | | 12.366 | 12.36222 | 12 | 21 | 44 | 172 | 157 | 135 | 171 | 164 | 108 | 0 | 0 | 164 | 19 | 2 | | 12.36639 12 | 12.36361 | 12 | 21 | 49 | 172 | 157 | 135 | 171 | 164 | 108 | 0 | 0 | 164 | 20 | 19 | | 12.36778 | 12.365 | 12 | 21 | 54 | 172 | 157 | 135 | 171 | 164 | 108 | 0 | 0 | 164 | 20 | 1 | | 12.36917 | 12.36639 | 12 | 21 | 59 | 172 | 157 | 134 | 171 | 165 | 109 | 0 | 0 | 164 | 21, | | | 12.36917 12 22 9 172 157 134 171 165 109 0 0 164 22 12.37056 12 22 14 172 157 134 171 165 109 0 0 0 164 22 12.37944 12 22 19 172 157 134 171 165 109 0 0 0 164 22 12.37333 12 22 24 172 157 134 171 165 109 0 0 0 164 22 12.37333 12 22 29 172 157 134 171 165 109 0 0 0 164 22 12.37472 12 22 29 172 157 134 171 165 109 0 0 0 165 22 12.37583 12 22 33 171 157 134 171 165 109 0 0 0 165 22 12.37722 12 22 38 171 157 134 171 165 109 0 0 0 165 22 12.3702 12 22 38 171 157 134 171 165 109 0 0 0 165 22 12.38028 12 22 49 171 158 134 173 165 109 0 0 0 165 22 12.38068 12 22 54 171 158 134 173 165 109 0 0 0 165 22 12.38444 12 23 4 171 158 134 173 167 109 0 0 0 165 22 12.38444 12 23 4 171 158 134 173 167 109 0 0 0 165 22 12.38636 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.38636 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.38633 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.38639 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.38636 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.38636 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.38636 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.38636 12 23 38 171 158 134 173 167 109 0 0 0 165 22 12.39667 12 | 12.36778 | 12 | 22 | 4 | 172 | 157 | 134 | 171 | 165 | 109 | 0 | 0 | 164 | 21, | | | 12.37056 12 22 14 172 157 134 171 165 109 0 0 164 22 12.37194 12 22 19 172 157 134 171 165 109 0 0 0 164 22 12.37333 12 22 24 172 157 134 171 165 109 0 0 0 164 22 12.37472 12 22 29 172 157 134 171 165 109 0 0 0 165 22 12.37583 12 22 33 171 157 134 171 165 109 0 0 0 165 22 12.37681 12 22 33 171 157 134 171 165 109 0 0 0 165 22 12.37681 12 22 43 171 157 134 173 165 109 0 0 0 165 22 12.37681 12 22 43 171 157 134 173 165 109 0 0 0 165 22 12.38602 12 22 49 171 158 134 173 165 109 0 0 0 165 22 12.38506 12 22 59 171 158 134 173 165 109 0 0 0 165 22 12.38506 12 22 59 171 158 134 173 167 109 0 0 0 165 22 12.38644 12 23 4 171 158 134 173 167 109 0 0 0 165 22 12.38694 12 23 13 171 158 134 173 167 109 0 0 0 165 22 12.38694 12 23 13 171 158 134 173 167 109 0 0 0 165 22 12.38693 12 23 13 171 158 134 173 167 109 0 0 0 165 22 12.38693 12 23 33 171 158 134 173 167 109 0 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 0 165 22 12.39956 12 23 33 172 158 134 173 167 109 0 0 0 165 22 12.39528 12 23 34 372 158 134 173 167 109 0 0 0 165 22 12.399667 12 23 48 172 158 134 172 164 109 0 0 0 165 22 12.399667 12 23 48 172 158 134 172 164 109 0 0 0 165 22 12.40083 | 12.36917 | 12 | 22 | 9 | 172 | 157 | 134 | 171 | 165 | 109 | 0 | 0 | 164 | | | | 12.37194 | 12.37056 | 12 | 22 | 14 | 172 | 157 | 134 | 171 | 165 | 109 | 0 | 0 | | | | | 12.37333 | 12.37194 | 12 | 22 | 19 | 172 | 157 | 134 | 171 | | | 0 | | 164 | | | | 12.37472 | | | | | | | | | | | | | | | | | 12.37583 12 22 33 171 157 134 171 165 109 0 0
165 22 12.37722 12 22 38 171 157 134 171 165 109 0 0 165 22 12.37861 12 22 43 171 157 134 173 165 109 0 0 165 22 12.38028 12 22 49 171 158 134 173 165 109 0 0 165 22 12.38167 12 22 54 171 158 134 173 165 109 0 0 165 22 12.38368 12 22 59 171 158 134 173 165 109 0 0 165 22 12.38444 12 23 4 171 158 134 173 167 109 0 0 165 22 12.38566 12 23 8 171 158 134 173 167 109 0 0 165 22 12.38694 12 23 13 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.38989 12 23 28 171 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 35 172 158 134 172 164 109 0 0 165 22 12.39366 12 23 48 172 158 134 172 164 109 0 0 165 22 12.39366 12 23 43 172 158 134 172 164 109 0 0 165 22 12.39366 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40081 12 24 13 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 18 172 158 134 172 164 109 0 0 0 165 22 12.4056 12 24 18 172 158 134 172 16 | | | | | | 4 579 | | | 405 | | | | | | | | 12.37722 | | | | | | | | | | | | | | | | | 12.37861 12 22 43 171 157 134 173 165 109 0 0 165 22 12.38028 12 22 49 171 158 134 173 165 109 0 0 0 165 22 12.38167 12 22 54 171 158 134 173 165 109 0 0 0 165 22 12.38306 12 22 59 171 158 134 173 167 109 0 0 0 165 22 12.38444 12 23 4 171 158 134 173 167 109 0 0 0 165 22 12.38556 12 23 8 171 158 134 173 167 109 0 0 0 165 22 12.38594 12 23 13 171 158 134 173 167 109 0 0 0 165 22 12.38958 12 23 18 171 158 134 173 167 109 0 0 0 165 22 12.38959 12 23 18 171 158 134 173 167 109 0 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 0 165 22 12.3925 12 23 33 172 158 134 173 167 109 0 0 0 165 22 12.3958 12 23 38 172 158 134 173 167 109 0 0 0 165 22 12.39506 12 23 38 172 158 134 173 167 109 0 0 0 165 22 12.3958 12 23 38 172 158 134 173 167 109 0 0 0 165 22 12.39506 12 23 34 172 158 134 173 167 109 0 0 0 165 22 12.39667 12 23 48 172 158 134 172 164 109 0 0 0 165 22 12.39667 12 23 48 172 158 134 172 164 109 0 0 0 165 22 12.39668 12 24 3 172 158 134 172 164 109 0 0 0 165 22 12.39669 12 24 3 172 158 134 172 164 109 0 0 0 165 22 12.40020 12 24 3 172 158 134 172 164 109 0 0 0 165 22 12.40030 12 24 8 172 158 134 172 164 109 0 0 0 165 22 12.40361 12 24 18 172 158 134 172 164 109 0 0 0 165 22 12.40030 12 24 28 172 158 134 172 164 | | | | | | | | | | | | | | | | | 12.38028 12 22 49 171 158 134 173 165 109 0 0 165 22 12.38167 12 22 54 171 158 134 173 165 109 0 0 0 165 22 12.38306 12 22 59 171 158 134 173 167 109 0 0 0 165 22 12.38444 12 23 4 171 158 134 173 167 109 0 0 0 165 22 12.38556 12 23 8 171 158 134 173 167 109 0 0 0 165 22 12.38694 12 23 13 171 158 134 173 167 109 0 0 0 165 22 12.38693 12 23 18 171 158 134 173 167 109 0 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 0 165 22 12.3925 12 23 33 172 158 134 173 167 109 0 0 0 165 22 12.3928 12 23 38 172 158 134 173 167 109 0 0 0 165 22 12.3928 12 23 38 172 158 134 173 167 109 0 0 0 165 22 12.39567 12 23 34 172 158 134 173 167 109 0 0 0 165 22 12.39667 12 23 48 172 158 134 173 167 109 0 0 0 165 22 12.39906 12 23 53 172 158 134 172 164 109 0 0 0 165 22 12.39906 12 23 53 172 158 134 172 164 109 0 0 0 165 22 12.39944 12 23 58 172 158 134 172 164 109 0 0 0 165 22 12.4003 12 24 3 172 158 134 172 164 109 0 0 0 165 22 12.4003 12 24 3 172 158 134 172 164 109 0 0 0 165 22 12.4003 12 24 3 172 158 134 172 164 109 0 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 0 165 22 12.4059 12 24 18 172 158 134 172 164 109 0 0 0 165 22 12.4059 12 24 28 172 158 134 172 164 109 0 0 0 165 22 12.40578 12 24 28 172 158 134 172 164 109 | | | | | | | | | | | | | | | | | 12.38167 12 22 54 171 158 134 173 165 109 0 0 165 22 12.38306 12 22 59 171 158 134 173 167 109 0 0 165 22 12.38556 12 23 8 171 158 134 173 167 109 0 0 165 22 12.38594 12 23 13 171 158 134 173 167 109 0 0 165 22 12.38833 12 23 18 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.39111 12 23 28 171 158 134 173 | | | | | | | | | | | | | | | | | 12.38306 12 22 59 171 158 134 173 167 109 0 0 165 22 12.38444 12 23 4 171 158 134 173 167 109 0 0 165 22 12.38556 12 23 8 171 158 134 173 167 109 0 0 165 22 12.385694 12 23 13 171 158 134 173 167 109 0 0 0 165 22 12.38533 12 23 18 171 158 134 173 167 109 0 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 0 165 22 12.3925 12 23 33 172 158 134 173 167 109 0 0 0 165 22 12.39399 12 23 38 172 158 134 173 167 109 0 0 0 165 22 12.39528 12 23 38 172 158 134 173 167 109 0 0 0 165 22 12.39567 12 23 48 172 158 134 172 164 109 0 0 0 165 22 12.39806 12 23 48 172 158 134 172 164 109 0 0 0 165 22 12.39944 12 23 58 172 158 134 172 164 109 0 0 0 165 22 12.400303 12 24 3 172 158 134 172 164 109 0 0 0 165 22 12.40361 12 24 8 172 158 134 172 164 109 0 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 0 165 22 12.40539 12 24 23 172 158 134 172 164 109 0 0 0 165 22 12.405039 12 24 23 172 158 134 172 164 109 0 0 0 165 22 12.40539 12 24 23 172 158 134 172 164 109 0 0 0 165 22 12.40639 12 24 23 172 158 134 172 164 109 0 0 0 165 22 12.40778 12 24 28 172 158 134 172 164 109 0 0 0 165 22 12.40778 12 24 28 172 158 134 172 164 109 0 0 0 165 22 12.40778 12 24 28 172 158 134 172 164 109 0 0 0 166 22 | | | | | | | | | | | | | | | | | 12.38444 12 23 4 171 158 134 173 167 109 0 0 165 22 12.38556 12 23 8 171 158 134 173 167 109 0 0 165 22 12.38694 12 23 13 171 158 134 173 167 109 0 0 165 22 12.38933 12 23 18 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 165 22 12.39125 12 23 38 172 158 134 173 | | | | | | | | | | | | | | | | | 12.39556 12 23 8 171 158 134 173 167 109 0 0 165 22 12.38694 12 23 13 171 158 134 173 167 109 0 0 165 22 12.38833 12 23 18 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 165 22 12.3925 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 172 | | | | | | | | | | | | | | | | | 12.38694 12 23 13 171 158 134 173 167 109 0 0 165 22 12.38833 12 23 18 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 165 22 12.3925 12 23 33 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.393687 12 23 43 172 158 134 172 | | | | | | | | | | | | | | | | | 12.38833 12 23 18 171 158 134 173 167 109 0 0 165 22 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 165 22 12.3925 12 23 33 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39528 12 23 43 172 158 134 172 164 109 0 0 165 22 12.39567 12 23 48 172 158 134 172 | | | | | | | | | | | | | | | | | 12.38972 12 23 23 171 158 134 173 167 109 0 0 165 22 12.39111 12 23 28 171 158 134 173 167 109 0 0 165 22 12.3925 12 23 33 172 158 134 173 167 109 0 0 165 22 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39528 12 23 43 172 158 134 172 164 109 0 0 165 22 12.39567 12 23 48 172 158 134 172 164 109 0 0 165 22 12.39806 12 23 53 172 158 134 172 | | | | | | | | | | | | | | | | | 12.39111 12 23 28 171 158 134 173 167 109 0 0 165 22 12.3925 12 23 33 172 158 134 173 167 109 0 0 165 22 12.39369 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39528 12 23 43 172 158 134 172 164 109 0 0 165 22 12.39667 12 23 48 172 158 134 172 164 109 0 0 165 22 12.39806 12 23 53 172 158 134 172 164 109 0 0 165 22 12.39944 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 | | | | | | | | | | | | | | | . (| | 12.3925 12 23 33 172 158 134 173 167 109 0 0 165 22 12.39369 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39528 12 23 43 172 158 134 172 164 109 0 0 165 22 12.39667 12 23 48 172 158 134 172 164 109 0 0 165 22 12.39906 12 23 53 172 158 134 172 164 109 0 0 165 22 12.39944 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 24 3 172 158 134 172 | | | | | | | | | | | | | | | | | 12.39389 12 23 38 172 158 134 173 167 109 0 0 165 22 12.39528 12 23 43 172 158 134 172 164 109 0 0 165 22 12.39667 12 23 48 172 158 134 172 164 109 0 0 165 22 12.39806 12 23 53 172 158 134 172 164 109 0 0 165 22 12.39944 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40222 12 24 8 172 158 134 172 | | | | | | | | | | | | | | | | | 12.39528 12 23 43 172 158 134 172 164 109 0 0 165 22 12.39667 12 23 48 172 158 134 172 164 109 0 0 165 22 12.39806 12 23 53 172 158 134 172 164 109 0 0 165 22 12.39844 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40222 12 24 8 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 165 22 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.405 12 < | | | | | | | | | | | | | | | | | 12.39667 12 23 48 172 158 134 172 164 109 0 0 165 22 12.39806 12 23 53 172 158 134 172 164 109 0 0 165 22 12.39944 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40222 12 24 8 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 165 22 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40639 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40778 12 | | | | | | | | | | | | | | | | | 12.39806 12 23 53 172 158 134 172 164 109 0 0 165 22 12.39944 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40222 12 24 8 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 165 22 12.405 12 24 18
172 158 134 172 164 109 0 0 165 22 12.40639 12 24 18 172 158 134 172 < | | | | | | | 134 | | 164 | | 0 | 0 | 165 | | (| | 12.39944 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40222 12 24 8 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 165 22 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40639 12 24 23 172 158 134 172 164 109 0 0 165 22 12.40778 12 24 28 172 158 134 172 164 109 0 0 165 22 | 12.39667 | | 23 | 48 | 172 | 158 | 134 | 172 | 164 | 109 | 0 | 0 | 165 | 22 | (| | 12.39944 12 23 58 172 158 134 172 164 109 0 0 165 22 12.40083 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40222 12 24 8 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 165 22 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40639 12 24 23 172 158 134 172 164 109 0 0 165 22 12.40778 12 24 28 172 158 134 172 164 109 0 0 165 22 | 12.39806 | 12 | 23 | 53 | 172 | 158 | 134 | 172 | 164 | . 109 | 0 | 0 | 165 | 22 | | | 12.40083 12 24 3 172 158 134 172 164 109 0 0 165 22 12.40222 12 24 8 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 165 22 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40639 12 24 23 172 158 134 172 164 109 0 0 165 22 12.40778 12 24 28 172 158 134 172 167 109 0 0 166 22 | | | | | | | | | | | 0 | | | | | | 12.40222 12 24 8 172 158 134 172 164 109 0 0 165 22 12.40361 12 24 13 172 158 134 172 164 109 0 0 165 22 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40639 12 24 23 172 158 134 172 164 109 0 0 165 22 12.40778 12 24 28 172 158 134 172 167 109 0 0 166 22 | | | | | | | | | | | | | | | | | 12.40361 12 24 13 172 158 134 172 164 109 • 0 0 165 22 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40639 12 24 23 172 158 134 172 164 109 0 0 165 22 12.40778 12 24 28 172 158 134 172 167 109 0 0 166 22 | | | | | | | | | | | | | | | | | 12.405 12 24 18 172 158 134 172 164 109 0 0 165 22 12.40639 12 24 23 172 158 134 172 164 109 0 0 165 22 12.40778 12 24 28 172 158 134 172 167 109 0 0 166 22 | | | | | | | | | | | | | | | | | 12.40639 12 24 23 172 158 134 172 164 109 0 0 165 22 12.40778 12 24 28 172 158 134 172 167 109 0 0 166 22 | | | | | | | | | | | | | | | | | 12.40778 12 24 28 172 158 134 172 167 109 0 0 166 22 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 14.70110 | | | | | | | | | | | | | | | Flow meter calibration data. | 12.41056 | 12 | 24 | 38 | 172 | 158 | 134 | 172 | 167 | 109 | 0 | 0 | 166 | 22 | | |----------|----|-----|-----|-----|-----|------|-----|------|-------|------------------|--------------------|-----|-------------------|---------| | 12.41194 | 12 | 24 | 43 | 172 | 158 | 134 | 174 | 167 | 109 | 00 | 0 | 166 | 22 | 1 | | 12.41333 | 12 | 24 | 48 | 172 | 159 | 1341 | 174 | 167 | 109 | 0 | 0 | 166 | _ 21 | _ 3 | | 12.41472 | 12 | 24' | 53 | 172 | 159 | 134 | 174 | 167 | 109 | 0 | 0 | 166 | 21 | | | 12.41611 | 12 | 24 | 58 | 172 | 159 | 137 | 174 | 167 | 108 | 0 | 0 | 166 | 21 | 6 | | 12.4175 | 12 | 25 | 3 | 172 | 159 | 137 | 174 | 167 | 108 | 0 | 0 | 166 | 21 | _ ; | | 12.41889 | 12 | 25 | 8 | 172 | 159 | 137 | 174 | 167 | 108 | 0 | 0 | 166 | 20 | 10 | | 12.42028 | 12 | 25 | 13 | 172 | 159 | 137 | 174 | 167 | 108 | 01 | 0 | 166 | 20 | 1 | | 12.42167 | 12 | 25 | 18 | 172 | 159 | 137 | 174 | 167 | 108 | 0 | 0 | 166 | 20 | -
14 | | 12.42306 | 12 | 25 | 23 | 172 | 159 | 137 | 174 | 167 | 108 | 0 | 0 | 166 | 20 | 16 | | 12.42444 | 12 | 25 | 28 | 172 | 159 | 137 | 174 | 167 | 108 | <u>o</u> | 0 | 166 | 20 | 18 | | 12.42583 | 12 | 25 | 33 | 174 | 159 | 137 | 174 | 167 | 108 | - 😽 | 0 | 166 | 19 | 20 | | 12.42722 | 12 | 25 | 38 | 174 | 159 | 137 | 174 | 167 | 108 | 0; | . 0 | 166 | 19 | 22 | | 12.42861 | 12 | 25 | 43 | 174 | 159 | 137 | 173 | 167 | 108 | 0 ; | 0 | 166 | | 24 | | | | | | | | | | | | | | | - 19 _. | | | 12.43 | 12 | 25 | 48. | 174 | 159 | 137 | 173 | 167 | . 108 | 0 | 0 | 166 | _ 19. | 20 | | 12.43139 | 12 | 25 | 53 | 174 | 159 | 137 | 173 | 167 | 108 | <u> </u> | 0 | 166 | 18, | 28 | | 12.43278 | 12 | 25 | 58 | 174 | 159 | 137 | 173 | 167 | 108 | 0 | 0 | 166 | 18 | 29 | | 12.43417 | 12 | 26 | 3 | 174 | 159 | 138 | 173 | 167 | 108 | 0 | 0 | 166 | 18 | 30 | | 12.43556 | 12 | 26 | 8 | 174 | 159 | 138 | 173 | 167 | 108 | 0 | 0 | 166 | 18. | 3 | | 12.43694 | 12 | 26 | 13 | 174 | 159 | 138 | 173 | 167 | 108' | 0 | 0 | 166 | 18 | 3. | | 12.43833 | 12 | 26 | 18 | 174 | 159 | 138 | 173 | 167 | 108 | 0 | 0 | 166 | 18 | 32 | | 12.43972 | 12 | 26 | 23 | 174 | 159 | 138 | 173 | 167 | 108 | 0 | 0 | 166 | 18 | 30 | | 12.44111 | 12 | 26 | 28 | 174 | 159 | 138 | 173 | 164 | 108 | 0, | 0 | 166 | 19 | 2 | | 12.4425 | 12 | 26 | 33 | 174 | 159 | 138 | 173 | 164 | 108 | 0′ | 0 | 164 | 19 | 19 | | 12.44389 | 12 | 26 | 38 | 173 | 159 | 138 | 173 | 167 | 108 | | <u>-</u> | 164 | 20 | 1 | | 12.44528 | 12 | 26 | 43, | 173 | 159 | 138 | 172 | 167 | 108 | - 0 | · · | 164 | 21 | - 7 | | 12.44667 | 12 | 26 | 48 | 173 | 158 | 138 | 172 | 167 | 108 | | 0 | 164 | 21 | | | 12,44806 | 12 | 26 | 53 | 173 | 158 | 138 | 172 | 163 | 108 | | 0 | 164 | 22 | | | 12.44944 | 12 | 26 | 58 | 173 | 158 | 138 | 172 | 163 | 109 | - 0 - | 0 | 164 | 22 | - | | 12.45083 | 12 | 27 | 3 | 173 | 158 | 134 | 172 | 163 | 109 | | . 0 | 164 | 22 | | | 12.45222 | 12 | 27 | 8 | 173 | 158 | 134 | 172 | 166 | 109 | 0 | o · | 164 | 22 | - | | 12.45361 | 12 | 27 | 13 | 173 | 158 | 134 | 172 | 166 | 109 | | 0 | 164 | 22 | | | 12.45528 | 12 | | 19 | | | | | | | | | | | | | | | 27 | | 173 | 158 | 134 | 172 | 166 | 109 | 0. | 0 | 164 | 22. | - | | 12.45667 | 12 | 27 | 24 | 173 | 158 | 134 | 172 | 166 | 109 | 0 | 0_ | 169 | 22 | | | 12.45806 | 12 | 27 | 29 | 181 | 158 | 134 | 187 | 199 | 103 | 0 | 0 | 199 | 22 | 1 | | 12.45944 | 12 | 27 | 34 | 195 | 164 | 140 | 195 | 199 | 100 | 0 | 0. | 199 | 22 | 1 | | 12.46083 | 12 | 27 | 39 | 195 | 170 | 140 | 195 | 199 | 99 | 0 | 0 | 199 | 22 | | | 12.46222 | 12 | 27 | 44 | 202 | 170 | 146 | 202 | 199 | 98! | 0 | _ 0. | 199 | 22 | 1 | | 12.46361 | 12 | 27 | 49: | 202 | 176 | 151 | 202 | 199 | 98 | 0 | 0 | 199 | 22 | 1 | | 12.465 | 12 | 27 | 54 | 202 | 176 | 151 | 202 | 199 | 98 | 0 | 0 | 198 | 22 | C | | 12.46639 | 12 | 27 | 59 | 202 | 181 | 151 | 208 | 211 | 95 | 0 | 0 | 209 | 22 | C | | 12.46778 | 12 | 28' | 4 | 209 | 181 | 157 | 208 | 211 | 94 | 0 | 0 | 209 | 22 | | | 12.46917 | 12 | 28 | 9 | 209 | 188 | 157 | 208 | 211 | 93 | 0 | 0 | 209 | 22 | (| | 12.47056 | 12 | 28 | 14 | 215 | 188 | 157 | 215 | 211 | 93 | 0 | 0 | 209 | 22 | . (| | 12.47194 | 12 | 28 | 19 | 215 | 193 | 162 | 215 | 211 | 93 | 0 | 0 | 209 | 22 | . (| | 12.47333 | 12 | 28 | 24 | 215 | 193 | 162 | 215 | 211 | 93 | 0 | 0 | 209 | 22 | - (| | 12.47472 | 12 | 28 | 29 | 215 | 193 | 162 | 215 | 208 | 93 | 0 | 0 · · - | 210 | 22 | - 3 | | 12.47611 | 12 | 28 | 34 | 215 | 193 | 162 | 215 | 216 | 91, | 0; | 0 | 216 | 22 | ì | | 12,4775 | 12 | 28 | 39 | 220 | 198 | 162 | 220 | 216 | 91 | 0 | | 216 | 22 | | | 12.47889 | 12 | 28 | 44 | 220 | 198 | 168 | 220 | 216 | 90 | 0 | | | | , | | 12.48028 | 12 | 28 | 49 | 220 | 198 | | | | | | | 216 | 22. |) | | | | | | | | 168 | 220 | 216 | 90 | 0′ | 0, | 216 | 22. | -9 | | 12.48167 | 12 | 281 | 54, | 220 | 198 | 168 | 220 | 216 | 90 | 0 | ō; | 216 | 22 | | | 12.48306 | 12 | 28 | 59 | 220 | 198 | 168 | 220 | 216 | 90 | 0 | . 0 | 216 | 22 | (| | 12.48444 | 12 | 29 | 4 | 220 | 198 | 168 | 220 | 216 | 90 | 0 | 0 | 216 | 22 | (| | 12.48583 | 12 | 29 | 9 | 220 | 203 | 168 | 220 | 216 | 90! | 0 | 0 | 216 | 22 | (| | 12.48722 | 12 | 29 | 14 | 220 | 203 | 173 | 220 | 216 | 90 | 0 | _ 0 | 216 | 22 | (| | 12.48861 | 12 | 29 | 19 | 220 | 203 | 173 | 220 | 216 | 90 | 0 | 0 | 216 | 22 | (| | 12.49 | 12 | 29 | 24 | 220 | 203 | 173 | 220 | 213 | 90 | 0 | 0 | 216 | 22 | (| | 12.49139 | 12 | 29 | 29 | 220 | 203 | 173 | 220 | 213 | 90 | 0 | 0 | 216 | 22 | | | 12.49278 | 12 | 29 | 34 | 220 | 203 | 173 | 220 | 213 | 90 | 0 | 0 | 215 | 22 | | | 12.49417 | 12 | 29 | 39 | 223 | 203 | 173 | 223 | 213 | 90 | 0 | 0 | 215 | 22 | Ċ | | 12.49556 | 12 | 29 | 44 | 223 | 203 | 173 | 223 | 213 | 90 | 0 | ō | 215 | 22 | | | 12.49694 | 12 | 29 | 49 | 223 | 203 | 173 | 223 | 216 | 90 | 0 | 0 | 215 | 22 | (| | 12.49833 | 12 | 29 | 54 | 223 | 203 | 173 | 223 | 216 | 90 | | 0 | 215 | 22. | Ò | | 12.49972 | 12 | 29 | 59 | 223 | 203 | 173 | 223 | 216 | 89 | 0 | 6 | 215 | 22 | Č | | 12.50111 | 12 | 30 | 4 | 223 | 203 | 173 | 223 | 216 | 89 | <u> </u> | 0. | | 22.
22 | į | | 12.5025 | 12 | 30 | 9 | 223 | 203 | | | | | | | 215 | | | | 12.50389 | 12 | | | | | 173 | 223 | 216 | 89 | 0. | 0 | 215 | 22 | 9 | | 12.50528 | | 30 | 14 | 223 | 204 | 174 | 223 | 216 | 89 | 0 | 0 | 215 | 22 | | | | 12 | 30 | 19 | 223 | 204 | 174 | 223 | 216 | 89 | 0: | 0 | 215 | 22_ | (| | 12.50667 | 12 | 30 | 24 | 223 | 204 | 174 | 223 | 216 | 89 | 0 | _0 | 215 | _ 22 | (| | 12.50806 | 12 | 30 | 29 | 223 | 204 | 174 | 223 | 216 | 89 | 0 | _0 | 215 | 22 | | | 12.50944 | 12 | 30 | 34 | 223 | 204 | 174 | 223 | 216 | 89 | 0 | 0 | 214 | 22 | . (| | 12.51083 | 12 | 30 | 39 | 224 | 204 | 174 | 223 | 216 | 89 | 0 | 0 | 214 | 22 | - (| | 12.51222 | 12 | 30 | 44 | 224 | 204 | 174 | 223 | 216 | 89 | 0 | 0 | 214 | 22 | (| | 12.51361 | 12 | 30 | 49 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | 0 | 214 | 22 | i | | 12.515 | 12 | 30 | 54 | 224 | 204 | 174 | 223 | 215 | 89 | 0. | <u>o</u> , | 214 | 22 | - | | 12.51639 | 12 | 301 | 59 | 224 | 204 | 174 | 223 | 215 | e 89 | 0 | | 214 | 22 | } | | 12.51778 | 12 | | | | | | | | | | | | | | | 12.51778 | 12 | 31 | 4 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | 0 | 214 | 22 | | | | | 41 | 9 | 224 | 204 | 174 | 223 | 215) | 89 | 0 | 0. | 214 | 22 | | Flow meter calibration data. | | | | | | | ~ | | | | | | | | | |----------|-----|----|----|-----|------|-----|-----|--------------|-------------|---|-------------|-----|--------------|----| | 12.52056 | 12 | 31 | 14 | 224 |
204 | 174 | 223 | 215 | 89 | 0 | | | 22 | 0 | | 12.52194 | 12 | 31 | 19 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | | | 22 | 0 | | 12.52333 | 12 | 31 | 24 | 224 | 204 | 174 | 223 | 215 | | 0 | | | 22 | 0 | | 12.52472 | 12 | 31 | 29 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | | 214 | 22 | 0 | | 12.52611 | 12 | 31 | 34 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | | 214 | 22 | 0 | | 12.5275 | 12 | 31 | 39 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | | | 22 | 0 | | 12.52889 | 12 | 31 | 44 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | | | 22 | 1 | | 12,53028 | 12 | 31 | 49 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | 0 | | 21 | 3 | | 12.53167 | 12 | 31 | 54 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | 0 | 214 | 21 | 5 | | 12.53306 | 12 | 31 | 59 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | 0 | 214 | 21 | 7 | | 12.53444 | 12 | 32 | 4 | 224 | 204 | 174 | 223 | 215 | 89 | 0 | 0 | 214 | 20 | 9 | | 12.53583 | 12 | 32 | 9 | 224 | 203 | 174 | 223 | 215 | 89 | 0 | 0 | 214 | 20 | 11 | | 12.53694 | 12 | 32 | 13 | 224 | 203 | 173 | 223 | 215 | 89 | 0 | 0 | 214 | 20 | 13 | | 12.53833 | 12 | 32 | 18 | 224 | 203 | 173 | 223 | 215 | 89 | 0 | 0 | 214 | 19 | 15 | | 12.53972 | 12 | 32 | 23 | 224 | 203 | 173 | 223 | 215 | 89 | 0 | 0 | 214 | 19 | 17 | | 12.54111 | 12 | 32 | 28 | 224 | 203 | 173 | 223 | 215 | 89 | 0 | | | 19 | 19 | | 12.5425 | 12 | 32 | 33 | 224 | 203 | 173 | 223 | 215 | 89 | 0 | | | 19 | 22 | | 12.54389 | 12 | 32 | 38 | 222 | 203 | 173 | 222 | 215 | 89 | 0 | | | 18 | 23 | | 12.54528 | 12 | 32 | 43 | 222 | 203 | 173 | 222 | 215 | 89 | 0 | | | 18 | 26 | | 12.54667 | 12 | 32 | 48 | 222 | 203 | 173 | 222 | 215 | 89 | 0 | | | 18 | 27 | | | | 32 | 53 | 222 | 203 | 173 | 222 | 215 | 89 | 0 | | | 18 | 26 | | 12.54806 | 12 | | | | | | | | 89 | ő | | | 19 | 23 | | 12.54944 | 12 | 32 | 58 | 222 | 203 | 173 | 222 | 212 | | 0 | | | 19 | 19 | | 12.55083 | 12 | 33 | 3 | 222 | 203 | 173 | 222 | 212 | 89 | | | | | | | 12.55222 | 12 | 33 | 8 | 222 | 204 | 173 | 222 | 212 | 89 | 0 | | | 20 | | | 12.55361 | 12 | 33 | 13 | 222 | 204 | 174 | 222 | 212 | 89 | 0 | | | 20 | 11 | | 12.555 | 12 | 33 | 18 | 222 | 204 | 174 | 222 | 215 | 89 | 0 | | | 20 | | | 12.55639 | 12 | 33 | 23 | 222 | 204 | 174 | 222 | 215 | 89 | 0 | | | 21 | 2 | | 12.55778 | 12 | 33 | 28 | 222 | 204 | 174 | 222 | 215 | 89 | 0 | | | 21 | 1 | | 12.55917 | 12 | 33 | 33 | 222 | 204 | 174 | 222 | 215 | 89 | 0 | | | 21 | 1 | | 12.56056 | 12 | 33 | 38 | 223 | 204 | 174 | 224 | 215 | 89 | 0 | | | 22 | 1 | | 12.56194 | 12 | 33 | 43 | 223 | 204 | 174 | 224 | 215 | | 0 | | | 22 | 1 | | 12.56333 | 12 | 33 | 48 | 223 | 204 | 174 | 224 | 215 | 89 | 0 | | | 22 | 1 | | 12.56472 | 12 | 33 | 53 | 223 | 204 | 174 | 224 | 215 | 89 | 0 | 0 | | 22 | 1 | | 12.56611 | 12 | 33 | 58 | 223 | 204 | 174 | 224 | 215 | 89 | 0 | 0 | 214 | 22 | 1 | | 12.5675 | 12 | 34 | 3 | 223 | 204 | 174 | 224 | 215 | 89 | 0 | 0 | 214 | 22 | 1 | | 12.56889 | 12 | 34 | 8 | 223 | 203 | 174 | 224 | 215 | 89 | 0 | 0 | 214 | 22 | 1 | | 12.57028 | 12 | 34 | 13 | 223 | 203 | 172 | 224 | 212 | 89 | 0 | 0 | 214 | 22 | 1 | | 12.57167 | 12 | 34 | 18 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 214 | 21 | 1 | | 12.57306 | 12 | 34 | 23 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 214 | 21 | 3 | | 12.57444 | 12 | 34 | 28 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 214 | 21 | 5 | | 12.57583 | 12 | 34 | 33 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 215 | 21 | 7 | | 12.57722 | 12 | 34 | 38 | 223 | 203 | 172 | 224 | 215 | 89 | | 0 | 215 | 20 | 9 | | 12.57861 | 12 | 34 | 43 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 215 | 20 | 11 | | 12.58 | 12 | 34 | 48 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 215 | 20 | 14 | | 12.58139 | 12 | 34 | 53 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 215 | 19 | 15 | | 12.58278 | 12 | 34 | 58 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 215 | 19 | 18 | | 12.58417 | 12 | 35 | 3 | 223 | 203 | 172 | 224 | 215 | 89 | 0 | 0 | 215 | 19 | 20 | | 12.58556 | 12 | 35 | 8 | 223 | 204 | 172 | 224 | 215 | 89 | 0 | 0 | 215 | 19 | | | 12.58694 | 12 | 35 | 13 | 223 | 204 | 174 | 224 | 215 | 89 | 0 | | 215 | 18 | 24 | | 12.58833 | 12 | 35 | 18 | 223 | 204 | 174 | 224 | 213 | 89 | 0 | | 215 | | | | 12.58972 | 12 | 35 | 23 | 223 | 204 | 174 | 224 | 213 | 89 | 0 | | | | | | 12.59111 | 12 | 35 | 28 | 223 | 204 | 174 | 224 | 216 | 87 | 0 | | | | | | 12.5925 | 12 | 35 | 33 | 250 | 204 | 174 | 252 | 71 | 72 | 0 | | | | | | 12.59389 | 12 | 35 | 38 | 261 | 211 | 179 | 258 | 71 | 67 | 0 | | | | | | 12.59528 | 12 | 35 | 43 | 267 | 225 | 187 | 265 | 62 | | 0 | | | | | | 12.59667 | 12 | 35 | 48 | 273 | 231 | 192 | 272 | | 63 | 0 | | | | | | 12.59806 | 12 | 35 | 53 | 273 | 236 | 198 | 277 | 64 | | 0 | | | | | | 12.59944 | 12 | 35 | 58 | 273 | 236 | 198 | 277 | 61 | | 0 | | | | | | 12.60083 | 12 | 36 | 3 | 273 | 243 | 198 | 277 | 60 | | 0 | | | | | | 12.60222 | 12 | 36 | 8 | 273 | 243 | 204 | 277 | 60 | | | | | | | | | 12 | 36 | 13 | 273 | 249 | 204 | 277 | 63 | | | | | | | | 12.60361 | | | | 273 | 249 | 204 | 277 | 60 | | | | | | | | 12,605 | 12 | 36 | 18 | | | 204 | | 58 | | | | | | | | 12.60639 | 12 | 36 | 23 | 279 | 249 | | 277 | | | | | | | | | 12.60806 | 12 | 36 | 29 | 279 | 254 | 209 | 277 | 57 | | | | | | | | 12.60944 | 12 | 36 | 34 | 279 | 254 | 209 | 277 | 63 | | | | | 22 | | | 12.61083 | 121 | 36 | 39 | 279 | 254 | 209 | 277 | 57 | | | | | | | | 12.61222 | 12 | 36 | 44 | 279 | 254 | 209 | 277 | | | | | | | | | 12.61361 | 12 | 36 | 49 | 279 | 254 | 209 | 277 | 63 | | | | | | | | 12.615 | 12 | 36 | 54 | 279 | 254 | 209 | 283 | | | | | | | | | 12.61639 | 12 | 36 | 59 | 279 | 254 | 209 | 283 | | | | | | | | | 12.61778 | 12 | 37 | 4 | 279 | 254 | 209 | 283 | | | | | | | | | 12.61917 | 12 | 37 | 9 | 279 | .254 | 209 | 283 | | | | | | | | | 12.62056 | 12 | 37 | 14 | 279 | 254 | 209 | 283 | | | | | | | | | 12.62194 | 12 | 37 | 19 | 279 | 254 | 209 | 283 | 59 | 59 | | | | | | | 12.62333 | 12 | 37 | 24 | 280 | 254 | 209 | 283 | | 59 | | 0 | 59 | 22 | | | 12.62472 | 12 | 37 | 29 | 280 | 256 | 212 | 283 | , | | | 0 | 59 | 22 | | | 12.62611 | 12 | 37 | 34 | 280 | 256 | 212 | 283 | | | | 0 | 59 | 22 | 0 | | 12.6275 | 12 | 37 | 39 | 280 | 256 | 212 | 283 | | | | | | 22 | 0 | | | | 37 | 44 | 280 | 256 | 212 | | | | | 0 | | | | | 12,62889 | 12 | | | | | | | | | | | | | | Flow meter calibration data. | 2.63028 | 12 | 37 | 49 | 280 | 256 | 212 | 283 | 62 | 58 | 0 | 0 | 58 | 22 | | |----------|-----|-----|-----|-----|------|------|------|-----|----|----------------|----------------|-----|-------|---| | 2.63167 | 12 | 37 | 54 | 280 | 256 | 212 | 284 | 63 | 58 | 0 | 0 | 62 | 22 | | | 2.63306 | 12 | 37 | 59 | 280 | 256 | 212 | 284 | 59 | 58 | 0 | 0 | 62 | 22 | | | 2.63444 | 12 | 38 | 4 | 280 | 256 | 212 | 284 | 59 | 58 | 0 | 0 | 56 | 22 | | | 2.63583 | 12 | 38 | 9 | 280 | 256 | 212 | 284 | 63 | 58 | 0 | 0 | 63 | 22 | | | 2.63722 | | 38 | | | | | | | | | | | | | | | 12 | | 14 | 280 | 256 | 212 | 284 | 59 | 58 | 0 | 0 | 63 | 22 | | | 2.63861 | 12 | 38 | 19 | 280 | 256 | 212 | 284 | 64 | 58 | 0 | 0 ′ | 63 | 22 | | | 12.64 | 12 | 38 | 24 | 279 | 256 | 212 | 284 | 64 | 58 | 0 | 01 | 63 | 21 | | | 2.64139 | 12 | 38 | 29 | 279 | 256 | 212 | 284 | 58 | 58 | 0 | 0 | 57 | 21 | | | 2.64278 | 12 | 38 | 34 | 279 | 256 | 212 | 284 | 59 | 58 | 0 | 0 | 57 | 21 | | | 2.64417 | 12 | 38 | 39 | 279 | 256 | 212 | 284 | 59 | 58 | 0 | | 57 | 20 | | | 2.64556 | 12 | 38 | 44 | 279 | 256 | 212 | | 59 | | | 0 | | | | | | | | | | | | 284 | | 58 | 0 | | 57 | 20 | | | 2.64694 | 12 | 38 | 49 | 279 | 256 | 212 | 284 | 63 | 58 | 0 | O _↓ | 63_ | 20 | | | 2.64833 | 12, | 38 | 54 | 279 | 256 | 212 | 282 | 58 | 58 | 0 | 0' | 57 | 19 | | | 2.64972 | 12 | 38 | 59 | 279 | 256 | 212 | 282 | 58 | 58 | 0 | 0 | 62 | 19 | | | 2.65111 | 12 | 39 | 4 | 279 | 256 | 212 | 282 | 58 | 58 | 0 | 0 | 62 | 19 | | | 12.6525 | 12. | 39 | 9 | 279 | 256 | 212 | 282 | 58 | 58 | 0 | 0 | 57 | 18 | | | 2.65389 | 12 | 39 | 14 | 279 | 256 | 212 | 282 | 58 | 58 | 0 | 0 | 57 | 18 | | | 2.65528 | 12. | 39 | 19 | 279 | 256 | 212 | 282 | | | | | | | | | 2.65667 | 12: | 391 | | | | | | 60 | 58 | 0 | <u>o</u> | 57 | 18 | | | | | | 24 | 280 | 256 | 212 | 282 | 60 | 58 | 0 | 0 | 57 | 18 | | | 2.65806 | 12 | 39 | 29 | 280 | 256 | 211 | 282 | 60 | 58 | 0 | 0 | 57 | 19 | | | 2.65944 | 12 | 39 | 34 | 280 | 255 | 211 | 282 | 60 | 57 | 0 | 01 | 57 | 19 | | | 2.66083 | 12 | 39 | 39 | 280 | 255 | 211 | 282 | 56 | 57 | 0 | 0 | 53 | 19 | | | 2.66222. | 12 | 39 | 44 | 280 | 255 | 211 | 282 | 59 | 57 | 0 | 0 | 59 | 20 | | | 2.66333 | 12 | 39 | 48 | 280 | 255 | 211 | 282 | 62 | 57 | 0 | 0 | 59 | 20 | | | 2.66472 | 12 | 39 | 53 | 280 | 255 | 211 | 281 | 67 | 57 | 0 | 0 | 67 | 21 | | | 2.66611 | 12 | 39 | 58 | 280 | | | | | | | | | | | | | | | | | 255 | 211 | 281 | 64 | 57 | 0 | 0: | 67 | 21 | - | | 12.6675 | 12 | 40 | 3 | 280 | 255 | 211 | 281 | 56 | 57 | 0 | 0 | 60 | 21 | | | 2.66889 | 12! | 40! | 8 | 280 | 255 | 211 | 281 | 56 | 57 | 0 | 0 | 56 | 21 | | | 2.67028 | 12 | 40 | 13 | 280 | 255 | 211 | 281 | 60 | 57 | 0 | 0 | 62 | 22 | | | 2.67167 | 12 | 40 | 18 | 280 | 255 | 211 | 281 | 65 | 57 | 01 | 0 | 62 | 22 | | | 2.67306 | 12. | 40 | 23 | 280 | 255 | 211 | 281 | 61 | 57 | 0 | 0 | 62 | 22 | - | | 2.67444 | 12 | 40 | 28 | 280 | 255 | 212 | 281 | 62 | 57 | 0 | 0 | 62 | | | | 2.67611 | 12 | 40 | 34 | 280 | | | | | | | | | 22 | | | | | | | | 256 | 212 | 281 | 61 | 58 | 0 | 0 | 62 | 22. | | | 12.6775 | 12 | 40 | 39 | 280 | 256 | 212 | 281 | 61 | 58 | 0 | 0 | 62 | 22 | | | 2.67889 | 12 | 40 | 44 | 280 | 256 | 212 | 281 | 64 | 58 | 0 | 0 | 62 | 22 | | | 2.68028 | 12 | 40 | 49 | 280 | 256 | 212 | 281 | 60 | 58 | 0 | 0 | 62 | 22 | | | 2.68167 | 12 | 40 | 54 | 280 | 256 | 212 | 281 | 63 | 58 | 0 | 0 | 62 | 22 | | | 2.68306 | 12 | 40 | 59 | 280 | 256 | 212 | 281 | 60 | 58 | 0 | <u> </u> | 62 | 22 | | | 2.68444 | 12 | 41 | 4 | 280 | 256 | 212 | 281 | 67 | 58 | | | | | | | 2.68583 | 12 | 41 | 9 | | | | | | | 0 | 0' | 62 | 22 | | | | | | | 280 | 256 | 212 |
281 | 63 | 58 | 0 | 0 | 63 | 22 | | | 2.68722 | 12 | 411 | 14 | 280 | 256 | 212 | 281 | 58 | 58 | 0 | 0: | 63 | 22 | | | 2.68861 | 12 | 41' | 19 | 280 | 256 | 212 | 281 | 61 | 58 | 0 | 0 | 63 | 22 | | | 12.69 | 12 | 41 | 24 | 279 | 256 | 212 | 281 | 581 | 58 | 0 | 0 | 63 | 22 | - | | 2.69139 | 12 | 41 | 29 | 279 | 256 | 214 | 281 | 63 | 58 | 0 | 0 | 63 | 22 | - | | 2.69278 | 12 | 411 | 34 | 279 | 257 | 214 | 281 | 63 | 58 | 0 : | ·- o | 63 | 22 | | | 2.69417 | 12 | 41 | 39 | 279 | 257 | | | | | | | | | | | | | | | | | 214 | 281 | 64 | 58 | 0 | 0 | 63 | 21 | | | 2.69556 | 12 | 41 | 44 | 279 | 257 | 214 | 281 | 61 | 58 | 0 | 0 | 63 | 21 | | | 2.69694 | 12 | 41 | 49 | 279 | 257 | 214 | 281 | 61 | 58 | 0 | 0 j | 63 | 21 | | | 2.69833 | 12 | 41 | 54 | 279 | 257 | 214 | 283 | 65 | 58 | 0 | 0 | 63. | 20 | | | 2.69944 | 12 | 41 | 58: | 279 | 257 | 214 | 283 | 60 | 58 | 0 | 0 | 63 | 20 | | | 2.70083 | 12 | 42 | 3 | 279 | 257 | 214 | 283 | 60 | 58 | 0 | 0 | 63 | 20. | - | | 2.70222 | 12. | 42 | 8 | 279 | 257 | 214 | 283 | | | | | | | - | | | | | | | | | | 60 | 58 | 0, | | 63. | 19 | | | 2.70361 | 12: | 42 | 13 | 279 | 257 | 214 | 283 | 60 | 58 | <u> 0</u> | 00 | 61 | 19 | | | 12.705 | 12 | 42 | 18 | 279 | 257 | 214 | 283 | 60 | 58 | O | 0 | 61 | 19 | | | 2.70639 | 12 | 42 | 23 | 279 | 257 | 214 | 283 | 58 | 58 | 0 | 0 | 61 | 18 | | | .70778 | 12 | 42 | 28 | 279 | 257 | 214 | 283 | 58 | 58 | 0 | 0 | 61 | 18 | | | .70917 | 12 | 42 | 33 | 279 | 256 | 214 | 283 | 54 | 57 | 0 | 0 | 55 | 18 | | | .71056 | 12 | 42 | 38 | 279 | 256 | 214 | 283 | 61 | 57 | 0 | 0 | 61 | 18 | | | .71194 | 12 | 42 | 43 | 279 | 256 | 214 | 283 | 63 | 57 | 0, | 0- | 61 | | - | | .71333 | 12 | 42 | 48 | 279 | 256 | | | | | | | | 18_ | | | .71472 | 12 | | | | | 214 | 283 | 59 | 57 | 0 . | 0 | 61 | 18 | _ | | | | 42 | 53 | 279 | 256 | 214 | 280 | 58 | 57 | 0 | 0 | 61 | 18 | | | .71611 | 12 | 42 | 58, | 279 | 256 | 214 | 280 | 58 | 57 | 0 | 0 | 61 | 18 | | | 2.7175 | 12 | 43 | 3 | 279 | 256 | 214 | 280 | 61 | 57 | 0 | 0 | 61 | 18 | | | 71889 | 12 | 43 | 8 | 279 | 256 | 214 | 280 | 59 | 57 | 0 | 0 | 61 | 18 | | | 72028 | 12 | 43 | 13 | 279 | 256 | 214 | 280 | 63 | 57 | 0 | 0 | 61 | 18 | | | 72167 | 12 | 43. | 18 | 279 | 256 | | | 59 | | | | | | | | | | | | | | 214. | 280 | | 57 | 0 | 0 | 61 | 18 | | | 72306 | 12: | 43 | 23 | 279 | 256 | 214 | 280 | 62 | 57 | 0 | 0 | 61 | 18 | | | 72444 | 12 | 43) | 28 | 279 | 256 | 216 | 280, | 59 | 57 | 0 | 0 | 55 | 18 | | | .72583 | 12 | 43 | 33 | 279 | 256 | 216 | 280 | 59 | 57 | 0 - | 0 | 55 | 18 | | | .72722 | 12 | 43 | 38 | 279 | 256 | 216 | 280 | 57 | 57 | 0 | | 55 | 18 | | | 72861 | 12 | 43 | 43 | 279 | 256 | 216 | 280 | 56 | 57 | 0 | | | | | | 12.73 | 12 | 43 | 48 | 279 | | | | | | | * | 62 | _ 18_ | - | | | | | | | 256 | 216 | 280 | 61 | 57 | 0 | 0 | 60 | 18 | | | .73139 | 12 | 43 | 53 | 279 | 256 | 216 | 278 | 60 | 57 | 0 | 0 | 60 | 18 | | | .73278 | 12 | 43 | 58 | 279 | 256 | 216 | 284 | 65 | 57 | 0 | | 65 | 18 | | | .73417 | 12 | 44 | 3 | 279 | 256 | 216 | 284 | 61 | 57 | 0 | 0 | 57 | 19 | | | .73556 | 12 | 44. | 8 | 279 | 256 | 216 | 284 | 60: | 57 | - 0 | 0 | 57 | 19 | | | | | | | | | | | | | | | W/ | | | | 73694 | 12 | 44 | 13' | 279 | 256! | 216 | 284 | 62: | 57 | 0 | 0 | 63 | 20 | | Flow meter calibration data. | 12.73972 | 12 | 44 | 23 | 280) | 256 | 216 | 284 | 57 | 57 | 0 | 0 | 57 | 20: | 10 | |----------|----|----------|-----|------|------------|------|------|----------|----------|----|--------------|-----------|-----|----------------| | 12.74111 | 12 | 44 | 28 | 280 | 256 | 215 | 284 | 57 | 57 | 0 | Oi Oi | 57 | 21 | 6 | | 12.7425 | 12 | 44 | 33 | 280 | 258 | 215 | 284 | 60 | 57 | O | 0 | 57 | 21 | 3 | | 12.74389 | 12 | 44 | 38 | 280 | 258 | 215 | 278 | 60 | 57 | 0 | 01 | 57 | 21 | 1 | | 12.74528 | 12 | 44 | 43 | 280 | 258 | 215 | 278 | 60 | 57 | 0 | 01 | 63 | 21 | 1 | | 12.74667 | 12 | 44 | 48 | 280 | · 258 | 215 | 278 | 58 | 57 | 0 | 0 | 63 | 22 | 1 | | 12.74806 | 12 | 44 | 53 | 280 | 258 | 215 | 278 | 62 | 57 | 0 | 0 | 61 | 22 | 1 | | 12.74944 | 12 | 44 | 58 | 280 | 258 | 215 | 284 | 62 | 57 | 0 | 0, | 61 | 22 | 1 | | 12.75083 | 12 | 45 | 3 | 280 | 258 | 215 | 284 | 56 | 57 | 0 | 0) | 541 | 22 | | | 12.75222 | 12 | 45 | 8 | 280 | 258 | 215 | 284 | 56 | 57 | 0 | 0 | 54 | 22 | _ ! | | 12.75361 | 12 | 45 | 13 | 280 | 258 | 215 | 284 | 63 | 57 | 0 | 0 | 63 | 22. | | | 12.755 | 12 | 45 | 18 | 280 | 258! | 215 | 284 | 62 | 57 | 0! | 0 | 63; | 22 | ; | | 12.75667 | 12 | 45 | 24 | 280 | 258 | 215 | 284 | 59i | 57
58 | 0 | 0 | 57 | 22 | | | 12.75806 | 12 | 45
45 | 34 | 280 | 257
257 | 215 | 284 | 62 | 58 | 0; | 0 | 57 | 22 | - | | 12.75944 | 12 | 45 | 39 | 280 | 257 | 215 | 284 | 591 | 58 | 0 | 01 | 57 | 22 | | | 12.76083 | 12 | 45 | 44 | 280 | 257 | 215 | 284 | 59 | 58 | 0 | 0 | 57 | 22, | 1 | | 12.76361 | 12 | 45 | 49 | 280 | 257 | 215 | 284 | 67 | 58 | 0 | 0 | 66 | 22 | 1 | | 12.765 | 12 | 45 | 54 | 280 | 257 | 215 | 284 | 64 | 58 | 01 | 0 | 66 | 221 | 1 | | 12.76639 | 12 | 45 | 59 | 280 | 257 | 215 | 283 | 60) | 58 | 0 | 0 | 58 | 22 | 1 | | 12.76778 | 12 | 46 | 4 | 280 | 257 | 215 | 283 | 60 | 58 | 0 | 0 | 58 | 22 | 1 | | 12.76917 | 12 | 46 | 9 | 280 | 257 | 215 | 283 | 59 | 58 | 0 | 0 | 58 | 22 | 1 | | 12.77056 | 12 | 46 | 14 | 280 | 257 | 215 | 283 | 59 | 58 | 01 | 0 | 58 | 22 | 1 | | 12.77194 | 12 | 46 | 19 | 280 | 257 | 215 | 283 | 66 | 58 | 0 | 0 | 66 | 22 | 1 | | 12.77333 | 12 | 46 | 24 | 281 | 257 | 215 | 283 | 66 | 58 | 0 | 0 | 66 | 22 | 1 | | 12.77472 | 12 | 46 | 29 | 281 | 257 | 215 | 283 | 70 | 58 | 0 | 0 | 66 | 22 | 1 | | 12.77611 | 12 | 46 | 34 | 281 | 257 | 215 | 283 | 66 | 58 | 0 | 0 | 66 | 22 | | | 12.7775 | 12 | 46 | 39 | 281 | 257 | 215 | 283 | 62 | 58 | 0 | 0] | 60 | 22 | | | 12.77889 | 12 | 46 | 44 | 281 | 257 | 215 | 283 | 65 | 58 | 0 | 0 | 60 | 22 | | | 12.78028 | 12 | 46 | 49 | 281 | 257 | 215 | 283 | 61 | 58 | 0 | 0 | 60, | 22 | | | 12.78167 | 12 | 46 | 54 | 281 | 257 | 215 | 283 | 64 | 58
58 | 0, | 0, | 60 | 22 | | | 12.78306 | 12 | 47 | 4 | 281 | 257 | 215 | 280 | 60 | 581 | 0, | 0, | 60: | 22 | - i | | 12.78583 | 12 | 47 | 9 | 281 | 257 | 215 | 280 | 65 | 58 | 01 | 0 | 60 | 22 | | | 12.78722 | 12 | 47 | 14 | 281 | 257 | 215 | 280 | 62 | 58 | O | 0 | 60 | 22, | 1 | | 12.78861 | 12 | 47 | 19 | 281 | 257 | 215 | 280 | 58 | 58 | 0 | 0 | 60 | 22 | 1 | | 12.79 | 12 | 47 | 24 | 283 | 257 | 215 | 280 | 63 | 58 | 0 | 0 | 67 | 22 | 1 | | 12.79139 | 12 | 47 | 29 | 283 | 257 | 216 | 280 | 61 | 58 | 0 | 0) | 61 | 22 | 1 | | 12.79278 | 12 | 47 | 34 | 283 | 257 | 216 | 280 | 62 | 58 | 0 | 0! | 61 | 22 | 1 | | 12.79417 | 12 | 47 | 39 | 283 | 257 | 216 | 280 | 62 | 58) | 0 | 0 | 61 | 22 | 1 | | 12.79556 | 12 | 47 | 44 | 283 | 257 | 216 | 280 | 58 | 58 | 0 | 0 | 61 | 22 | | | 12.79694 | 12 | 47 | 49 | 283 | 257 | 216 | 280 | 62 | 58 | 0 | 0 | 61 | 22 | | | 12.79833 | 12 | 47 | 54 | 283 | 257 | 216 | 280 | 58 | 58
58 | 0 | 0 | 61 | 221 | | | 12.79972 | 12 | 47 | 59 | 283 | 257
257 | 216 | 280 | 58
61 | 58 | 0 | 0 | 61 | 22 | | | 12.80111 | 12 | 48 | 9 | 283 | 257 | 216 | 280 | 66 | 58 | 0 | 0 | 68 | 22 | | | 12.80389 | 12 | 481 | 141 | 283 | 257 | 216 | 280 | 63 | 58 | 0 | 0 | 60 | 22 | - 1 | | 12.80528 | 12 | 48 | 19 | 283 | 257 | 216 | 280 | 59 | 58 | 0 | Ō | 60 | 22 | 1 | | 12.80667 | 12 | 48 | 24 | 281 | 257 | 216 | 280 | 62 | 58 | 0 | Ō | 60 | 22 | 1 | | 12.80806 | 12 | 48 | 29 | 281 | 257 | 215 | 280 | 61 | 58 | 0 | 0 | 60 | 22 | 1 | | 12.80917 | 12 | 48 | 33 | 281 | 257 | 215 | 280 | 59 | 58 | 0 | 0 | 59 | 22 | 1 | | 12.81056 | 12 | 48 | 38 | 281 | 257 | 35 | 280 | 63 | 58 | 0 | 0 | 59 | 22 | 1 | | 12.81194 | 12 | 48 | 43 | 281 | 257 | 3 | 280 | 60 | 58 | 0 | 0 | 59 | 22 | 1 | | 12.81333 | 12 | 48 | 48 | 281 | 257 | 3 | 280 | 63 | 58 | 0 | 0 | 59 | 22 | | | 12.81472 | 12 | 48 | 53 | 281 | 257 | 3 | 280 | 57 | 58 | 0 | 0 | 59 | 22 | | | 12.81611 | 12 | 48 | 58 | 281 | 257 | 40 | 281 | 64 | 58 | 0 | 0 | 59
65 | 22 | $-\frac{1}{1}$ | | 12.8175 | 12 | 49 - | 8 | 281 | 257 | 214 | 281 | 60 | 58 | 0 | 0 | 65 | 22 | | | 12.81889 | 12 | 49 | 13 | 281 | 257 | 214 | 281 | 64 | 58 | 0 | 0 | 65 | 22 | <u>'</u> | | 12.82167 | 12 | 49 | 18 | 281 | 257 | 214 | 281 | 61 | 58 | 0 | 0 | 59 | 22 | 1 | | 12.82306 | 12 | 49 | 23 | 280 | 257 | 214 | 281 | 58 | 58 | 0 | 0 | 59 | 22 | 1 | | 12.82444 | 12 | 49 | 28 | 280 | 257 | 214 | 281 | 61 | 58 | o | 0 | 59 | 22 | 1 | | 12.82583 | 12 | 49 | 33 | 280 | 259 | 214 | 281 | 61 | 58 | 0 | 0 | 59 | 22 | 1 | | 12.82722 | 12 | 49 | 38 | 280 | 259 | 214 | 281 | 61 | 58 | 0 | 0 | 59 | 22 | 1 | | 12.82861 | 12 | 49 | 43 | 280 | 259 | 214 | 281 | 61 | 58 | 01 | 0 | 57 | 22 | 1 | | 12.83 | 12 | 49 | 48 | 280 | 259 | 214 | 281 | 60 | 58 | 0 | 0 | 60 | 22 | 1 | | 12.83139 | 12 | 49 | 53 | 280 | 259 | 214 | 281 | 55 | 58 | 0 | 0 | 54 | 22 | 1 | | 12.83278 | 12 | 49 | 58 | 280 | 259 | 214 | 280 | 58 | 58 | 0 | 0 | 60 | 22 | | | 12,83417 | 12 | 50 | 3 | 280 | 259 | 214 | 280 | 61 | 58 | 0 | 0 | 61) | 22 | _ 1 | | 12.83556 | 12 | 50 | 8 | 280 | 259 | 213 | 280 | 61 | 58 | 0 | 0 | 61 | 22 | | | 12.83694 | 12 | 50 | 13 | 280 | 259 | 213 | 280 | 65 | 58
58 | 0 | 0 | 66)
58 | 22 | 1 | | 12,83833 | 12 | 50 | 18 | 280 | 259 | 213 | 280 | 62
58 | 58 | 0 | 0 | 58 | 22 | — | | 12.83972 | 12 | 50 | 23 | 280 | 259
259 | 213 | 280 | 69 | 58 | 0 | 0 | 63 | 22 | | | 12.84111 | 12 | 50 | 33 | 260 | 259 | 213 | 261 | 111 | 73 | 0 | 0 | 115 | 22 | 1 | | 12.84389 | 12 | 50 | 38 | 234 | 234 | 196 | 233 | 119 | 88 | 0 | 0 | 122 | 22 | <u></u> | | 12.04303 | 12 | 501 | 30 | 2341 | 234 | 1301 | 2001 | 1131 | 001 | | | | | : | | | IET-90 99 PC | | LE
 0,27 11 am | | 1 | | | | - | - | T | | | | | | | | | | | -
Ter::::- | *FF: 14- | TEELH19 | |----------|--
--|--|--------------------------|---|---|--|--|--|--|--|--------------------------------------|--|--|--|--|--|--|--|---|--|---|----------------------|----------------------------------| | Time | Time | Time F | 720 PF-00 | | FT730
GPM | FT800
GPM | TEE16
DEG F | TEE15 TEE1 | DEG F | TEE12
DEG F | TEE11
DEG F | | DEG F | | TEE7
DEG F | DEG F | TEE5
DEG F | TEE4
DEG F | TEE3
DEG F
590 | TEE2
DEG F | TEE1
DEG F | DEG F
590 | DEG F | DEG F | | | 12 0 | 4
19 | 369
374 | 412 2 | 89 72
90 8 | | 590
594 | 592 | 592 59
592 59 | 1 591
1 591 | 60 | 8 592 | 591
592
593 | 595
597 | 592
593 | 591
591
592 | 582
584
585 | 591 | 591 | 590
590
590 | 593
594 | | 591 | 584
585 | | 1 | 12 0
12 0
12 0 | 34
49 | 360
331 | 341 2 | 97 26
62 32 | 196 | 594
594
594
592 | 593
593
596 | 593 59
596 59
602 59 | 3 60 | 0 60
0 60
7 60 | 8 592 | 597 | 598
598
595 | 593
594
594
592 | 591
590 | 584
582 | 591
589 | 591
590 | 588 | 593
592 | 594
594 | 592
592 | 585
585 | | | 12 1
12 1 | 1 <u>9</u> | 367
380 | 336 2 | 77 8
79 8 | 154 | 594
592
592 | 594 | 597 59
594 59 | 0 59 | 9 60 | 8 589 | 602
597 | 595
597
598 | 592 | 1 590 | 582
584 | 589
590
591 | 590
590 | 588 | 592
593 | 594
594 | 592
592 | 5 <u>84</u>
584 | | | 12
12
1 | 33
49 | 380
380
380 | 346 2 | 99 11
85 14
97 16 | 144 | 592 | 591
593
597 | 594 59
597 59
596 59 | 3 60 | 1 62 | 2 591 | 593 | 598
598 | 593
594 | 591
591 | 584
584 | 591 | 591
592 | 590 | 594
595 | 594
594 | 592
592
593 | 2 585
2 585 | | | 12 2
12 2 | 19 | 376 | 346 2 | | | 594
594 | 595
594 | 504 50 | 3 60
4 59
4 59 | 8 61
3 61 | 4 593 | 595
592 | 597 | 594 | 591
592 | 580
572 | 591
591 | 591
589 | 590
590 | 594
593 | 594
595 | 593
593 | 3 585
3 585 | | - | 12 2 | 33
49
4
19
34
48
3 | 382 | 344 2 | 93
86 | 2 2 | 594
594 | 593 | 592 59
589 58 | 1 58
9 58 | 8 60
3 60
9 59 | 5 590
2 588 | 591
587 | 593
590
584 | 590 | 590 | 560
560 | 589
585 | 586
582 | 584
584
581 | 590
588 | 595 | 593 | 3 586
3 586 | | - | 12 1 1 12 1 1 12 2 12 12 2 12 12 12 12 1 | | 382
388 | 333 2
363 3 | 75
02 | 5 0 | 587 | 589
588 | 586 <u>58</u>
583 58 | 6 57
2 57 | 9 59
4 59 | 7 584
3 581 | 592
591
587
585
582
579 | 580
574 | 587
583 | 588
584
580
578 | 582
584
584
580
572
566
560
554
542
533 | 583
579 | 580
576 | 581
578
578 | 580 | 595
595
595 | 593 | 3 586
3 586 | | 1 - | 12 3 | 48 | 376
382
382
382
388
388
388
388
387
387
387
387
387
387 | 393 2
386 2 | 95 1-
69 93 93 95 96 97 97 97 97 97 97 97 97 97 97 97 97 97 | 0
0
0
0
0
0 | 587
587 | 585 | 579 58
576 57 | 4 59
1 58
9 58
6 57
2 57
0 56
6 56
3 56
9 55
7 55 | 59
59
5
5
5
6
5
5
5
5
5
5
5
5
5
5
5
6
5
7 | 6 577
6 575 | 579
577 |
584
580
574
571
566
562 | 580
578 | 574 | 537
532 | 591
591
589
585
583
579
577
573
571
567 | 592
591
589
586
580
576
572
569
568
559
559
559
568
568
568
568
568
568
568
568
568
568 | 572
568 | 576 | si 595 | 5 593 | 3 585
3 585 | | | 12 4
12 4
12 4 | 18
33 | 388
387 | 353 3 | 06 | 0 | | 583
580 | 576 57
572 57
568 56
566 56 | 9 55 | 1 58
6 57
3 57 | 9 569 | 577
573
569
566
566
567
561 | 557
552 | 572 | 568
565 | 526
521 | 567
565 | 563
559 | 566
564
567 | 571
566 | 594 | 593 | 3 585
3 584 | | | 12 5 | 48 | 387
387 | 389 3 | 75 2 | 9 132
6 104 | 581 | 581 | 566 56
571 56
571 56
564 56 | 7 55
3 54
9 56 | 9 57 | 5 564 | 566
567 | 550
564 | 567
570 | 564 | 524 | 565
565 | 559
568 | 567
568 | 561
569 | 594 | 592 | 2 584
7 583 | | - | 12 5
12 5 | 33 | 376 | 382 | 93 17
87 17 | 8 127
6 136
6 145 | 569
569 | 565
561 | 564 56
561 57 | 7 56
6 56 | 0 56
8 56 | 5 569
4 577 | 561
561 | 565
574 | _ 565
572 | 571
578 | 524
557
554
557 | 570
578 | 565
568 | 570
57 | 566
57 | 578 | 578 | 2 579
8 575 | | | 12 5
12 6 | 3 | 376
376
378 | 336 | 187 17
105 16
199 15
189 15 | 3 148
7 151 | 580 | 566 | 568 58 | 1 57 | 2 56
5 56 | 8 582
3 584 | 568
574 | 578
581 | 578 | 583 | 563 | 582
584 | 579 | 582
581 | 576
58 | 57 | 576 | 7 575
6 577 | | - | 12 6 | 33 | 378 | 360 2
360 2
285 2 | 89 15
86 15 | 0 151
0 154 | 580 | 573
583 | 573 58
583 58 | 5 <u>57</u>
6 <u>57</u> | 8 56 | 0 <u>585</u>
2 <u>585</u> | 575
580 | 583
583
584 | 58
582
584
584 | 587
587
588 | 57 | 585 | 581 | 586 | 584 | 579
4 580 | 57
57
3 58 | 8 579
0 590 | | - | 12 7 | 3 | 378
378
378 | 366
269 | 98 <u>16</u>
303 16 | 0 1 <u>54</u>
0 154 | 580
586 | 585
585 | 585 58 | 6 57
6 57
7 57 | 9 56
9 57 | 6 <u>587</u> | 580
584
584 | 584 | 584
581
581 | 588
588 | 573 | 587 | 5 582
7 582
7 582
7 582 | 58 | 58 | 584 | 582 | 2 581 | | . - | 12 7
12 7
12 7
12 8
12 8 | 33
48 | 376
376 | 338 2
289 3 | 97 16
308 16 | 0 154
0 154 | 586
586 | 585
585 | 585 58
587 58 | 7 57 | 9 57 | 6 587
8 587 | 585
585 | 584
584 | 58
58
58 | 588
588
588 | 573 | 587 | 582 | 58 | 58: | 5 58 | 5 58
5 58 | 2 583
4 583 | | <u>.</u> | 12 5
12 6
12 6
12 6
12 7
12 7
12 7
12 7
12 7
12 7
12 7
12 8 | 18
33
48
33
48
33
48
33
48
33
48
33
48
33
48
33
48
33
48
33
48
33
48
33
48
33
48
33
48
48
33
48
48
48
48
48
48
48
48
48
48
48
48
48 | 376
376
377 | 289
336
344
314 | 005 16
999 15
889 15
886 15
998 16
003 16
997 16
908 16
991 16
183 16
1896 15 | 1540 | 580
596
596
597
597
597
597
597
598
598
598
598
598
598
598
598
598
598 | 586
586
587 | 587 58
587 58
587 56
587 56
587 56
587 56
587 56
587 58
587 58 | 7 58
7 58
8 58 | 57 | 8 587 | \$855
\$857
\$857
\$858
\$858
\$858
\$858
\$858 | 584
584
585
585
585
585
585
585
585
585 | 58 | 588 | 574 | 11 587 | 7 584 | 566
577
577
582
584
586
586
587
588
588
588
588
588
588
588
588
588 | 58: 58: 58: 58: 58: 58: 58: 58: 58: 58: | 4 586
4 585
5 58-
5 58-
5 58-
5 58-
6 58- | 58
5 58 | 4 583
4 584 | | | 12 8 | - 34
49 | 377
377
377 | 347 2 | 283 16
296 15
295 15
297 15 | 9 156 | 587 | 587
587 | 587 58
587 58 | 8 58
8 58 | 50 50 | 588 | 585
585 | 585
585 | 58
58
58 | 589 | 57-
57- | 58 | 584
584
584 | 58
58 | 58
58 | 6 58
6 58 | 58
7 58 | 584
5 584 | | | 12 9 | 19 | 377 | 376
350 | 304 16
304 16 | 4 153
4 156 | 588
588 | 587
587 | 587 58
587 58 | 58 58
18 58
18 58
18 58 | 0 58
0 58
0 58
0 58 | 588
588 | 585
586 | 585
585 | 58
58 | 588 | 57 | 58°
4 58° | 7 584
7 584
7 584 | 58
58 | 58 | 6 <u>58</u> | 7 58
7 58
7 58 | 5 584
5 584 | | | 12 9 | 19
34
49
4 | 375
375
375 | 342 | 304 16
304 16
288 15
277 16 | 8 156
4 156 | 588
588 | 587
587 | 587 58 | 8 58
58 | 0 5
0 5 | 9 588 | 586
586 | 585
585 | 58
58 | 588 | 57 | 58 | 7 584 | 58 | 8 - 58
58 | 6 58 | 7 58 | 5 584
15 584 | | | 12
12 10 | 19
34 | 375
375
375
375 | 305
298 | 94 15
303 16 | 8 156
4 156 | 588
588 | 587
587 | 587 58 | 18 58
18 58 | 50 5 | 8 588 | 586
586 | 585 | 58
58
58 | 589 | 57 | 3 58 | 7 584 | 58 | 8 58
8 58 | 6 58
6 58
6 58 | 7 <u>58</u>
7 58 | 35 584
35 584 | | | 12 - 10
12 - 10
12 - 11
12 - 11
12 - 11 | 19
34
48
3
18
33
48
33 | 375
375 | 293
321 | 303 16
302 16
282 15 | 4 150
8 152 | 588 | 587
587 | 587 58
587 58
587 58 | 58 58
58 58
58 58 | 5
30 5
5
5 | 9 588 | 586 | 585 | 58 58 | 6 589 | 57
57 | 3 58° | 7 584
7 584
7 584 | 58
4 58 | 8 <u>58</u>
8 58 | 6 <u>58</u> | 7 <u>58</u>
7 58 | 35 583
35 582 | | - | 12 11
12 11 | 33 | 375
377
377 | 374 | 301 15
278 15
307 13 | 9 156 | 58 | 586
586 | 587 58
587 58 | 18 58
18 57 | 5 5 | 75 589 | 586
586 | 585
584 | 58
58 | 6 589
6 589 | 57
56 | 58 | 7 582 | 4 58
2 58 | 8 58
8 58 | 6 58
6 58 | 7 58
7 58
7 58 | 35 583
35 583 | | | 12
12
12
12 | - 40
3
- 18 | 377
55 | 318 | 301 2
4 9 | 9 1 | 58
58 | 585
583 | 585 58
582 58 | 57
57
57 | 76 <u>5</u> | 74 587
74 586 | 585
582 | 583
579 | 58
58 | 587
2 586 | 56
55 | 2 58
5 58 | 580
5 570 | 58
58 | 8 58
8 58
8 58
6 58
3 58 | 5
3
58 | 7 58
7 58
7 58 | 35 584
35 584 | | | 12 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 33
48
3 | 377
55
37
30
24
10 | 318
305
-4
-4 | 4! € | 3 | 58-
58- | 581 | 578 50 | 31∣ 56 | 59' <u>5</u> | 74 586
74 586
74 586
74 580 | 580
576 | 573
570 | 57 | 0 584
7 582 | 54
54 | 2 58
5 58
9 58
4 58
8 57
5 57
2 57 | 4 57
0 57 | 58
1 58 | 3 58
0 57 | 66 58866
58866 588 | 7 58
7 58 | 34 584
34 584 | | | 12 - 13
12 - 13 | 3
18
33 | 24
10 | -4
-4
-5 | 4 1 | 5 6 | 584
584
571 | 577
574 | 572 5 | 78 56
75 56 | 50 5 | 73 57 | 573
569 | 565
562
556 | 57
2 57 | 5 578
2 575
0 571 | 53 | 5/
5/
5/
5/
5/
5/
5/ | 7 56
5 56 | 7 57 | 0 57
7 57
3 57
7 57
7 57
5 57
3 57
0 57
8 57 | 5 58 | 7 58
17 58 | 58
31 58 | | | 12 13
12 13 | 33 | 3
3 | -5
-5 | 0 | | | 570 | 569 5
565 5 | 71 55
59 55 | 56 5 | 70 57
58 56 | 562 | 556 | 57
6 56 | 7 568 | 53 | 0 56
7 56 | 7 56
5 56 | 56
56 | 7 57
51 57 | 4 58
3 58 | 7 58
7 57 | 80 58
79 57 | | | 12 14
12 14 | 3
18 | 3.
3. | •5
•5
•5 | 40
2 | o] (| 57 | 569
7 569 | 559 5 | 52 55 | 54 5 | 56 56
64 56
50 55 | 557
555 | 551 | 1 56
9 55 | 2 562 | 52 | 4 56
2 56 | 3 55
0 55 | 2 56
8 56
8 56 | 3 57
0 57 | 3 58
3 58 | 6 57
6 57 | 79 57
78 57 | | - | 12 14
12 14 | 33
49
4 | o
O | • <u>5</u> | 2 - | 1 | 57
57
57 | 7 570
570 | 563 55
559 55
557 55
556 55
557 5 | 55 55 | 50 5 | 57 55
54 55
53 55 | 551
550 | 54
54 | 7 55
4 55 | 7 568
4 564
2 562
9 560
6 558
3 558 | 52
52
52
51 | 0 <u>55</u>
8 55 | 56
55
55
56
3
55
7
55
55
55
55
55
55
55
55
55
55
55
5 | 7 55
5 55 | 4 56 | 0 58
9 58 | 57
4 57 | 76 57
76 57
75 57
74 57 | | | 12 | 19 | 0, | •5]
•5]
•5₁ | 0
0 | 1] (| 57
57
57 | 568 | 557
557
557 | 57 54
59 54 | 48 5
47 5 | 51 55 | 548
548 | 54:
54: | 3 55
2 54 | 1 558
9 559 | 51 51 | 5 55
4 55 | 2 55
0 55
7 55 | 3 50 | 2 56
56 | 57 <u>58</u>
56 58 | 30 57
50 57 | 75 57
74 57 | | | 12 15
12 15
12 16 | 34
49 | oj
o | -3
-3 | 0 | 8 | 57
57 | 3 564
3 563 | 557 5
556 5 | 60 5
60 5 | 47 5
46 5
44 5 | 51 55
50 54
50 55 | 547
547 | 54
54 | 1 54
1 54 | 6 560
4 560 | 51
51 | 4 <u>54</u>
3 <u>54</u> | 7 55
5 54 | 1 54
9 54 | 7 56
5 56 | 52 57 | 78 57
75 57 | 73 57
72 56
70 56
68 56 | | | 12 10 | 3 34 | o'
o' | -3
44 | o! | 0 | 56
56
56 | 7. 570
569
568
568
564
564
562
561
4 560
4 558
60
657 | 557 5
557 5
556 5
555 5
554 5
552 5
550 5
554 5 | 58 5 | 44 5
43 5 | 48 55
48 55 | 0 546
1 544 | 54
54
53
53 | 57.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 | 56
3 55
2 55
0 55
9 55
17 55 | 51 51
51 50 | 1 54 | 4 54
3 54
2 54 | 54
9
7
54
54
54
54
54
54
54
54
54
54
54
54
54 | 55 | 57 57 | 73 57
72 56 | 67 56 | | | 12 10
12 1 | 49 | 0 | 42
67 | 0 | 1 1 | 0 5 <u>6</u>
0 56 | 560
558 | 552 5
550 5 | 56 5 | 40 5 | 47 55
46 55
44 54 | 542 | 53 | | 55
19 55
17 55 | 50 50 | 17 54
14 54 | 53 | 8 53 | 37: 55 | 52 50 | 59 56
58 56 | 65 56
64 55 | | Time | Ti | me | Time
sec | GPM | PF-001
LVmin | PF-002
LVmin | FT730
GPM | FT800
GPM | TEE16
DEG F | TEE15 | TEE14
DEG F | TEE13
DEG F | TEE12
DEG F | TEE11
DEG F | TEE10
DEG F | TEE9
DEG F | TEE8
DEG F | TEE7 TE | E6 TE | E5 | | | TEE2 | TEE1 | TEEUH17 TE | ELH18 TEE | | |---------------|----------------------|--|---|---------------------------------|---|-----------------|-------------------|--------------|--|----------|--|--|--|--|--|--|---|---|------------|--|--------------------------|-------------------|---|---|---|--|--| | 1.00. | 12 | | 300 | 34 | 0 ~ | | | 1 (| | | 56 54 | | | 7 54 | 547 | 538
536 | 534 | DEG F DI | 548 | G F
503 | DEG F
539 | DEG F
535 | DEG F
533 | | DEG F DI
567 | EG F DEG
562 | | | | 12
12
12
12 | 17
17
18
18
18
18 | | 34
48
3
18
33
48 | 0 | 4 (| 0 0 0 | 2 | 56
56
56
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | 0 | 556 54
555 54
553 54
552 54 | 6 55
4 55
2 55
0 54
8 54
4 54
4 54
4 54
4 54
2 54 | 3 53
1 53
0 53
9 53
6 53
4 53
3 52
2 52 | 7 543
6 543
5 539
4 533
3 536 | 547
545
544
7 541
5 539
3 537 | 536 | 534
532
531 | 536
533
532
530 | 546 | 503
501 | 539
537 | 532 | 533
532
530
528
526
525
523
520
518 | 549
546 | 566 | 560 | 555 | | | 12 | 18 | | 18 | | 4 . | 0 1 | | 55 | 6 | 52 54 | 0 54 | 9 53 | 53 | 544
7 - 541 | 534
532 | 531
529 | 532 | 544
543 | 499
497 | 536
535 | | 530 | 545
544
543
543
541
540
539
538
537 | 565
563 | 559
558 | 554 | | | 12 | 18 | 1 | 33 | 00 | 4 | 0 : | 2 (| 55 | 6 ! | 551 53 | 8 54 | 6 53 | 530 | 539 | 529 | 528 | 527 | 541 | 496 | 532 | 525 | 526 | 543 | 561 | 556 | 552 | | | 12 | 18 | | 48 | | 5 . | 0 | 1 0 | 55 | 6 | 51 53
50 53 | 5 54 | 4 530 | 0 53:
9 53:
7 53: | 3 537 | 528
526 | 525
524 | 525 | 541 | 495 | 531
529 | 523 | 525 | 543 | 560 | 555 | 549 | | | 12 | 19 | 1 | | 0 - 12 | <u> </u> | öl (| 6 | 55 | 1 5 | 49 53 | 4 54 | 2 52 | 7 - 53 | 534 | 528 | 524 | 524
522 | 540
538 | 492
490 | 529
527 | 519
517 | 523
520 | 541 | 558
556 | 554
552 | 548 | | | 12 | 19 | | 33 | 0 112
0 102
0 - | 2 | 0 | 1 0 | 55 | 1 5 | 48 53 | 4 54 | 0 525
0 525 | 528 | 530 | 522
520 | 521 | 521 | 538 | 489 | 525 | 515 | 518 | 539 | 555 | 550 | 547 | | | 12 | 19 | ļ | | 0 | 3 7 | 0 | 0 0 | 55
55
55
55
54
50
54
50
54
50
54
50
54
50
54 | 1 - 5 | 550 53-
549 53-
548 53-
547 53-
546 53-
544 53 | 3 54 | 0 523 | 3 520
3 521 | 534
532
532
535
528
526
525
65
525
65
524
524 | 520
519 | 518 | 518 | 538 | 485 | 524 | 511 | 517 | 538 | 554
553
552 | 549 | 546 | | | 12 | 20 | | 18 | 0 28 | 5 | 0 - | 2 - 0 | 54 | 5 | 46 53
44 53
43 53 | 1 53 | 0 523
9 52 | 524 | 525 | 518 | 517
516 | 517
515 | 536
535 | 485
484 | 523
520 | 509
506 | 516
513 | 537 | 553 | 548
546 | 543 | | | 12 | 20 | 3 | 33 | 0 67 | 7 | 0 3 | 2 0 | 54 | 5 ! | 43 53 | 1 53 | 9 52° | 1 524
1 523
0 52
9 520 | 524 | 515 | 515 | 514 | 535 | 481 | 520
519 | 504 | 513
511
510
508
506
505
502
501 | 534
533
532
530
529
526
525
524 | 551 | 544 | 541 | | | 12 | 20 | | 48 | 0 - 60 | | 0 | 6 C | 54 | 5 | 42 53
41 53 | 1 53
0 53 | 8 520
7 519 | 52 | 524 | 514
514 | 514
512 | 512
510 | 533
532 | 481
480 | 517 | | 510 | 532 | 549 | 542 | 540 | | | 12 | 21 | | 18 | 0 70 | 1 7 | ŏ | | 54 | 0 5 | 39 529 | 53 | 6 517 | 7 520 | 521 | 513 | 511 | 509 | 532 | 480 | 516
513 | | 508 | 530 | 548
547
546
545
543
542
540 | 541
539 | 537 | | | 12 | 21 | | 34 | 0 75 | 5 | 0 7 | 7 C | 54 | 0 5 | 38 52 | 9 53
7 53
6 53 | 3 516 | 519 | 520 | 512 | 510 | 508 | 529 | 479 | 512 | 494 | 505 | 526 | 546 | 538 | 535 | | - | 12 | 21 | | 49 | 0 82 | 21 | 0) (| 0 <u>0</u> | 54 | | 37 526
36 525 | 53
5 53 | 2 515
1 514 | 5 518
5 517 | 519 | 510 | 510 | 507 | 527
526 | 478 | 511 | | 502 | 525 | 545 | 535 | 533 | | | 12 | 22 | | 19 | 5 | 4 - | 0 | 5 | | 6 5 | 33 524 | 1 53 | 513 | 516 | SI 5171 | 510
509 | 508
507 | 505
504 | 523 | 476
475 | 509
509 | 491
489 | 500 | 524 | 543 | 534
533 | 532 | | | 12 | 22 | 3 | 34 | | | 0 5 | 5 C | 53 | 6 5 | 32 523 | 3 52 | 9 511 | 515 | 516 | 508 | 505 | 503 | 521 | 474 | 506 | 487 | 499 | 520 | 540 | 532 | 528 | | | 12 | 22 | | 49 | 0 47 | | <u> </u> | 5 <u>0</u> | 53 | 6 5 | 31 522
30 519 | 2 52
9 52 | 5 510
5 509 | 514
9 513 | 515 | 507
506 | 504
503 | 502
501 | 520 | 473
472 | 505 | 486 | 496 | | 539 | 531 | 526 | | | 12 | 199 199 200 200 200 200 200 200 200 200 200 2 | 1 | 19 | 0 -2
0 47
0 47
0 48
0 37
0 -5
0 32
0 41 | 3 0 | 0 0 | 0 0 | 53
53
53
53
53
53
53
53
53
53
53
53
53
5 | 2 5 | 30 518 | | 5 508 | | 512 | 504 | 503 | 499 | 519
516 | 470 | 504
503 | 483
482 | 495
493 | | 538
536 | 529
528 | 556, 555, 554, 552, 552, 552, 552, 552, 552 | | | 12 | 23 | 3 | 34
49 | 0 37 | 7 | 0 1 | 1 0 | 53 | 1 . | 28 517 | 7 52 | 4 507 | 511 | 511 | 503 | 501 | 499 | 514 | 469 | 501 | 481 | 492 | 515 | 535 | 526 | 522 | | - | 12 | 23 | | 4 | 0 33 | 3 | 0 | 2 - 0 | 53 | 1 5 | 27 514
25 513 | 52:
3 51: | 2 505
9 503 | 510 | 510
507 |
502
500 | 499
497 | 496 | 514
512 | 468
467 | 500
499 | 480
477 | 491
488 | | 533
531 | 525
523 | 521 | | | 12 | 24 | 1 | 19 | 0 41 | | 0 1 | i o | 53 | 1 5 | 28 517
27 514
25 513
23 512
21 511
20 516
19 507
17 507
15 506 | 511 | 502 | 3 507
2 506
505
0 504 | 506 | 499 | 496 | 495
494
493
491
490
489 | 510 | 465 | 497 | 476 | 487 | 510 | 530 | 523 | 519 | | ļ | 12 | 24 | 3 | 34
49 | 9 -4 | 1 | 1 | ! 0 | 52 | 4 5 | 23 512
21 511
20 510
19 507
17 507
15 506
14 505 | 51 | 7 501 | 505 | 506
505
504 | 497 | 495 | 493 | 508 | 465 | 495 | 475 | 486 | 510 | 529 | 521 | 518
517 | | | 12 | 25 | | 3 | 0 -4
0 -4 | } | D 1 | 1 0 | 52 | 4 5 | 19 507 | 510
7 513
7 513
6 513
6 51 | 500
3 499 | 502 | 504 | 496
495 | 494
493 | 491 | 508
506 | 462 | 494 | 474
473 | 484
482 | | 528
525 | 520
519 | 517
514 | | | 12 | 25 | 1 | 18 | 0 -4 | 1 0 | 0 7 | 7 0 | 52 | 4 5 | 17 507 | 7 51 | 3 497 | 501 | 500 | 494 | 491 | 489 | 505 | 462
461 | 493
492 | 471 | 481 | 507 | 524 | 517 | 514 | | | 12 | 25 | 3 | 18 | 9 | <u> </u> | <u> </u> | 2 0 | 51 | 8 5 | 15 506 | 510 | 496 | 500
5 499 | 499 | 493 | 489 | 488 | 503 | 458 | 491 | 470 | 480 | 505 | 523 | 515 | 512 | | _ | 12 | - <u>25</u>
26 | | 3 | <u> </u> | | 2 | | 51 | 8 5 | 14 505
14 504 | 51 | 495 | 499 | 499
496 | 491
490 | 489 | 487 | 502
501 | 458
457 | 489 | 469
469 | 478
476 | 504
503 | 522
521 | 514
513 | 511
510 | | ٠ | 12 | 26 | 1 | 18 | -5 | 5 0 | 0 0 | 2 0 | 51
51 | 8 5 | 13 502 | 509 | 493 | 498
3 497
0 498
0 494
3 493 | 495 | 489 | 487 | 485
484
483
482
481
479
478 | 500 | 456 | 488
487 | 468 | 475 | 501
501 | 519 | 512 | 509 | | - | 12
12 | 26 | 3 | 33 (
18 (| 0 .5 | | 3 | 0 | | 4 5 | 12 501
11 500 | 500 | 490 | 495 | 494
493
492
490
489 | 488
487
485
484
483
482 | 485
484
483
482
481
479
478 | 483 | 499 | 455 | 486
485 | 466 | 474 | 501 | 518 | 509 | 506
505 | | | 12 | 27 | - | 3 | 0 -5
0 -5
0 -5 | il — — i | 5 | <u> </u> | 514 | 4 - 5 | 09 499 | 50 | 488 | 494 | 493 | 487 | 484 | 482 | 497
495 | 453
453 | 485 | 465
464 | 473
472 | 498
497 | 517
516 | 508
507 | 505 | | | 12 | 27 | 1 | 18 | .5 | 0 | Θ | 3 0 | 514 | 4 5 | 08 497 | 50- | 487 | 492 | 490 | 484 | 482 | 479 | 495 | 451 | 483
482 | 463 | 471 | 496 | 514 | 506 | 504
503 | | | 12 | 27
27 | 3 | | D 49 | 3 | 3 | 3 0 | 50 | 9 - 5 | 07 496
06 494 | | 3 485
2 484 | 491 | 489
488 | 483 | 481 | 478 | 494
493 | 451 | 481 | 462 | 469 | 495 | 513 | 504 | 501 | | | 12 | 27
28 | | 3 | 0 44 | i c | 5 2 | 0 | 50 | 9 5 | 05 493 | 50 | 484 | 488 | 487 | 481 | 478 | 476
475 | 491 | 449 | 477 | 460
459 | 468
467 | 493
492 | 512
511 | 503
502 | 500
499 | | | 12 | 28 | 1 | | 37 | 2 | 2 | 0 | 50: | 9 5 | 02 492 | 498 | 483 | 487 | 485 | 479 | 477 | 475 | 488 | 451
450
449
448
445
445 | 480
477
476
475 | 458 | 466 | 491 | 510 | 500 | 498 | | | 12 | <u>28</u>
28 | | 19 (| | <u> </u> | | 7 0 | | 4 5 | 01 491
00 490 | 497 | 7 481
3 479 | 486 | 484
483 | 478
477 | 476
475 | 473
472 | 487
487 | 445 | 475 | 458 | 465 | 490
489 | 508
507 | 500
497 | 497
497 | | | 12 | 29 | | 4 (| 0 42
0 21
0 43
0 37
0 -4 | 0 | 1 | 0 | 50 | 4 4 | 99 488 | 496 | 478 | 483 | 481 | 476 | 473 | 471 | 485 | 445 | 474
473
471
470 | 457
457
456 | 463 | 489 | 506 | 496 | 495 | | | 12 | 29 | | 19 (
34 (| 43 | | 2 7 | 7 0 | 50- | | 98 486
97 485 | | 478 | 482 | 480 | 475 | 472 | 470
469 | 484 | 445 | 471 | 456 | 461 | 486 | 504
504
502 | 495 | 494 | | | 12 | 29 | - 4 | 19 | 5 | | | <u> </u> | 49
49 | 9 4 | 97 485
95 484 | | 476 | 481 | 479
478 | 472
472 | 470
470 | 469
468 | 483
482 | 444
444 | 470
469 | 455
455 | 461 | 486
484 | 504 | 494 | 493 | | | 12 | 28
29
29
29
29
30
30
30
30
30 | | 5 (| | |) 1 | Ō | 499 | 9 4 | 93 482 | 491 | 474 | 477 | 477 | 471 | 469 | 466 | 481 | 443 | 468 | 455 | 464
463
461
461
460
459
459
458 | 484 | 501 | 494
492
492
490
489
489 | 493
492
492
491 | | | 12 | 30 | | | 9 -4 | 0 | \ \ | 2 | 49:
49: | 9 4 | 93 482
91 481 | 490 | 473 | 476 | 475 | 470
469 | 468 | 466
465 | 480
479 | 443 | 467
465 | 454 | 459 | 483 | 500 | 490 | 491 | | | 12 | 30 | - 4 | 18 | 4 | 0 | 2 | 2 0 | 49 | 5 4 | 89 480 | 489 | 470 | 474 | 474 | 469 | 466
466 | 465 | 478 | 442 | 464 | 454
454 | 458
458 | 481
480 | 499
498 | 4891
4891 | 489
488 | | | 12 | | | 3 (| -4 | 0 | 2 | 0 | 49 | 5 4 | 89 480 | 489 | 470 | 470 | 473 | 467 | 464 | 464 | 476 | 440 | 464 | 454 | 458 | 479 | 497 | 488) | 487 | | | 12 | 31
31
32
32
32
33
33
33
34
34
34
34
35 | | 14 | 35 | | 7 | 0 | 49: | | 88 479
86 478 | | 468
467 | 469
467 | 472
472 | 466 | 463 | 464 | 476
475 | 437
436 | 463 | 454 | 458 | 478 | 495 | 487 | 487
487
486
485
483
482
482
481
480
479
478
478 | | | 12 | 31 | - 4 | 19 (| 35 | 1 0 | | 0 | 49: | 2 4 | 85 476 | 485 | 466 | 466 | 471 | 465
465 | 462
461 | 463
463 | 474 | 434 | 462
461 | 454
454 | 457
457 | 478
477 | 494
493 | 485
484 | 485 | | | 12 | 32 | | 19 (
4 (
9 (
14 (| -4 | 0 |) 1
) 2
) 2 | 0 | 492 | 2 4 | 84 475 | 485
484 | 466
465 | 463 | 469 | 464
463 | 461 | 463 | 473 | 432 | 461 | 454 | 457 | 475 | 492 | 483 | 485 | | | 12 | 32 | 1 | 4 |) -4
) -4
) -5 | - 0 | 2 | <u>0</u> | 492 | 4 | 81 474
80 473 | 483 | 464 | 462 | 468
468 | 463
461 | 460 | 462
460 | 473
472 | 431
429 | 459
459 | 453
453 | 457
457 | 475 | 492 | 482 | 483 | | | 12 | 32 | 4 | 19 (| | 6 0 | 2 | 0 | 492
486
486
486
486
486
486
486
486 | 4 | 81 474
80 473
79 472
78 469
777 467
777 467
776 466
774 464
73 463
72 462
72 461
71 460 | 482
481 | 462
460
459
458
456
455
454
453
453 | 461
460
459
457 | 467 | 461 | 458
457 | 460 | 470 | 429 | 459 | 453 | 457
457 | 474
473
473 | 491
489 | 484
483
482
482
481
480 | 482 | | | 12 | 33 | | 4 (| -5 | 0 | 2 | 0 | 488 | 3 4 | 78 469 | 479 | 459 | 459 | 466 | 461
460 | 457 | 459 | 469 | 426 | 450 | 452 | 457 | 473 | 488 | 480 | 481 | | | 12 | 33 | 1 | 9 (| 5 5 | - 0 | 7 | 0 | 48t | 3 4
3 | 77 468 | 478 | 458 | 457 | 465
465 | 459
458 | 456
456 | 459
459 | 469
468 | 425
424 | 458 | 452
451 | 455 | 472
471 | 487
487 | 480
478 | 480 | | | 12 | 33 | 4 | 3 (8
8 (8 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 0 0 | Ó | 0 | 482 | 2 4 | 78 469
77 468
77 467
75 466
74 464
73 463
72 462 | 477
476
476
473
473
471
471 | 455 | 457
456
456
456
454
454
454
453 | 463 | 457 | 456
455 | 459
459 | 468 | 423 | 458
458
458
457 | 450 | 454
454 | 468 | 487 | 478 | 479 | | | 12 | 34 | : | 3 | 5 | 0 | 1 | - 0 | 480 | 4 | 74 464 | 475 | 454 | 456 | 462 | 456 | 454
454 | 458 | 466 | 423
421 | 457 | 449 | 453 | 468 | 486 | 477 | 478 | | | 12 | - 34 | 1/3 | 3 | 5 | - 6 | i | 8 | 480 | 4 | 72 463 | 473 | 453 | 456 | 461
461 | 456
456
454
454
454
454 | 454 | 458
458 | 465
465 | 420
420 | 457
457 | 449
448 | 453
452
451 | 468
468 | 486
486 | 477
477
476
476
475 | 478
478 | | | 12 | 34 | 4 | 3 (
3 (| 5 | Ō | Ò | 0 | 480 | 4 | 72 461 | 471 | 451
450 | 454 | 461
461 | 454 | 453
450
450
449 | 458 | 464 | 418 | 456 | 447 | 451 | 468 | 486 | 476 | 478 | | | 12 | 35 | | 3 (| | 0 | 2 | 0 | 474 | | 71 460
69 458 | 471 | | 453
453 | 460
460 | 454 | 450 | 457 | 463 | 417 | 456 | 445 | 450 | 465 | 486 | 475 | 477
477 | | L | 121 | 33 | | <u> </u> | ,, -5 | | <u>'</u> | . 0 | 4/4 | • 4 | 458 | 1 4/0 | 449 | 453 | 460] | 454 | 449 | 457 | 463 | 417 | 455 | 445 | 449 | 463 | 486 | 475 | 477 | | Time | į- | Time | Time | FT720 | PF-001 | PF-002 | FT730 | FT800 | | TEE15 | TEE14 | TEE13 | TEE12 | TEE11 | TEE10 | TEE9 | TEE8 | TEE7 T | EE6
DEG F | TEE5
DEG F | TEE4
DEG F | TEE3
DEG F | TEE2 | TEE1 | TEEUH17 | | TEELH19 | |------|---|---|------|---|----------------------|---|--|----------|---|--|---|---
---|---|---|--------------------------|---|---|---|--|---|-------------------------|--------------------------|--|--------------|---|--| | hour | | min | Sec | GPM | LVmin | LVmin | GPM | GPM | | DEG F | | DEG F
469 | DEG F
447 | DEG F
452 | DEG F | DEGF | DEG F | | DEG F
462 | DEG F
415 | DEG F | DEG F
444 | DEG F
449 | DEG F
462 | DEG F
486 | DEG F
473 | DEG F
477 | | ł | 12 | 35
35 | - | 48 | 0 | ·5 | 0
0
0 | 5 | 0 474 | 469
468 | 457 | 467 | 446 | 452
451 | 460
460
459
459 | 453
452
452
451 | 448
447
445
444
443
443
441
439
438 | 457
457
457
456
454
454
453
452
451
451
451
450
449 | 462
460 | 415
414 | 454
454
453
452 | 444 | 448 | 462 | 486 | 473
473
472 | 477
477
477
477
476
476
476
476
477
475
475
475 | | | 12 | 36
36 | I | 18 | 0 | -5
-5 | o | 1 | 0 4 <u>69</u> | 467
466 | 456 | 466
465 | 445
444 | 451
451 | 459 | 452 | 445 | 457 | 459
459
459 | 413
413
411 | 453 | 443 | 446
446 | 462
460 | 485
485 | 472 | 477 | | ł | 12 | 36 | I | 33
48 | ŏ . | -5] | ŏ | 6 | 0 469 | 465 | 455 | 464 | 443 | 4 <u>50</u>
449 | 459
459 | 450 | 443 | 454 | 459 | 411 | 452 | 441 | 445 | 459 | 485 | 472
472 | 476 | | 1 | 12 | 36
37
37 | | 48 | o - | 5 | 0 | 1 : | 0 469
0 464
0 464
0 464 | 463 | 455 | 463
463 | 441
440 | 449
449 | 459 | 450
449 | 443 | 454 | 458
458 | 409
408
403 | 451
450 | 441 | 445 | 458
458 | 485
485 | 472
472 | - 4 <u>76</u>
- 476 | | 1 | 12 | - 37 | 1 | 18 | 0 | ·5
·5 | Ö | 0 - | 0 464 | 462 | 453
451 | 461 | 439 | 449 | 459 | 448 | 441 | 452 | 457 | 403 | 449 | 439 | 444 | 457 | 485 | 472
472
472 | 476 | | 1 | 12
12
12
12
12
12
12
12
12
12 | _ 37 | 1 | 3 <u>3</u>
48 | ō · | 5 | <u> </u> | 1 . | 0 464 | 463
462
460
459
458 | 451 | 460
459
459 | 439
438
438 | 448
446 | 457
457 | 448
446 | 439 | 451 | 457
457 | 404
403
402
401 | 449
447 | | 444
443
443
442 | 456
456 | 485
485 | 472 | 475 | | - | 12 | 37 | ł | 48 | 0 | ·5 | 0 | 7 | 0 464
0 457 | 458 | 450 | 459 | 437 | 445 | 456 | 445
445 | 438 | 450 | 456 | 402 | 447 | 437 | 442 | 456 | 486 | 472
472 | 475 | | 1 | 12 | 38 | 1 | 19 | o | .5 | 0 | 7 | 0 457 | 455 | 450 | 458 | 435 | 445 | 455 | | 437 | 449 | 455 | 401
401 | 446 | 436 | 440
440
440
439 | 456
455 | 486 | 472
472 | 475 | | | - 12 | _ 38 | | 34
49
4 | o : | ·5 | 0 | | 0 457
0 457 | 455
454 | 448
448 | 458
457 | 434 | 444 | 454
453 | 444
444 | 436
436 | 448 | 452 | 399 | 445 | 435 | 440 | 455 | 487 | 472
473 | 476 | | | 12 | 37
37
38
38
38
38
39
39
39
39 | 1 | 4 | 0 | -5
-5
-5
-5 | 0 | 2 | 0 453
0 453 | 454 | 447 | 455
454
453 | 435
434
434
433
433
432
432
431
431 | 445
444
444
443
443
443 | 453
453
452
452 | 444
443
443 | 435 | 447 | 457
456
455
464
452
451
451 | 397
397 | 444 | | 439
439 | 455
455 | | 473 | 476
476
476
476 | | 1 | 12 | 39 | - | 19 | 0 | ·5 | <u> </u> | | 0 453
0 453 | 453
453 | 446 | 454
453 | 433
432 | 443 | 452 | 443 | 435
434
434 | 447 | 450
449 | 395 | 444 | 434 | 438 | 455 | 488 | 473
473
473
473
473
473
473 | 476 | | 1 - | 12 | 39 | 1 | 34
49
3 | ō - | -5 | Ō | | 0 453
0 453 | 453 | 445
445 | 453
452
451 | 432 | 442 | 450 | 442
442 | 434 | 445 | 449 | 395 | 443
442 | 433 | 438
437 | 455
455 | | 473 | 476 | | | 12 | - 40
40 | - | 18 | o o | ·5 | 0 | 2 | 0 452
0 452 | 452 | 445 | 452
451 | 431
431 | 442
440 | 450
449 | 440
440 | 432
432 | 444
444
444 | 449
448 | 394
393 | 442 | 432 | 436 | 455 | 490 | 473 | 476 | | | 12 | ` 40 | | 18
33 | <u> </u> | -5 | Ō | o . | 0 452 | 452 | 444 | 450 | 429 | 440 | 449 | 440 | 431 | 444 | 448 | 392 | 442 | 430 | 436 | 455
455 | | 473 | 476 | | | 12 | 40
40
40
41 | - | 3 | | ·5
·5 | 0 | 0 7 | 0 452
0 452 | 453
453
452
452
452
450
450 | - 444
442 | 450
450 | 429 | 440
439 | 448 | 439
439 | | 443
443 | 447
445 | 389
387 | 440 | | 436
435 | 455 | 492 | 473 | 475 | | | 12 | 41 | | 18 | o . | -5 | <u> </u> | 2 | 0 453
0 453
0 453
0 453
0 452
0 452
0 452
0 452
0 452
0 450
0 450 | 449 | 441 | 449 | 428 | 439
438 | 446
446 | 438 | 430 | 443 | 445 | 386 | · 439 | 429 | 435 | 455
454 | 493 | 473 | | | | 12 | 41 | | 33 | o
o | | 0 | 7 | 0 450
0 450 | 448
448 | 441
440 | 448 | $-\frac{427}{426}$ | 438 | 445 | 438
437 | 429
429 | | 444
444 | 385
384 | 438 | | 435
433 | 454 | | 473
473 | 475 | | 1- | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 42 | | 18
33
48
3
18
33
49
4
4
19
34
49 | <u> </u> | | 0 | 7 | 0 450 | 448 | 440 | 446 | 426 | 437 | 445 | 437 | 428 | 441 | 443 | 382 | 438 | 427 | 433 | 454
453 | | 474
474 | 475 | | - | 12 | 42 | | 33 | | - <u>5</u>
38 | 0 - | 0 | 0 445 | 447 | 439
439 | 446 | <u>425</u>
425 | 437 | 444
443 | 435
435 | 426
426 | 441 | 443
442 | 380
379 | 437 | | 432
432 | 453 | | 474 | 475 | | - | 12 | 42 | | 49 | <u>ŏ</u> :- <u>š</u> | 37 | <u>ŏ</u> | | 0 445 | 445 | 438 | 444 | 424 | 436 | 443 | 434 | 425 | 439 | 442
441 | 377 | 437 | 424 | 431 | 453 | | 474 | 476 | | | 12 | 43 | | 10 | 0 3 | 37
53 | 0 | 8 | 0 445 | $-\frac{445}{445}$ | 438 | 444 | - <u>424</u>
422 | 435 | 442
442 | 434
433 | 425
424 | 438
438 | 440 | 375
373 | 436 | | 431
431 | 453
453 | | 474
474 | 476 | | | 12
12 | 43 | | 34 | o s | 59 | ō | ō | 0 442 | 445 | 436 | 443 | 422 | 435 | 440 | 433 | 424 | 437 | 440 | 371 | 434 | 423 | 430 | 453
453 | | 474 | 476 | | | 12 | 43 | - | 49 | 0 6 | 34
34 | 0 | 2 | 0 442 | 445 | 436
435 | 443 | - 421
421 | 433 | 440
440 | 433
432 | 422 | 437 | 440
439 | 369
367 | 434 | | 430
430 | | | 474
475 | 476 | | | 12
12 | 44 | | 4
19
34 | | 71 | 000000000000000000000000000000000000000 | 2 | 0 450 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 445 0 446 0 0 446 0 0 446 0 0 446 0 0 446 0 0 446 0 0 446 0 0 446 0 0 446 0 0 446 0 0 446 0 0 0 446 0 0 0 446 0 0 0 446 0 0 0 446 0 0 0 0 | 447
445
445
445
445
445
445
445
445
445 | 444
441
441
440
440
440
439
438
438
438
436
436
436
437
434
434
434
434
434
434
434 | 442 | 429
428
428
428
426
426
426
425
424
424
422
420
420
420
419
419
416
416
416 | 433 | 439 | 432
432 | 422 | 437 | 439 | 366 | 433 | 422 | 429 | 451
451 | | 475 | 476 | | 1- | 12
12
12 | 44 | | 34 | 0 - 7 | 71 | 0 - | 1 7 | 0 440 | 444 | 434 | 441 | - <u>420</u>
419 | 432 | 439
439 | 432 | 421
421 | 436
436 | 439
437 | | 433
433 | 421
421 | 429
427 | 451 | | 475
475 | 477 | | | 12 | 45 | | | ŏ č | 34
34 | ŏ | 6 | 0 440 | 444 | 434 | 439 | 419 | 432 | 438 | 431 | 419 | 436 | 437 | 359 | 432 | 420 | 427 | 450
450 | 500 | 475
475 | 477
477 | | - | 12 | 45 | | 18 | 0 3 | 38
-4 | 0 | 6 | 0 438
0 438 | 444 | 433 | 439 | - 417 | 431 | 438
437 | 431
429 | 418
418 | 435 | 436
436 | 357
356 | 432 | | | | | 475 | 477 | | l | 12 | 45 | | 48 | ŏ. | -4 | Ŏ. | | 0 438 | 443 | 432 | 438 | 416 | 431 | 437 | 429
429 | 417 | 435 | 435 | 353 | 431 | 417 | 426 | 449 | | 475 | 477 | | - | 12
12
12
12
12
12
12
12 | 46 | | 18
33
48
3
18
33
48
33 | 0 - | ·4
·4 | 0
0
0 | 1 | 0 438
0 438
0 436
0 436 | 444
444
443
443
442
442
442
444
440 | 432 | 438 | 415 | 430 | 437
436 | 428
428
427 | 416
415 | 434 | 435
435 | 349 | 430 | 416 | 425 | 448 | 502 | 475
476 | 477 | | | 12 | 46 | - | 33 | 0 | | | 0 | 0 436 | 442 | 430 | 437 | 414 | 429 | 436 | 427 | 415 | 433 | 434
434 | 347 | 430 | 416 | 425
424 | 447 | | 476 | 477 | | - | 12 | 46
47 | ;} | 4 <u>8</u> | 0 | ·5 | 0 | 2 | 0 436
0 433
0 433
0 433
0 433
0 431
0 431
0 431
0 431 | 440 | 429 | 436 | 414
413
411
410
409
408
407
405
405 | 429 | 435
435 | 427
427 | 413 | | 433 | 343 | 428 | 414 | 424 | 445 | 504 | 476
476
476
476
476
477
477 | 477 | | | 12, | 47 | t | 18 | ō] ~ | -5 | <u>.</u> | 1 | 0 433 | 440 | 429 | 435 | 410 | 427 | 434 | 426 | 410
| 431 | 433 | 341 | 428 | 412 | 423 | 444 | | 476 | 477 | | | 12 | 47 | } | 33 | 0 | -5
-5
-5
-5
-5
-5
-5
-5 | 000000000000000000000000000000000000000 | 7 | 0 433 | 439 | 428
428 | - 435
433 | 409 | 426 | 435
434
432
432
432
432
431 | 427
426
425
425 | 409 | 431 | 433
432
432
432
430
430
429 | 341
338
336
334
331
327
326
325
322
322
322
322 | 427 | 7 411
7 411 | 423
421 | 443 | | 476 | 478 | | 1 . | 12 | 48 | | | ŏ - : | -5 | 0 | 1 | 0 433 | 439 | 427 | 433 | 407 | 425 | 432 | 424 | 407 | 430 | 432 | 334 | 426 | 410 | 421 | 442
442 | | 476 | 478 | | | 12 | 48 | 1 | 19 | 0 | ·5 | 0 | 1 | 0 431
0 431 | 439 | 426 | 433 | 405 | 425 | 432 | 424
424
423
423 | 404 | 429 | 430 | 331 | 426
425
426
426
426
427
427
427
427
427
427
427
427
427
427 | 407 | 420 | 441 | 507 | 477 | 478 | | | 12 | 48 | | 49 | o | 5 | ō | أِوْ | 0 431 | 438 | 426
426 | 432 | 404 | 424 | 431 | 423 | 403 | 429 | 429
429 | 327 | 42 | 407 | 419 | 441 | 507 | 477
477 | 478
478 | | 1 | 12 | 49 | 3 | 4
19 | 0 | -5
-5 | 0 | 2 | 0 431 | 438
438 | 425
425 | 432 | 403
402 | 423 | 430 | 421
421 | 401 | 428 | 429 | 325 | - 424 | 406
405 | 418 | 439 | 508
508 | | 478 | | - | 12 | 49 | | | <u>o</u> ! | | | | 0 430
0 430 | 437 | 424 | 431 | 401
400
398 | 421 | 430 | 420
419 | 400 | 427 | 427
427 | 324 | 421 | 2 404 | 417 | 439 | 508 | | 478 | | - | 12 | 49
50 | 1 | 49 | 0 | - <u>5</u> | 0 | | 0 430 | 437
436 | 422 | 430 | 398 | 421 | 429 | 419 | 397 | 427 | 426 | 320 | 42 | 2 402
1 402
0 401 | 415 | 438 | 509 | 478 | 479 | | | 12 | 50 | jţ | 19 | ō | •5 | <u>ō</u> ! | 4 | 0 430
0 428
0 428 | 436 | 421 | 429 | 397 | 420 | 429 | 418 | 395 | 426 | 426
425 | 319 | 420 | 401 | 415 | 437
437 | 509 | 478
478 | 479
479 | | | 12 | 42
423
433
433
434
444
445
455
455
456
466
468
468
477
477
477
477
478
488
488
488
488
48 | 2 | 33
48 | 0 | -5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
- | Ö | 4 | 0 431
0 430
0 430
0 430
0 430
0 428
0 428
0 428
0 428 | 435
435 | 421 | 429
428 | 396 | 419 | 428
427 | 418
416 | 393 | 425 | 425 | 315 | 419 | 399 | 413 | 437 | 510 | 478 | 479 | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 51 | 1 | 3[| o i | ·5 | 0. | 2 | 0 428 | 4400
439
4399
4399
4398
4398
4398
4398
4397
4307
4307
4307
4307
4307
4307
4307
430 | 425
424
422
422
421
421
420
419
417
416
414
414
413 | 450 450 450 449 448 448 446 446 445 441 441 441 443 443 443 443 443 443 443 | 397
396
395
393
392 | 438
437
437
436
436
435
435
435
433
433
433
433
433 | 431
430
430
430
429
429
429
427
427
427
426
426
424
424
423
423
423
423
423 | 415 | 390 | 427
 427
 427
 427
 5 | 425
424
423
423
422
422
420 | 312
311
309
300
300
300
300
300
300
300
300 | 419 | 398 | 413 | 437
436 | 510
511 | 478
478 | 479
479 | | | 12 | 51
51 | 1 | 1 <u>8</u>
33 | 0 | -5
-5
-5 | o
O | | 0 424 | 433 | 419 | 427 | 392
391 | 416 | - 426
426 | 414
414 | 389 | 424 | 423 | 309 | 410 | 394 | 411 | 436 | 511 | 478 | 479 | | 1 | 12 | 51 | | 48 | 0 | 5 | <u>o</u> | 5 | 0 424
0 423
0 423 | 432 | 417 | 426 | 389 | 415 | 424 | 413 | 385 | 422 | 422 | 308 | 41 | 393
4 391 | 410 | 435 | 512
512 | 478
478 | 479
479 | | | 12 | 52
52 | | 3
18 | 0 10 | 07† | o i | | 0 423 | 431 | 416 | 425
425 | 388
387 | 414 | 424 | 4 <u>12</u>
411 | 382 | 2 421 | 422 | 30 | 41: | 390 | 409 | 433 | 512 | 478 | 479 | | | 12 | 51
52
52
52
52
53 | 2 | 33 | 0 1 | 07
26 | <u>o</u> j | 0 | 0 424
0 423
0 423
0 423
0 423
0 423
0 423
0 420 | 429 | 414 | 423 | 385
383 | 414
414
413
411 | 423 | 409
408
407 | 380 | 419 | 419
419 | 304 | 7 410
1 410
1 410
3 410 | 3 390
3 389
2 388 | 407
406 | 435
433
433
433
434
434 | 512
513 | 478
479 | 479 | | 1 | 12 | 52
53 | 3 | 48 | 0 12 | 2ē
-2 | ō | <u>0</u> | 0 420 | 429 | 413 | 423 | 383
382
381 | 411 | 422 | 408 | 377 | 7 419 | 418 | 300 | 41 | 0 387 | 405 | 432 | 513 | 479 | 480 | | | 40 | | . 1 | ant. | ät | at . | at . | a.t | 400 | 400 | 412 | 422 | 201 | 1 410 | 1 421 | 407 | 274 | 418 | 417 | 304 | 40 | 389 | 31 404 | 1 430 | 513 | 479 | 480 | | T: | 17: | IT) | (5.5300 | Inc oos | IDC 000 | TTTOO. | (CTOOO | ITCC40 | TEEAA | I=- | 1010 | | 120011 | | 10000 | I==== | | 1==== | 1==== | | | Therefore a | 1===: | | | |------|----------|--------------|---------------|--------------|---------------|----------------|-------------|--------|------------|-------------------|-------------------|---|--|--|--|--|---|---|---
--|---|---|---------------------------------|--------------------------|---| | Time | Time | Time | GPM | PF-001 | PF-002 | FT730 | FT800 | TEE16 | TEE15 | DECE D | E13 | TEE12
DEG F | TEE11 | TEE10 | TEE9 | TEE8 | TEE7 | TEE6 | TEE5 | TEE4 | TEE3 | TEE2 | TEE1 | TEEUH17 | TEELH18 TEELH19 | | hour | min | Sec | GPM | Lt/min | Lt/min | GPM | GPM | DEG F | | DEG F DI | GF | DEG F | | 12 | 5 | 3 | 34 | <u> </u> | 2 | 0 | 2 | 0 420 | 428 | 411
409 | 421 | 379 | 409 | 9 421
8 420
6 420 | 406
405 | 373
372 | 417 | 7 417
7 415 | 299
299 | 408 | 383
7 382 | 3 403
2 401 | 431 | 513 | 479 48
479 48 | | 12 | | 3 | 49 | 0 - | | 0 | 0 | 0 417 | | 409 | 421 | 377 | | B 420 | 405 | 372 | 417 | 7 415 | 295 | 407 | 7 382 | 401 | 431 | 514 | 479 48 | | 12 | 5 | 4 | 4 | 0] - | | | | 0 417 | | | 420
420 | 376 | | 6 420 | 404 | 371 | 416 | | 295 | 406 | 379 | 400 | 430 | 514 | 479 48 | | 12 | 5 | 4 | 19 | 0 | 5 | 0 | 1 | 0 417 | 427 | 407 | 420 | 374 | 400 | 6 419 | 402 | 369 | 416 | 414 | 295 | 405 | 378 | 399 | 430 | | 479 48 | | 12 | 5 | 4 | 34 | 0 - | 5 | 0 | 6 | 0 417 | | | 418 | 372 | | | | 367 | 415 | | 292 | 403 | | | 430 | | 479 489 479 489 479 489 479 489 479 489 479 489 479 489 479 489 479 489 479 489 479 489 | | 12 | 5 | 4 | | 0 - | | 0 | 6 | 0 414 | | | 418 | | | | | 366 | 413 | | | | | 396 | 429 | | 479 48 | | 12 | - E | 5 | | 0 3 | | 0 | | 0 414 | | | 417 | | | | 1 700 | 300 | 711 | | | 402 | 3/6 | 390 | 429 | | 479 48 | | | | | | | ! | - | | | | | | | | | | 364
362 | 413 | 3 411 | | | | | 429 | | 479 48 | | 12 | | - | | | | 0 | | 0 414 | 423 | 404 | 416 | 368 | | 2 415 | 398 | 362 | 412 | | 290 | 400 | | 394 | 428 | | 479 48 | | 12 | 5 | 5 | | 0 • | 2 | 0 | | 0 414 | | 402 | 415 | 366 | | | | 361 | | | | | | | 427 | 516 | 479 48 | | 12 | 5 | 5 | | 0 - | 2 | 0 | 6 | 0 408 | 422 | 401 | 415 | 364 | 399 | 9 414 | 394 | 360 | 410 | 408 | 286 | 397 | 7 368 | 392 | 427 | 516 | 479 48 | | 12 | 5 | 6 | 3 | 0 - | 2 | 0 | 1 | 0 408 | 421 | 400 | 414 | 363 | 398 | 413 | 393 | 357 | 408 | | 284 | 395 | | 390 | 426 | 516 | 479 48 | | 12 | | 6 | 18 | 0 -: | | 0 | | 0 408 | | | 412 | 361 | 39 | | 391 | 356 | | | | 394 | 365 | 389 | 425 | 516 | 479 48 | | 12 | | 6 | | 0 | | <u> </u> | | 408 | | 396 | 412 | | | | 300 | 355 | 407 | 7 404 | | 200 | | 300 | 425 | 510 | 470 40 | | | | | | | | | 4 | | | | | | 394 | | 390 | 355 | | | | 393 | 364 | 389 | 425 | 517 | 479 48 | | 12 | | 9 | | | | <u></u> | 1 - | 0 403 | | 395 | 411 | 358 | | | | 354 | 406 | | | 391 | | 388 | 424 | | 480 48 | | 12 | | 4 | | 0 • | 5 | 0 | 2 | 0 403 | | 394 | 410 | 357 | | | 386 | 351 | 405 | | | 389 | 361 | 387 | 424 | 517 | 480 48
480 48
480 48 | | 12 | | | | 0 -! | | 0 | 2 | 0 403 | | 393 | 409 | | 39 | | 385 | 351 | 403 | 3 401 | 278 | 388 | 360 | 385 | 423 | 517 | 480 48 | | 12 | 5 | 7 | 33 | 0 - | 5 | 0 | 1 | 0 403 | 416 | 391 | 407 | 354 | 390 | 407 | 384 | 349 | 403 | 3 400 | 275 | 386 | 359 | 384 | 422 | 518 | 480 48 | | 12 | 5 | 7 | 48 | 0 - | 5 | 0 | 2 | 398 | 416 | 389 | 407 | | 388 | | 383 | 348 | | 398 | | 385 | | 383 | 422 | 518 | 480 483 | | 12 | | 8 | | 0 | | ol | | 398 | | 388 | 406 | 352 | | | | 347 | 400 | 397 | | 383 | | 303 | 421 | 518 | 480 483
480 483
480 483 | | 12 | | 8 | | 0 - | | 0 | | 398 | | 387 | 405 | 350 | 386 | | 270 | 346 | | | | 382 | 330 | 382
382 | 121 | | 400 487 | | 12 | | ă | | 0 - | | ă | | | | | 405
404 | | | 404 | 379 | 346 | | | 272 | 382 | | 382 | 419 | | 480 483 | | | | 0 | | š | | 0 | | | 414 | 385 | 404 | 348 | | | 378 | 344 | | | 271 | 380 | | 381 | 419 | | 480 483
480 483 | | 12 | | 0 | | 0 . | 2 | <u></u> | | 393 | 412 | 383 | 403 | | | 402 | 377 | | 397 | | | 379 | | 379 | 418 | | 480 483 | | 12 | | 9 | | 0 - | 5 | 0 | | 393 | 412 | 382 | 401 | | | 2 401 | 375 | | | | | | | | | | 480 482 | | 12 | | 9 | | 0 - | 5 | 0 | 7 (| | 411 | 380 | 400 | 344 | 381 | 399 | 373 | 341 | | | | | 349 | 378 | | 520 | 480 483 | | 12 | 5 | 9 | | 0 - | 5 | 0 | 11 | | 410 | 379 | 399 | 343 | 380 | 398 | 372 | 339 | 392 | 389 | 268 | 374 | | 377 | 416 | | 480 482 | | 12 | | 9 | | 0 - | 5 | 0 | 1 | | 409 | 377 | 398 | 342 | 370 | 397 | 371 | | | 387 | 265 | 373 | 3/6 | 376 | 416 | | | | 13 | | ö | | 0 - | 5 | 0 | | 386 | 408 | 376 | 396 | 342
341 | 377 | 395 | 368 | | | | | 371 | 345 | 376 | 414 | | | | 13 | | } | | ŏ - | | ol . | | 386 | 406 | 374 | 395 | 240 | 376 | 394 | 007 | 900 | 300 | 384 | 200 | 371 | 345 | 376 | 414 | | | | | | ~ | 34 | | | ~ | | | | | | 340 | 370 | 394 | 367
366 | 336 | | 384 | | 369 | | 375 | 413 | | | | 13 | | <u> </u> | | 0 . | | <u> </u> | | | | 373 | 394 | 340
338
337 | 374 | 392 | 366 | 335 | 386 | 382 | 263 | 368 | | 373 | 413 | | | | 13 | | 0 | 49 | 0 - | 5 | 0 | 5 | | 404 | 371 | 392 | 337 | 373 | 3 391 | 365 | 334 | 386 | 382 | 262 | 367 | | 372 | 412 | | | | 13 | | 1 | 4 | 0 -: | 5 | 0] : | 3 (| | | 369 | 391 | 335 | 372 | 390 | 363 | 332 | 383 | 379 | 261 | 364 | | 372 | 411 | 521 | 481 483 | | 13 | | 1 | 19 | 0 - | 5 | 0 | 3 | 379 | 401 | 368 | 389 | 334 | 370 | 387 | 363
363
362
360 | 331 | 382 | 378 | 260 | 363 | 339 | 371
3 370 | 410 | 521 | 481 483 | | 13 | | 1 | 34 | 0 - | 5 | 0 | 3 | 379 | 400 | 367 | 388 | 333 | 369 | 386 | 360 | 330 | 381 | 377 | 260 | 362 | 338 | 370 | 410 | | | | 13 | 1 | 1 | 49 | 0 - | 5 | 0 | 3 | | | 366 | 387 | 331 | 368 | | 359 | 329 | | | 256 | 361 | | 370 | 408 | 521 | 481 483 | | 13 | | 2 | 4 | 0 . | 5 | Ö | 7 | | 397 | 365 | 386 | 331 | 367 | 384 | 357 | 329 | 378 | 374 | 253 | 360 | 336 | 360 | 407 | 521 | 481 483 | | 13 | | 2 | 19 | 0 . | | ~ | <u>i</u> | 373 | | 363 | 385 | 330 | 367 | | 356 | 328 | 377 | 373 | 254 | 358 | 335 | 368
368 | 406 | | 481 483 | | 13 | | 2 | 33 | ~ | | | | | | 303 | 303 | 330 | 307 | 303 | 350 | 320 | 3// | 3/3 | 263
262
261
260
250
253
253
254
253
252
252
252
252 | 350 | 333 | 308 | 406 | 522 | 481 483
481 483
481 483
481 483
481 483 | | 13 | | 2 | | | | <u> </u> | | 373 | 395 | 362 | 383 | 329 | 366 | 382 | 355 | 326 | 376 | 372 | 253 | 357 | | 367 | 405 | 522 | 481 483 | | | | 2 | 48 | 9 | | <u> </u> | 2 | 368 | | 361 | 382 | 328 | 364 | 380 | 354 | 325 | 375 | 369 | 252 | 356 | | 366 | 404 | | 481 484 | | 13 | | 3 | 3 | 0 - | 5 | 0 | 2 | 368 | | 360 | 381 | 326 | 363 | 378 | 352 | 324
323 | 373 | 368 | 252 | 355 | 331 | 366 | 404 | | 481 484 | |
13 | | 3 | 18 | 0] -: | 5 | 0 | 7 | | 391 | 358 | 380 | 325 | 362 | 377 | 351 | 323 | 372 | 367 | 252 | 354 | 330 | 365 | 402 | | 481 484 | | 13 | <u> </u> | 3 | 33 | 0 - | 5 | 0 | 1 | 368 | 390 | 357 | 378 | 324 | 361 | 375 | 350 | 321 | 371 | 366 | 251 | 352 | 328 | 365 | 401 | 523 | 481 484 | | 13 | | 3 | 48 | 0 - | 5 | 0 | 11 (| 363 | 389 | 356 | 377 | 323 | 360 | 374 | 349 | 321 | 370 | 364 | 250 | 351 | 327 | 364 | 400 | 523 | 482 485 | | 13 | | 4 | 3 | 0 -! | 5 | 0 | 7 | | 387 | 354 | 375 | 321 | 358 | 373 | 348 | 320 | 369 | 363 | 248 | 350 | 326 | 362 | 399 | | 482 485 | | 13 | | 4 | 18 | 0 | 5 | 0 | 1 | 363 | 385 | 352 | 373 | 320 | 357 | 372 | | 319 | 367 | 362 | 248 | 347 | 326 | 362 | 397 | | 482 485 | | 13 | | 4 | 33 | <u></u> | | <u>~</u> | | 363 | 384 | 251 | 372 | 319 | | 371 | | 318 | | 361 | 246 | 346 | | 361 | | 524 | 482 485
482 485
482 485 | | 13 | | 7 | 48 | <u> </u> | | ×1 | | 357 | 304 | 351
350 | | | | 3/1 | | 310 | | 301 | 240 | 340 | 320 | 301 | | | 482 483 | | | | | 40 | <u></u> | 2 | <u> </u> | 0 | | 382
382 | 330 | 371 | 318 | | 368 | 344 | 317 | | 360 | 245 | 345 | 322 | 361 | 394 | 524 | 482 485 | | 13 | | - | 40 | Y | | <u> </u> | <u> </u> | 356 | 382 | 348
347 | 369 | 318 | | 368 | | 316 | 364 | 357 | 245 | 344 | | 360 | 393 | | 482 485 | | 13 | | | 18 | | | 0 | 0 (| | 379 | 347 | 368 | 316 | 353 | 366 | 341 | 314 | 363 | 356 | 243 | 343 | 321 | 359 | 391 | | 482 485 | | 13 | | 5 | 33 | 0] - | 5 | 0 : | 2 (| | 378 | 346 | 368 | 315 | 352 | 365 | 340
339 | 313 | 362 | 355 | 240 | 342 | 320 | 358 | 390 | 525 | 482 485 | | 13 | | 5 | 10 | 0 • | | 0 | 0 | | 377 | 344 | 367 | 314 | 351 | 363 | 339 | 312 | 360 | 353 | 240 | 341 | 318 | 358 | 389 | 525 | 482 485 | | 13 | | 6 | 3 | 0 - | 5 | 0 | 1 (| | 375 | 343
342 | 366 | 313 | 349 | 361 | 338 | 311 | 358 | 353
352 | 237 | 339 | 317 | 357 | 388 | | 482 485 | | 13 | | 6 | 18 | 0 - | 5 | ol | 1 | 350 | 375 | 342 | 364
363
362 | 313 | 349 | 360 | 337 | 311 | 357 | 351 | 236 | 339 | 316 | 357 | 387 | | 482 485 | | 13 | | 6 | | 0 - | 5 | 0 | | 350 | 375 | 342 | 363 | 312 | 347 | 350 | 335 | 310 | 357 | 350 | 235 | 337 | 310 | 355 | 386 | | 482 485 | | 13 | | 6 | 49 | 0 - | | ol - | 1 | | 373 | 341 | 362 | 310 | 242 | 250 | 324 | 300 | 250 | 240 | 222 | 220 | 310 | 355 | 204 | | 402 400 | | 13 | - | 7 | 4 | 0 - | | <u></u> | 1 | 347 | | 340 | 361 | 310 | 34/ | 358 | - 334 | 308 | 350 | 349 | 233 | 330 | 315 | 355 | 384 | 526 | 482 485 | | | | / | | š <u>-</u> | | - | | 347 | 372 | 340 | 301 | 312
310
309
309
308
307
306 | 349
346
347
347
349
342
343
341
340
341
340
333
333
333
333
333 | 3 3666 3 366 3 367 | 338
337
335
334
332
332
328
327
328
323
323
323
321
320
318
318
316
316 | 308
307
307
306
305
304
304
304 | 363
366
366
358
357
357
355
355
355
347
344
344
344
344
344 | 7 350
349
5 347
1 346
2 345
1 344
0 344
0 342
7 341
3 340
3 339
5 338
1 337
3 335
1 335 | 240
237
238
238
233
233
233
233
233
232
232
228
228 | 3333
3333
3333
3333
3332
3322
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
3223
323 | 3 316
3 315
3 314
3 312
2 311 | 357
355
355
355
354
354
353
353
353
353
353 | 382 | 526 | | | 13 | | | 19 | <u></u> | | | | 347 | 371 | 338 | 359 | 309 | 345 | 355 | 332 | 307 | 354 | 346 | 233 | 333 | 312 | 354 | 381 | 526 | 482 485 | | 13 | | | 34 | | 5 | 0 (| 0 (| 347 | 371 | 337 | 358 | 308 | 343 | 354 | 330 | 306 | 352 | 345 | 233 | 332 | 311 | 353 | 379 | 526 | 482 485 | | 13 | | 7 | 49 | 0] - | 51 | 0] : | 2 | 347 | 370 | 336 | 357 | 307 | 343 | 353 | 329 | 305 | 351 | 344 | 233 | 332 | 310 | 353 | 379
378
378 | 526
528
528 | 483 486 | | 13 | | 8 | 4 | 0 - | 5 | 0) : | 2 | 343 | 369 | 335 | 356 | 306 | 342 | 353 | 328 | 304 | 350 | 344 | 232 | 330 | 310 | 352 | 378 | 528 | 483 486 | | 13 | | | 19 | 0 . | 5 | 0 | 2 (| 343 | 368 | 333
332
331 | 355 | 305 | 341 | 352 | 327 | 304 | 340 | 342 | 230 | 330 | 300 | 351 | 377 | 528 | 483 486 | | 13 | | | 34 | 0 | 51 | ol - | 2 | 343 | 365 | 332 | 353 | 303 | 340 | 350 | 320 | 303 | 247 | 241 | 220 | 200 | 1 200 | 351
351 | 376 | 500 | 483 486 | | 13 | | | 49 | ă | | | 1 7 | | 364 | 332 | 352 | 303 | 340 | 330 | 320 | 302 | 34/ | 341 | 230 | 328 | 308 | 351 | 3/6 | | 403 486 | | 13 | | Š | 4 | 0 - | 3 | - | | 343 | 364 | 3311 | 352 | 303 | 339 | 349 | 325 | 301 | 346 | 340 | 229 | 328 | 306 | 350 | 375 | 528 | 483 486 | | 13 | | 9 | 4 | <u></u> | 3 | | 1 (| | 363 | 330 |
351 | 302 | 337 | 348 | 323 | 300 | 346 | 339 | 228 | 326 | 306 | 350 | 373 | 528 | 483 486 | | 13 | | 9 | 19 | 0] -5 | 5 3 | | 0 (| 337 | 362 | 329 | 350 | 301 | 337 | 347 | 323 | 299 | 345 | 338 | 228 | 325 | 304 | 349 | 371 | 528 | 483 486 | | 13 | | 9 | 34 | 0 -5 | 3 | | 8 (| | 360 | 327 | 348 | 300 | 336 | 345 | 322 | 299 | 344 | 337 | 227 | 324 | 303 | 349 | 371 | 528 | 483 486 | | 13 | | 9 | 49 | 0 -5 | 3 | 9 | 2 (| 337 | 359 | 326 | 347 | 303
303
302
301
300
299
297
297
296
295
294 | 335 | 344 | 321 | 300
299
299
298
297
296 | 343 | 335 | 226 | 323 | 309
308
308
308
308
308
309
309
309
309
309 | 350
349
349
348
348
347 | 371
370
369
368
367 | 528
528
528
529 | 483 486
483 486
483 486
483 486
483 487
483 487
483 487 | | 13 | 1 | 0 | 4 | 0 | | | 2 | 332 | 358 | 326 | 347 | 297 | 334 | 343 | 320 | 297 | 341 | 334 | 224 | 321 | 301 | 3/18 | 360 | 520 | 483 | | 13 | 1 | 0 | 19 | 0 | 3 | | 7 | 332 | 358 | 324 | 346 | 207 | 332 | 2/2 | 310 | 200 | - 340 | 222 | 222 | 200 | 301 | 247 | 203 | 500 | 400 | | - 13 | t | ō | 22 | 0 - | | | <u> </u> | 332 | 350 | 324 | 346
345 | - 287 | | 342 | - 318 | 290 | 340 | + 333 | 223 | 321 | - 301 | 347 | 308 | 529
529 | 403 487 | | | | 0 | 33
48
3 | ăt | 3 | | à | 332 | 357 | 324 | 345 | 296 | 332 | 341 | 317 | 295 | 340 | 332 | 222 | 320 | 299 | 346 | 367 | 529 | 483 487 | | 13 | 1 | | 40 | 0 -5 | 3 | | 2 | | 356
355 | 323
321 | 344 | 295 | 331
330 | 339 | 316 | 293 | 339 | 331 | 222 | 319 | 298 | 346 | 365 | i 529 | 483 487 | | 13 | 1 | | 3 | -5 | | 2 | 2 | 329 | 355 | 321 | 342 | 294 | 330 | 338 | 316 | 292 | 340
339
338
338 | 331 | | | | 344 | | 530 | 483 487 | | 13 | 1 | !! | 18] | -5 | 2 | 41 | 2] (| 329 | 355 | 320 | 341 | 294 | 330 | 338 | 315 | 292 | 338 | 329 | 220 | 317 | 296 | 344 | 364 | 530 | 483 487 | Time Time | Time | FT720 | PF-001 | PF-002 | FT730
GPM | FT800 | TEE16 | TEE15 | TEE14 | TEE13 | TEE12 | TEE11 | TEE10 | TEE9 | | TEE7 | | | EE4
DEG F | TEE3
DEG F | TEE2
DEG F | TEE1 TE | | TEELH18 TEEL
DEG F DEG | LH19 | |--|---|---------------------|----------------|--|------------------------------|--------------|---|--------------|---|---|--
---|--|---|---|--|---|---|----------------|--|--|---
--|--|---| | hour min | 80C | GPM | Lt/min | LVmin | GPM
4 | GPM | DEG F
0 329 | DEG F | DEG F | | DEG F | DEG F
93 32 | DEG F
9 337 | 314 | 291 | DEG F
337 | 328 | | 317 | 7 ~ 3 | | | 530 | 483 | 487 | | - 13 - 1 | 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 | 48
3 | 0 - | 5 | <u>i</u> | 2 | 0 329
0 329
0 326 | 1 3 | 152 | 319 34 | 111 2
100 2
197 2
19 | 91 32 | 8 336 | 312 | 290 | 335 | 327 | 219 | 31
31 | 5 2 | 96 34
95 34
93 34
92 34
92 34
91 34
90 34
89 34 | 3 362
3 361 | 530
531 | 483
483 | 487 | | _ 13 _ 1 | 2 | 3 | <u> </u> | 5 | 1 | | 0 329
0 326
0 326 | 3 | | 318 <u>33</u> | 39 2 | 90 32 | 98 334
66 333
55 333
54 332
54 333
54 333
53 330
52 328
50 327
50 327
51 324
66 322
66 321
66 321
66 321 | 312
311 | 290
289 | 335 | 326
326 | - 215 | 313 | 3 2 | 92 34 | 2 359
2 359 | 531 | 484 | 487 | | 13 1
13 1 | 2 | 18
33
48 | | 5 | 1 | 8 | 0 326 | 3 | 50 | 315 3 | 7 2 | 90 32
89 32 | 333 | 310 | 288 | 333 | 326
324 | 215 | 313 | 3 2 | 92 34 | 359 | 531 | 484 | 487 | | 13 1 | 2 | 48 | ō - | 5 | o l | 1] | 0 326 | 3 | 50 | 315 33
315 33
314 33
313 33
312 3 | 36 2 | 88 32
87 32
87 32 | 332 | 309
308 | 286
285 | 332 | 323
322 | 215 | 312 | 1 2 | 91 34
90 34
89 34 | 358
1 357
0 356
0 356
8 354
8 353
7 352 | 532 | 484 | 487
487 | | 13 1 | 3 | 3 | 음 : | 5 | 이 | 1 | 0 322
0 322 | - 3 | 47 | 313 | 34 2 | 87 - 32 | 3 330 | 306 | 285 | 331
330
329 | 321 | 214 | 30 | 9 2 | 89 34 | 356 | 532 | 484 | 488 | | 13 | 3 | 33 | o . | 5 | ŏ | ō | 0 322 | 3 | 146 | 312 3 | 33 2 | 85 32 | 328 | 306 | 284 | 329 | 321 | 213 | 30 | 8 2 | 87 34
86 33 | 356 | 532
532 | 484 | 488 | | 13 1 | 3 | 18
33
48
3 | 0 - | 5
5
5
5
5
5
5 | 0000 | 1 | 0 322
0 322
0 318
0 318
0 318 | - 3 | 345 3 | 311 3 | 31 2 | 85 32
84 32
83 31
82 31 | 9 327 | 305
304 | 283 | 329
327 | 318 | 210 | 30 | 7 2 | 85 33 | 353 | 533 | 484 | 488 | | 13 1
13 1 | 4 | 18 | 0 - : | 5 | - | | 0 318 | - 3 | 342 | 309 3:
309 3: | 30 2 | 82 31 | 9 326 | 303 | 280 | 326
325 | 317 | 210 | 30 | 6 2 | 85 33 | 7 352 | 533 | 484 | 488 | | 13 1 | 4 | | <u> </u> | 5 | 0 | 1 | 0 318 | - 3 | 342 | 308 3 | 29 2 | 82 31
81 31 | 325 | 302 | 280 | 325 | 316
316 | 209 | 30 | 5 2 | 84 33 | 7 351 | - <u>533</u>
533 | 484 | 488 | | - <u>13</u> <u>1</u> | 4 | 49 | 음 : | 5 | 0 | 1 | 0 314 | | 342 3
341 3
340 3 | 307 3:
306 3: | 28 2 | 80 31 | 16 322 | 300 | 278 | 324 | 315 | 205 | 30
30
30 | 2 2 | 83 33
83 33 | 7 351
7 351
6 350
6 349
5 349
5 347 | 533 | 484
484
484
484 | 488
488
489 | | 13 1 | 15 | 19 | o - | 5 | Ö | <u>il</u> | 0 314 | 1 3 | 339 | 306 3
306 3
305 3
303 3
302 3 | 26 2 | 80 31
79 31 | 6 321 | 299 | 278 | 322
322 | 313
312 | 205 | 30 | 2 2 | 81 33 | 5 349 | <u> 533</u> | 484 | 489 | | 13 1 | 15 | 34 | 0 | 5 | 0 | 2 | 0 314
0 314 | | 339 3 | 305 3 | 25 2 | 78 31
78 31 | 320 | 298 | $-\frac{277}{276}$ | 321 | 312 | 205 | 30 | 0 2 | 79 33 | 5 347 | 533 | 484 | 489 | | 13 1 | 16 | 49 | 0 | 5 | 0 | 1 - | 0 312 | | 338 3 | 302 3 | 24 2 | 76 31 | 319 | 297 | 276 | 321
320 | 311 | 204 | 29 | 9 2 | 79 33 | 5 346 | 534 | 484
484 | 489 | | 13 1 | 16 | 19 | | 5 | 0 | 1 | 0 312 | - 3 | 338 | 302 <u>3</u> | 23 2 | 76 31
76 31
75 31 | 166 3333
154 3323
154 3323
155 3333
156 3323
157 322
157 322 | 296 | - 274
273 | 320 | 310 | 203 | 29
29 | 7 -2 | 78 33
78 33 | 3 346
3 345
3 345 | 534 | 484 | 489 | | 13 1
13 1 | 16 | 34
49 | 0 | 5 - | 0 | 1 | 0 312 | | 336 3
336 3 | 300 3 | 21 2 | 74 31 | 316 | 294 | 273 | 319 | 309 | 202 | 29 | 6 2 | 77 33 | 3 345 | 534 | 484 | 489 | | 13 1 | 16
17 | 4 | 0 . | -5 | 0 | 6 | 0 309 | 3 | 335 | 300 3 | 20 2 | 74 3 | 10 315 | 293 | 272 | 318
316 | | 202 | 29
29 | 5 2 | 84 33
83 33
83 33
881 33
880 33
779 33
779 33
778 33
778 33
777 33
777 33 | 2 344
2 344 | <u>535</u>
535 | 484
484 | 489 | | 13 1 | 17
17 | 18
33 | 0 | -5 | 0 - | 0 | 0 312
0 312
0 312
0 312
0 315
0 305
0 305 | | 336
335
334
333
333
331
330
329
329
328
328
328 | 299 <u>3</u>
297 <u>3</u> | 19 2 | 74 3:
74 3:
73 3:
72 30 | 10 | 302
300
299
298
298
297
296
294
294
293
292
291
291
290
2888
2887 | 283 282 280 280 278 278 277 276 276 276 277 277 270 268 266 265 264 264 264 264 264 264 264 264 264 264 | 316 | 306 | 200 | 29 | 4 2 | 74 33 | 2 343 |
5311
5311
5311
5311
5312
5322
5322
5322
5323
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5333
5344
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444
5444 | 484
484
484
485
485
485
485
485
485
485 | 489 | | 13 1 | 17 | 48 | ŏ - | 5 | 0 | 1 | 0 309 | | 333 | 296 3 | 18 2 | 72 30 | 7 313 | 291 | 270 | 315 | 305 | 200 | 29
29 | 3 2 | 73 33 | 1 343 | 535 | 484 | 489 | | 13 | 18 | 3 | 0 . | -5 | 0 | 0 | 0 305 | - : | 331 | 295 <u>3</u>
295 3 | 17 2
17 2 | 70 <u>30</u> | 07 312 | 290 | 268 | 314
313 | | 198 | 29 | 1 2 | 272 33
272 33
271 33
270 33
268 33 | 341 | 536 | 485 | 489 | | 13 1 | 18 | 33 | : | -5 | 0 | 6 | 0 305 | | 329 | 294 3 | 15 2 | 68 30 | 310 | 287 | 267 | 312 | 2 303 | 198 | 29
28 | 0 2 | 71 33 | 0 340 | 536 | 485 | 489 | | 13 1 | 18 | 48 | 0 . | -5 | o - | 0 | 0 305 | | 328 | 293 3 | 14 2
13 2 | 68 30 | 309 | 286 | 266 | 312
310 | | 197 | 28 | 9 2 | 270 33
268 33 | 0 340
0 339 | - <u>536</u>
537 | 485 | 489 | | 13 1 | 19 | 18 | <u> </u> | -5 | 0 - | 1 | 0 300 | - | 328 | 293 <u>3</u>
291 3 | 13 2 | 66 30 | 300 | 285 | 265 | 310 | 300 | 196 | 28 | 8 2 | 268 32 | 9 339 | 537 | 485 | 489 | | 13 | 19
19
19 | 33 | ŏ . | -5 | 0 | <u> </u> | 0 300 | 1 | 326 | 290 3 | 12 2 | 65 3 | 02 307 | 284 | 264 | 309 | | 195 | 28
28
28 | 7 2 | 267 32
266 32 | 9 338
9 338 | 537
537 | 485 | 489 | | | 19 | 3 | 0 | -5 | 0 | 2 - | 0 300 | 2 | 325
325 | 290 3
289 3 | 11 2 | 65 30 | 304 | 283 | 263 | 308 | 298 | 193 | 28 | 6 2 | 266 32 | 9 337 | 538 | 485 | 489 | | 13 1
13 2
13 2 | 20
20
20
20 | 19 | 0 | -5 | 0 - | 7 - | 0 298 | 3 | 325 | 288 3 | 11 2
09 2 | 770 33.666 34.666 36.67 34.666 36.68 36.666 36.665 36.666 36.665 36.666 | 077 312
06 312
05 310
05 300
04 300
02 300
02 300
00 30 | 286
285
284
283
283
281
281
280
279
278
278
279
278
278
277
277 | 261 | 30 | 7 297 | 192 | 28 | 5 2 | 265 32 | | 538 | 8 485
485
485
8 485
8 485
8 485
9 485
9 486
9 486
9 486
9 486
9 486 | 49 | | 13 3 | 20 | 34 | 0 | -5 | 0 | 7 | 0 298 | 3 | 324 | 288 3
287 3 | 09 2
08 2
07 2
07 2 | 62 2 | 99 300 | 280 | 261 | 300 | | 190 | 28
28 | 3 2 | 264 32
264 32 | 7 335 | 538 | 485 | 49 | | 13 2 | 20 | 49 | 0 | -5 | 0 | 2 | 0 296 | 3 | 322 | 285 3 | 07 2 | 61 2 | 98 302 | 279 | 260 | 30 | 5 294 | 192 | 28 | 2 | 262 32 | 6 334 | 538 | 485 | 49 | | 13 | 21 | 19 | ō . | -5 | 0
0
0
0
0 | 5 | 0 290 | 3 | 322 | 284 3
284 3 | 07 2 | 60 2 | 96 30 | 278 | 259 | 30 | 3 293
3 292 | | 28 | 11 2 | 261 32
261 32 | 6 334
6 334 | 538 | 485 | 49 | | 13 2 | 21 | 49 | 0 | -5 | 0 - | 5 | 0 290 | 3 | 321
321 | 283 3 | 06 2
04 2 | 59 2 | 95 30 | 277 | 258 | 30
30
30 | 2 292 | 189 | 28
28 | 10 2 | 260 32 | 6 333 | 538 | 485 | 49 | | 13 | 22 | 4 | ŏ - | -5
-5 | | 5 | 0 293 | 3 | 320 | 282 3 | 04 2 | 58 2 | 95 299 | 275 | 256 | 30 | 1 291
1 289 | | 27
27 | 9 2 | 259 32
259 32 | 5 333
5 332 | 539 | 485 | 49 | | 13 2 | 22 | 18 | 0 | -5 3 | 2
38
1
1
31
2 | -5 | 0 293 | 3 | 319 | 281 3
280 3 | 03 2
02 2 | 56 2 | 966 300 955 2991 964 259 972 299 972 299 970 299 970 299 970 299 888 29 888 29 888 29 887 29 887 288 | 274 | 255 | 30 | 0 289 | 188 | 27 | 7 3 | 259 32
258 32 | 5 332 | 539 | 486 | 49 | | 13 | 22 | 48 | | -5
-5 | 1 | 1 | 0 293 | 3 | 317 | 280 3
279 3 | 02 2
01 2 | 255 2 | 92 29 | 273 | 254 | 29 | 9 288 | 185 | 27 | 6 2 | 256 32 | 5 331 | 539 | 486 | 49 | | 13 2 | 23 | 3 | 0 | -5
-5
-5 | 31 | 0 | 0 28 | 3 | 216 | 277 2 | 01 2 | 254 2 | 92 29 | 272 | 254
253 | 29
29
29 | 9 287
7 287 | | 27 | 75 | 256 32
255 32 | 331
331 | 540 | 486 | 49 | | 13 - 1 | 23 | - 18 | 0 | -5 | 17 | 7 - | 0 - 28 | 8 | 315
314 | 277 3 | 00 2 | 253 2 | 90 29 | 271 | 253 | 29 | 7 286 | 185 | 27 | 4 | 254 32 | 329
4 329 | 540 | 0 486
0 486 | 49 | | 13 | 23 | 48 | 0 | -5
-5 | 1 | 1 | 0 28 | B | 314 | 276 2 | 98 2
97 2 | 253 2 | 89 29 | 269 | 252 | 29 | 6 285
5 285 | | 27
27 | 73 7 | 254 32
253 32 | 329 | 541 | 1 486 | 49 | | 13 | 24 | 18 | 0 | ·5
·5 | 1 17 | 2 8 | 0 28 | 5 | 314 | 275 2 | 97 | 251 2 | 88 29 | 268 | 250 | 29
29
29
29
29
29
29
29
29 | 5 283 | 183 | 27 | 72 | 255 32
254 32
254 32
253 32
252 32
252 32
250 32
250 32
249 33 | 3 328 | 541 | 1 486
1 486
1 486
2 486 | 49 | | 13
13
13
13
13
13
13
13 | 24 | 33 | 0 | -5 | 1 . | <u>o</u> | 0 28 | 5 | 314
313
313
311 | 274 2 | 96 2
96 2
95 2 | 251 2 | 87 29 | 267 | 250 | 29 | 5 283
4 283
4 282 | 183
182 | 27 | 70
70 | 252 32 | 328 | 541 | 486 | 49 | | 13 | 24 | 48 | <u>0</u> | -5 | 1 | 0 | $\frac{0}{0} - \frac{28}{28}$ | 3 | 313 | 274 2
273 2 | 95 | 250 2 | 86 28 | 266 | 248 | 29 | 3 281 | 182 | 26 | 59 | 250 32 | 2 327 | 542 | 486 | 49 | | - 13 | 25 | 18 | 0 | 5 | 1 | ō · | 0 28 | 3 | 311 | 271 2 | 95 | 249 2 | 86 28 | 266 | 248 | 29 | 3 281 | 181 | 26 | 39 | 249 32 | 22 327 | 542 | 486 | 49 | | 13 | 25 | 33 | 0 | -5 | <u>0</u> | Ö | 0 28 | 3 | 310 | 271 2 | 95
94
92
92
91 | 247 2 | 84 28 | 8 <u>265</u> | 247 | 29 | 2 280 | 181 | - 20 | 39
38
37
57 | 249 32
248 32 | 22 - 326 | 542 | 2 486 | 49 | | 13 | 25 | 48 | 0 | ·5
·5 | 히 - | 7 | 0 28 | 1 | 309 | 269 - 2 |
92 | 246 2 | 83 28 | 263 | 246 | 29 | 0 279 | 180 | 20 | 57 | 247 3 | 21 326 | 543 | 3 486 | 49 | | 13 | 26 | 19 | ō | • <u>5</u> | 0 | 2 | 0 28 | 1 | 308 | 269 2 | 91 | 245 2 | 82 28 | 4 262 | 246 | 29 | 0 278 | 179 | - 26 | 56 | 247 - 37 | 20 325 | - 543
543 | 3 486 | 49 | | 13
13
13
13
13
13
13
13
13
13
13
13
13 | 21 21 22 22 22 22 23 23 | 33 | 0 | ড়৾ড়৾ড় | 0 | 6 | 0 28 | 1 | 310
310
309
308
307
307
307
305
304
303
303
303
302
302
301
301
299 | 271 271 2
271 270 2
270 269 269 269 268 267 267 265 264 264 263 262 261 260 2 | 90
90
889
88
88
88
86
85
85
884
884
884 | 245 2245 2244 2243 2241 2240 2239 2239 2238 2238 2237 2237 | 86 28 84 28 84 26 83 28 82 28 82 28 81 28 80 28 77 27 77 27 77 27 | 5 2745
5 2773
5 2773
6 2773
6 2774
1 2771
2 2691
2 2692
2 2692
2 2692
2 2693
2 2693
2 2693
2 2693
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 243 | 29
28
3 28 | 3 281 3 281 2 280 1 280 0 278 0 278 9 276 8 276 7 276 5 277 5 273 5 273 3 277 3 277 | 180
180
179
177
176
175
174
174
174
172
170 | 20 | 56
54
54
53
52
62
61
60
60
58
58 | 255 3255 32554 332554 332554 332553 342555 3255 332555 33255 | 328 328 328 328 328 328 328 328 328 328 | 54 | 2 486
2 486
3 486
3 486
3 486
3 486
3 486 | 49 | | 13 | 27 | 4 | 0000000000 | ·5 | ō | 7 | 0 27 | 7 | 305 | 267 2 | 89 | 243 2 | 80 28 | 2 260 | 243 | 28 | 276 | 176 | 20 | 63 | 244 3:
243 3:
243 3:
244 3:
241 3:
241 3:
240 3: | 20 323 | 54 | 3 486
3 487 | 49 | | 13 | 27 | 19 | 0 | -5 | 0 | 1 | 0 27
0 27 | 7 | 304 | 265 | 88 | 243 2 | 78 28 | 2 259 | 242 | 28 | 5 - 274 | 175 | 20 | 62 | 243 3 | 18 323 | 54 | 3 487 | 49 | | - 13 | 27 | 48 | 0 | •5 | 0 | ii | 0 27 | 7 | 303 | 264 | 86 | 240 2 | 77 27 | 9 25 | 240 | 28 | 5 273 | 174 | . 20 | 61 | 242 3 | 18 322 | 54 | 3 487 | 49 | | 13 | 28 | 3 | ō | •5 | 0 | 0 | 0 27 | 3 | 303 | 263 | 85 | 240 2 | 77 27 | 9 250 | 240 | 28 | 5 272
271 | 174 | 20 | 60 | 241 3 | 18 322
18 322 | 54 | 4 487
4 488 | 49 | | 13 | 28 | 33 | 0 | -5
-5 | o. | 2 | 0 27
0 27
0 27 | 3 | 302 | 262 | 84 | 239 2 | 76 27 | 7 25 | 239 | 28 | 3 27 | 172 | 2 | 58 | 240 3 | 18 322
18 321 | 54 | 4 488 | 49 | | 13 | 28 | 48 | ō | -5 | <u>o</u> † | 2 | 0 27 | 3 | 301 | 261 | 284 | 238 2 | 76 27
76 27
75 27
75 27
75 27 | 9 25
9 25
8 25
7 25
7 25
6 25
5 25 | 238 | 28
3 28
3 28 | 270 | 170 | 2 | 58
57 | 238 3 | 18 321
18 321 | 54 | 4 488
4 488
5 488 | 4884
4884
4884
4884
4884
4884
4884
488 | | 13 | 29 | 3 | 0 | -5 | 0 | 2 | 0 27 | 2 | 201 | 260 | 83 | 237 2 | 275, <u>27</u> | 5 25 | 230 | 7 28 | 270 | 169 | 2 | 57 | | 18 321
18 320 | 54 | 5 488 | 45 | | Time | Time | Time | FT720 | PF-001 | PF-002 | FT730 | FT800 | TEE16 | TEE15 | TEE14 | TEE13 | TEE12 | TEE11 | TEE10 | TEE9 | TEE8 | TEE7 | ITEE6 | TEE5 | TEE4 | TEE3 | ITEE2 | TEE1 | TEEUH17 | TEELH18 TEEL | 119 | |-------------|------|----------------------------|----------|-------------------|----------|-----------------|--|-------|------------|------------|-------|-------|-------|------------|-------|------------|-------|------------|-------|-------|-------|-------|------|---------|--------------|------------| | hour | | sec | GPM | Lt/min | LVmin | GPM | GPM | | | | DEG F | DEG F | | | DEG F | | | DEG F DEG I | | | 1 1 | 3 | 29 3
29 4
30 | 3 | 0 - | 5 | 0 | 2 | 272 | 299 | 258
258 | 282 | 237 | 274 | 275 | 252 | 237 | 281 | 267 | 170 | 256 | 237 | 317 | 320 | | | 492 | | 1 | 3 | 29 4 | 8 | 0 - | 5 | 0 | 1 | 272 | 299 | 258 | 282 | | | 274 | 251 | 236 | 280 | 267 | 170 | 256 | 236 | | | | | 492 | | 1 | 3 | 30 | 3 | 0 - | 5 | 0 | 1 | 270 | | 257 | | | 273 | 274 | 251 | 235 | 280 | 266 | 169 | 255 | 236 | 317 | 318 | 546 | 489 | 492 | | 1 | | 30 1 | 8 | 0 -: | 5 | <u> </u> | 1 | 270 | 298 | 256 | | | | 273 | | 235 | 279 | 266 | 169 | 254 | 235 | 317 | 318 | 546 | 489 | 492 | | 1 | | 30 1
30 3
30 4
31 | | _0 -: | 51 | oj | 2 | 270 | 297 | 256 | | | | 271 | | | | | 169 | | | 316 | 317 | 546 | 489 | 492 | | 1 | | 30 4 | 8 | 0 - | 5 | 0 : | 2 | 270 | 297 | 255 | | | | 271 | | | | | | | | 316 | 317 | 546 | 489 | 492 | | 1 | | 31 | | 0 - | 5 | 의 <u>-</u> | 2 | 0 267 | | 254 | | | | 270 | | | 276 | | | | | | | | 490 | 492 | | 1 | | 31 1 | | 9 | 5 | 2 | 2 | 0 267 | 294 | 254 | | | 269 | 269 | 246 | | 275 | | | | | | | | | 493 | | 1 | | 31 3 | | 0 - | | | 11 | 267 | 294 | 252 | | | | 268 | | | 275 | | | | | | | | | 493 | | 13 | | 31 4 | 9 | | 5 (| <u> </u> | 11 | 267 | 293 | 251 | 276 | | | 268 | 245 | | | | | | | | | | | 493 | | 1: | | 32 | 4 | 0 1 | 5 |] | 1 | 264 | 292 | 251 | 274 | | | 267 | 244 | 230 | | | | | | | | | | 493 | | 1: | | 32 1 | | | | | 4 | 264 | 292 | 250 | | | | 266 | | 229 | | | | | | | | | | 493 | | 1: | | 32 3
32 4 | | | 5 (| | !! | 264 | 291 | 249 | | | | 266 | | | | | | | | | | | | 493 | | 13 | | | 4 | 0 - | | (- | <u>'</u> | 264 | 291 | 249 | | | | 265 | 241 | 227 | 271 | | | | | | | | | 493 | | 1: | | | | <u> </u> | | | | 261 | 290 | 248 | | | | 263 | 241 | 226 | | | | | | | | | 491 | 495 | | 1 | | 33 1
33 3 | | | 5 | | ' | 261 | 290
289 | 247 | | | | 263 | 240 | | | 257 | | 244 | | | | | | 495 | | | | 33 4 | | \ | | | - | 261 | 289 | 247 | | | | 262 | 240 | 226 | | 256 | | | | | | | | 495 | | 1 | | | 3 | 0 - | | | | 260 | 289 | 246
246 | | | | 262 | 239 | 225 | | 255 | | | | | | | | 496 | | 1 | | 34 1 | | | | (| | 260 | 288 | 246 | 270 | | | 261
261 | 239 | 225 | | 254 | | | | | | | | 496 | | 1 | | 34 3 | | * - | <u> </u> | | | 260 | 288 | 244 | | | | | 238 | 224 | 268 | 254 | | | | | | | | 496 | | 15 | | 34 4 | | 0 3 | <u> </u> | (| | 260 | 286 | 243 | | | | 260
260 | 238 | 224
223 | 267 | 253 | | 242 | | | | | 492 | 496 | | 15 | | 35 | | 0 - | | (| | 257 | 286 | 243 | | | | 259 | 235 | 223 | 267 | 253 | | 241 | | | | | | 497 | | 1 | | 35 1 | | 0 - | | | ; | 257 | 285 | 242 | | | | 257 | 235 | 222 | | 252
251 | | | | | | | | 497 | | 15 | | 35 3 | | 0 . | | | | 257 | 285 | 241 | | | 257 | 257 | 234 | 222 | | 251 | | | | | 307 | | | 497
498 | | 1 | 3 | 35 4 | | 0 - | 5 | | <u>;</u> | 257 | 284 | 241 | | | | 256 | 234 | 221 | | 249 | | | 219 | | 305 | 549 | | 498 | | 13 | | | 3 | 0 -5 | (| 5 | | 254 | 284 | 240 | | | 256 | 256 | 233 | 221 | | 249 | | | | | | | | 498 | | 13 | 3 | 36 1 | В | 0 -5 | 5 | | 1 | 254 | 283 | 240 | | | | 255 | 232 | 221 | 262 | 249 | | | 219 | | | 550 | | 499 | | 13 | 3 | 36 3 | 4 | 0 -5 | 5 | 2 | 2 | 254 | 282 | 238 | 262 | | | 255 | 232 | 222 | 262 | | | | | | | 550 | | 499 | | 10 | 3 | 36 4 | 9 | 0 -5 | 1 | 0 |) | 254 | 282 | 237 | 262 | | | 254 | 231 | 222 | 262 | | | | | | 304 | | | 499 | | 10 | | 37 | 4 | 0 -5 | 5 (|) 1 | | 251 | 281 | 237 | 261 | 218 | 254 | 254 | 231 | 224 | 262 | 251 | | 241 | | | | | | 499 | | 13 | | 37 1 | | 0 -: | 1 | 1 | | 251 | 281 | 236 | 261 | 217 | 254 | 254 | 231 | 227 | 263 | 253 | | 244 | | | 306 | | 494 | 501 | | 10 | | 37 3 | | 0 -9 | |) (| 3 | 251 | 279 | 236 | 260 | 217 | | 254 | 229 | 229 | 264 | 257 | | 247 | | | 308 | | 494 | 501 | | 13 | | 37 4 | 9 | 0 -5 | 5 (|) 5 | 5 (| 251 | 279 | 235 | 260 | 217 | 253 | 254 | 229 | 232 | 265 | 261 | 184 | 251 | | | | | 495 | 502 | | 13 | | 38 | <u> </u> | 0 • | 5 (|) 5 | | 250 | 279 | 235 | 259 | 217 | 252 | 253 | 229 | 234 | 265 | 264 | | 255 | | | | 552 | 495 | 502 | | 1 | | 38 1 | | 0 -5 | |) 5 | | | 278 | 234 | 259 | | 252 | 253 | 229 | 237 | 267 | 267 | 196 | 258 | 239 | | 311 | | 495 | 502 | | 1 | | 38 3 | | 0 -5 | (|
| | 250 | 277 | 234 | 258 | | | 253 | 229 | 239 | 269 | 270 | | | 243 | | 311 | | | 503 | | 13 | | 38 4 | - | 0 -5 | (|)(|) (| 250 | 277 | 232 | 258 | | | 253 | 229 | 241 | 270 | 274 | 208 | 265 | 245 | 321 | 312 | 552 | 496 | 503 | | 13 | | 39 | | 0 -5 | | 1 | 9 | 248 | 277 | 232 | 256 | | | 252 | 229 | 244 | 271 | 277 | 210 | 268 | 249 | 322 | 314 | 552 | 496 | 503 | | 13 | 3 | 39 1 | | 0 -5 | (| 2 | 2 | 248 | 276 | 231 | 256 | | | 252 | 229 | 246 | 272 | | | 272 | | | 315 | 552 | 497 | 504 | | 13 | 5} | 39 3 | 41 | 0) -5 |) (| J |)] (| 248 | 276 | 231 | 255 | 213 | 249 | 252 | 229 | 247 | 273 | 284 | 220 | 275 | 253 | 326 | 316 | 552 | 497 | 504 | | RTS | |--| | T DA | | TE Tue J | | Time of the control o | | A 99 TEWN 8 8 1 TEWN | | 1 5849 581 5829 581 5829 581 5829 581 5829 581 5829 581 5829 581 5829 581 5829 581 5829 581 5829 582 5829 582 5829 582 | | 589 589 589 589 589 589 589 589 589 589 | | 587
588
590
591
591
591
592
592
592
592
592
593
593
594
595
595
596
597
597
597
597
597
597
597
597 | | DEG F 5899 5898 | | \$88
\$88
\$58
\$59
\$59
\$59
\$59
\$59
\$57
\$77
\$77
\$77
\$77
\$77
\$77
\$77
\$77
\$77 | | DEG Section | | \$88 | | DEG F 5833 5845 5845 5854 5865 5865 5866 5866 5866 | | 583
583
583
583
583
583
583
584
585
586
586
587
587
587
588
588
588
588
588
588
588 | | 5815 5815 5815 5815 5815 5815 5815 5815 | | \$92 | | \$90
\$91
\$89
\$89
\$90
\$90
\$90
\$90
\$90
\$97
\$77
\$74
\$74
\$75
\$98
\$99
\$99
\$90
\$90
\$90
\$90
\$90
\$90
\$90
\$90 | | 5921
591
591
591
590
590
590
590
590
590
590
590 | | DEG F | | DEG F | | | | \$855
\$899
\$990
\$900
\$900
\$900
\$900
\$900
\$900 | | DEG F C S89 | | | | SWLH21 TE9: G F DEG S84 S84 S83 | | DEG F S S S S S S S S S | | | | Time | | Time | Tin | ne | TEW18 | TEW17 | TEW16 | TEW15 | TEW14 | TEW13 | TEW12
DEG F | TEW11 | TEW10 | TEW9 | TEW8 | TEW7 | TEW6 | TEW5 | TEW4 | TEW3 | TEW2
DEG F | TEW1 | TEWUH1 | TEWLH2 | TEWLH21 | TE970 TE990 | |--------------|----|----------|--------------|----------------|------------|------------|-------------------|------------|------------|------------|----------------|---|------------|-------------------|------------|--|--------------------------|-------|----------------|------------|---------------|------------|------------|------------|------------|--| | hour | | min | Sec | <u> </u> | DEG F | DEG F | | ļ | 12 | | 7 | 34
48 | 560
557 | | 558
557 | 560
558 | 549
547 | 557 | 513 | 551 | | 542 | 537 | | 551 | 52 | 7 542 | 552 | | 534 | | 559 | 556 | 521 586
520 586 | | - | 12 | | 8 | 3 | 556 | | 556 | 557 | 546 | 555
553 | | 549
547 | | | | | 550 | | 540 | 550 | | | | | 555 | 520 586 | | | 12 | | 8 | 18 | | | | 555 | 544 | | | 547 | | | | | 549
547 | | 4 537
2 534 | | | | | | 554
553 | 520 586 | | | 12 | | 8 | 33 | | | 554 | 554 | 543 | 550 | | 543 | | | | | 546 | | 531 | 545 | | | | | | 519 586
519 586 | | | 12 | | В | 48 | 553 | | | 553 | 541 | | | 541 | | | 528 | | 545 | | 528 | 544 | | 526 | | | | 518 587 | | | 12 | | 9 | 3 | | | 552 | | 539 | 548 | | 540 | | | | | 544 | | 7 525 | 543 | | | 567 | | | 518 587 | | | 12 | | 9 | 18 | 550 | | 549 | 549 | | | | 538 | | 530 | 525 | 527 | 543 | 51 | 5 522 | 541 | 496 | 523 | 566 | 551 | 547 | 517 587 | | | 12 | | 9 | 33 | 548 | | 548 | 548 | | | | 536 | | | | | 542 | | 520 | 540 | | 522 | 565 | 549 | 546 | 516 587 | | | 12 | | 9 | 48
3 | | | | | | | | 535 | | 527 | | | 541 | | | | | 519 | 564 | 547 | 544 | 521 584
520 586
520 586
519 586
519 586
518 583
518 583
517 586 583
516 583
516 583
515 586
515 586 | | | 12 | | 0 | 18 | 546 | | | | | | | 533 | | 524 | | | 540 | | 514 | 535 | | 518 | 562 | 546 | 543 | 515 587 | | <u> </u> | 12 | 2 | | 33 | 544 | | | | | | | 532
531 | 533
530 | | 519
517 | | 539
538 | | | 532
530 | 489 | 516 | 561 | | 541 | 515 586 | | | 12 | 2 | | 48 | | | 542 | | | 538 | | 530 | 528 | | | | 536 | | 510 | 527 | 487
486 | 514
512 | 560
558 | 543 | 540 | 515 586
514 585 | | | 12 | 2 | | 3 | 541 | | 540 | | | 537 | | 528 | 526 | | | | 535 | | | 524 | | 511 | | 541
539 | 538
537 | 514 585
512 584 | | | 12 | 2 | | 18 | | 526 | 538 | 541 | 524 | 536 | 492 | 527 | 524 | 517 | | 514 | 533 | 504 | 504 | 522 | | 509 | | | 536 | 511 584 | | | 12 | 2 | | 34 | 538 | 524 | 537 | 541 | 522 | 534 | 491 | 526 | 523 | 515 | 511 | 512 | 532 | 502 | 502 | 520 | | 508 | | 537 | 533 | 510 583 | | | 12 | 2 | | 49 | | | 536 | 540 | | 533 | | 525 | 522 | 514 | 510 | 510 | 530 | 50 | 501 | 517 | | 507 | | 534 | 532 | 510 583 | | | 12 | 2 | | 4 | 536 | | 535 |
538 | | | | 524 | 521 | 513 | 508 | 508 | 528
527 | 499 | 499 | 515 | | 504 | 552 | 533 | 531 | 510 583
510 583 | | | 12 | 2: | | 19 | 535 | | | | | 531 | | 523 | 519 | 511 | 507 | 507 | 527 | 498 | | | | 503 | 550 | 532 | 530 | 509) 583 | | | 12 | 2 | | 34
49 | 532
531 | | | | 517
516 | | | 522
521 | 519
518 | 510 | 506
505 | 505 | 524 | 49 | | | | 502 | 549 | | 529 | 508 583 | | | 12 | 2: | 3 | 4 | 530 | | | 534 | 515 | | | 521 | 518 | 507 | 505 | 508
507
505
504
502
500 | 524
523
521
520 | 494 | | | | 501
499 | 548
547 | 530
528 | 528 | 508 583
507 584
507 584 | | | 12 | 2: | | 19 | 529 | | 528 | | 513 | 525 | | 519 | 515 | 507 | 503 | 500 | 520 | 492 | | | | 499 | | | 526
525 | 507 584 | | | 12 | 2: | 3 | 34
49 | 528 | 515 | 527 | 532 | 511 | 525 | 482 | 518 | 513 | 505 | 501 | 499 | 518 | 49 | | | | 496 | 544 | 526 | 524 | 507 584 | | | 12 | 2 | 3 | 49 | 526 | 514 | 524 | 531 | 510 | 524 | 481 | 517 | 512 | 504 | 500 | 498 | 517 | 490 | | | | 495 | 544 | | 523 | 506 584 | | | 12 | 2 | | 4 | 525 | | 523 | 530 | 509 | 523 | 479 | 515 | 510 | 503 | 498 | 496 | 516 | 489 | 488 | 500 | 467 | 493 | 542 | 523 | 521 | 507 584
506 584
506 584
505 584
503 584
503 584
502 582
502 582
501 582
500 581 | | | 12 | 2. | 4 | 19 | 523 | 510 | 523 | 529 | | | 478 | 514 | 510 | 502 | 498 | 494 | 514 | | | | | 492 | 540 | 522 | 520 | 505 584 | | | 12 | 2·
2· | 4 | 34
49 | 522 | 509 | 522
521 | 527 | 506 | 520 | 477 | 513 | 508 | | 496 | 493 | 513 | | | | | 492 | 539 | 520 | 518 | 503 584 | | | 12 | 2 | | 49 | 521
521 | 508
507 | 518 | 526
525 | 504
503 | 519
517 | 476
475 | 512
511 | 507
505 | | 495 | 491 | 512 | | | 496 | | 490 | 538 | | | 503 584 | | | 12 | 2 | 5 | 18 | 518 | | 517 | | 503 | | 473 | 510 | 504 | 498 | 494
493 | 490
489 | 510
509 | | | | | 488 | 537 | 518 | 516 | 502 583 | | ļ | 12 | 2 | | 33 | 517 | 504 | 516 | 522 | | 514 | | 509 | 503 | 495 | | 487 | 507 | | | | | 486
484 | 535
534 | | | 502 582
501 582 | | _, | 12 | 2. | | 33
48 | 515 | | 515 | | | 514 | 471 | 507 | 503 | 494 | 491 | 486 | 506 | | | | | 482 | 533 | 514 | 512 | 500 581 | | 3 | 12 | 20 | 6 | 3 | 514 | 502 | 514 | 520 | 499 | 512 | 471 | 506 | 502 | 494
493 | 489 | 485 | 505 | | | | | 481 | 532 | | | 500 580 | | <u>ءَ </u> | 12 | 20 | | 18 | 513 | 501 | 512 | | | 511 | 469 | 510
509
507
506
505
504
503
502
500
499
498 | 501 | 492
490 | 489 | 483 | 503 | 478 | 477 | 487 | 457 | 480 | 531 | 511 | 510 | 499 580 | | | 12 | 20 | | 33
48 | 512 | 498 | 511 | | | 510 | 468
467 | 504 | 500 | 490 | | 482 | 502 | | | | | 479 | 530 | 510 | 509 | 497 580 | | | 12 | 20 | | 3 | 511
511 | 497
496 | 510
509 | | | 508 | 467 | 503 | 498 | 489 | 486 | 481 | 501 | | | | | 478 | 529 | | 508 | 497 580 | | - | 12 | 2 | | 18 | 508 | 495 | 509 | 515
514 | | 507
506 | 465
464 | 502 | 496
495 | 488
487 | 485 | 480 | 500 | | | 483 | | 477 | 527 | 508 | 508 | 497 580 | | <u> </u> | 12 | 2 | | 33 | 508 | 493 | 506 | 513 | | 505 | 463 | 400 | 495 | 486 | 484
483 | 478
477 | 499
497 | | | 482
481 | | 476
475 | 526
526 | 506
505 | 507
506 | 497 580
497 581 | | | 12 | 2 | ; | 33
48 | 507 | 493 | 505 | 511 | | 503 | 463
462 | 498 | 495 | 485 | 482 | 476 | 496 | | | 479 | | 473 | 525 | 503 | 506 | 497 581
496 581 | | | 12 | 28 | | 3 | 505 | 491 | 504 | 510 | | 502 | 460 | 497 | 494 | 484 | 481 | 475 | 495 | | 471 | 478 | | 472 | 524 | 504
503 | 505 | 495 582 | | · <u> </u> | 12 | 28 | | 19 | 505 | 490 | 503 | 509 | 489 | 501 | 458
456 | 495 | 493 | 484
482 | 480 | 474 | 494 | | 470 | 477 | 451 | 471 | 523 | 502 | 503 | 495 582
495 582 | | | 12 | 20 | | 34
49 | 504 | 489 | 502 | 508 | | 500 | 456 | 495 | 491 | 481 | 479 | 472 | 492 | | 469 | 475 | 451 | 470 | 522 | 500 | 502 | 494 581 | | | 12 | 21 | | 49 | 503 | 488 | 501 | 506 | | | 457 | 493 | 490 | 480 | 478 | 471 | 491 | | | | | 469 | 522 | 498 | 502 | 494 581 | | | 12 | 29 | | 19 | 502
500 | 487
485 | 501
499 | 505
504 | 487
486 | 497
496 | 456
455 | 492
491 | 489 | 479 | 477 | 470 | 490 | | | | | 467 | 520 | | | 493 581 | | - | 12 | 29 | | 34 | 499 | 484 | 499 | | | 495 | 454 | 491 | 489
489 | 478
476
475 | 476
475 | 469
468 | 488
487 | | 467
466 | 472
470 | 449 | 466 | 519 | 496 | 500 | 493 581 | | | 12 | 29 | | 34
49 | 499 | 483 | 497 | 502 | | 494 | 454 | 489 | 489 | 475 | 475 | 468
467 | 486 | | 465 | 469 | | 465
465 | 518
517 | | | 492 579
491 579 | | | 12 | 3(| 0 | 5 | 498 | 482 | 496 | 501 | 483 | 493 | 453 | 488 | 485 | 474 | 474 | 466 | 485 | | 465 | 468 | | 464 | 516 | | | 491 578 | | | 12 | 30 | 0 | 18
33
48 | 497 | 481 | 495 | 500 | 482 | 493 | 453
452 | 487 | 485 | 473 | 473 | 465 | 484 | 460 | 464 | 467 | 448 | 462 | 514 | | | 490 578 | | | 12 | 3(| | 33 | 496 | 479 | 495 | 499 | | | 450
450 | 486 | 484 | 472
470 | 472 | 464 | 483 | 459 | 464 | 466 | 448 | 462 | 513 | 490 | 495 | 489 577 | | | 12 | 30 | | 48 | 494 | 478 | 493 | 498 | 481 | | 450 | 485 | 484 | 470 | 471 | | 481 | | 463 | 466 | | 461 | 513 | | | 489 577 | | | 12 | 3 | | 3
18 | 493
492 | 477
477 | 492
491 | 497
496 | | 490 | 449 | 484 | 483 | 470
469
467 | 471 | | 480 | | 463 | 465 | | 461 | 512 | | | 488 577 | | | 12 | 3 | | 34 | 492 | 476 | 491 | | | 489
487 | 448
447 | 483
483 | 483
481 | 469 | 470
469 | 461
460 | 480
479 | | 462 | 464 | | 460 | 511 | | | 488 577 | | | 12 | 3 | 1 | 34
49 | 491 | 475 | 489 | 494 | | 487 | 446 | 483 | 480 | 466 | 469 | 460 | 479 | | 462
461 | 463
463 | | 460
460 | 510
510 | 486
485 | 491
491 | 487 577
487 577 | | | 12 | 32 | | 4 | 490 | 473 | 489 | 492 | 477 | 486 | 445 | 481 | 480 | 466 | 468 | 460 | 476 | | 461 | 463 | | 460 | 508 | | 491 | 487 577
486 578 | | | 12 | 32 | 2 | 19 | 490 | 473 | 489 | 491 | | 484 | 443 | 480 | 479 | 466
465 | 468 | 459 | 475 | 455 | 461 | 463 | | 459 | 508 | 484 | 489 | 486 578 | | | 12 | 32 | | 34
49 | 490 | 472 | 487 | 490 | 476 | 484 | 442 | 479 | 478 | 464 | 467 | 459 | 474 | 454 | 461 | 463 | 448 | 459 | 506 | | | 485 579 | | | 12 | 32 | 2 | | 488 | 471 | 486
485 | 488 | 475 | 482 | 442 | 478 | 477 | 463 | 467 | 458 | 473 | 454 | 461 | 463 | 448 | 459 | 505 | | | 484 579 | | | 12 | 33 | | 4 | 487 | 471 | 485 | | 474 | 481 | 440 | 477 | 476 | 462 | 466 | 458 | 472 | 453 | 460 | 462 | 448 | 459 | 505 | 481 | 487 | 483 578 | | | 12 | 33 | | 19 | 486 | 470 | 485 | | | | 438 | 477 | 476 | 461 | 465 | 457 | 471 | 453 | 460 | 462 | | 458 | 504 | 480 | | 483 578
483 578
482 578
482 578
481 577
479 576 | | | 12 | 33 | | 34
48 | 485
483 | 470
469 | 484
483 | 485 | | 479 | 437 | 476 | 475 | 461 | 465 | 456 | 470 | | 460 | 461 | | 458 | 503 | 479 | | 482 578 | | | 12 | 3/ | | 3 | 483 | 466 | 483
482 | 484 | | 478
477 | 435
433 | 476
475 | 474
473 | 460
459 | 465
464 | 455
454 | 469
469 | | | 460
460 | | 457 | 503 | 479 | 486 | 482 578 | | | 12 | 34 | | | 481 | 465 | 4821 | 482 | 471 | | 433 | 475 | 473 | 459 | 464 | 453 | 467 | | | 460 | | 457
455 | 502
500 | | 486
486 | 481 577
479 576 | | | 12 | 34 | 4 | 18
33
48 | 479 | 464 | 481 | 481 | | | 429 | 474 | 473 | 458 | 464 | 453 | 466 | | 459 | 460 | | 455 | 500 | | 486 | 478 576 | | | 12 | 34 | 4 | 48 | 478 | 464 | 481
479
478 | 480 | 470 | 473 | 427 | 474 | 472 | 458 | 464 | 452 | 466 | | | 459 | | 455 | 499 | | | 478 576
478 574 | | | 12 | 35 | 5 | 18 | 476 | 463 | 478 | 479 | 470 | 472 | 425 | 473 | 472 | 457 | 464 | 452 | 465 | 450 | 458 | 459 | 447 | 454 | 499 | 476 | 485 | 477 574
477 574 | | | 12 | 35 | 5 | 18 | 475 | 462 | 477 | 478 | 470 | 470 | 423 | 472 | 472 | 457 | 463 | 451 | 464 | 448 | | 458 | 446 | 454 | 498 | | | 477 574 | | (77 | _ | Time | T(- | | TEMANA O | YC)1147 | TCIMAC | TEMME | TTTTALL C | TEMAG | TENILO | | - | TECHNO | Territo | | | | I==+::- | T== | | | | | | | | |-------|--|-------------|--|---|--|---|---------------------------------|--------------------------|---|---|--|--|--------------------------|-------------------|---------------------------------|--|--|---|---|---------------|---|--------------------------|------------|--------------------|------------|------------|--| | Tirr | | Time | Time | | TEW18
DEG F | TEW17
DEG F | | TEW15
DEG F | TEW14
DEG F | TEW13
DEG F | | TEW11
DEG F | TEW10
DEG F | TEW9
DEG F | TEW8 | TEW7
DEG F | | TEW5
DEG F | TEW4 | TEW3
DEG F | | TEW1
DEG F | TEWUH18 | TEWLH20
DEG F | TEWLH21 | TE970 | TE990 | | 11100 | 12 | 111111 | 35 | 33 | 473 | 460 | 477 | 476 | 470 | | 421 | 472 |
| | | 450 | 463 | 447 | | | 447 | | 498 | 475 | 79A | DEG F | DEG F | | | 12 | it . | 35 | 48 | 472 | 459
457
456 | 476 | 476
475
473
471 | 469 | 469
468
466
464
463
461 | 420 | 1 /71 | | 455 | 463 | 449 | 463 | 445 | | 457 | 447 | 453
451 | 497 | 475 | 484 | 476 | 574
574
575
576
575
575
575
575
576
576
576
574
574
574 | | į. | 12 | İ | 36 | 48
3
18
33
48
3 | 472
471 | 457 | 476
475 | 473 | 469 | 466 | 419
419
415
414 | 471 | 471 | 454 | 462 | 449 | 461 | | | 456 | 447 | 451 | 497 | 474 | 484
484 | 475 | 574 | | - 1 | 12 | Ī | 36 | 18 | 470 | 456 | 475 | 471 | 468 | 464 | 419 | 470 | 471 | 454 | 462
462 | 448
448 | 460 | 444
442
441
440
439
438
437
436
435 | 458
458
458 | 456 | 447
447
447 | 451
451
450
450 | 497 | 474 | 484 | 475 | 575 | | | 12 | L | 36 | 33 | 467 | 454 | 475 | 469
468
466 | 467 | 463 | 415 | 470 | 470 | 453 | 462 | 449 | 460 | 441 | 458 | 455 | 447 | 450 | 497 | 474 | 483 | 474 | 575 | | - | 12 | 1 | 36
37 | 48 | 467 | 452 | 474 | 468 | 467 | 461 | 414 | 469 | 470 | 452 | 462 | 447 | 459 | 440 | 457 | 454 | 447 | 450 | 496 | 474 | 483 | 474 | 575 | | 1 | 12 | | 37 | 3 | 465 | 450 | 474
474
474
473 | 466 | 466
466
465
464
464
464 | 460 | 413
409
409
409
406
405 | 468 | 470 | 451 | | 446 | 459 | 439 | 457 | 453 | 447 | 449
449 | 496 | 474 | 483 | 474 | 575 | | 1 | 12 | ļ | 37
37 | 18 | 465 | 450 | 474 | 464 | 466 | 460 | 409 | 467 | 469 | | | 446 | 458 | 438 | 457 | 452 | 445 | 449 | 496 | 474 | 483 | 474 | 576 | | - | 12 | ł | 37 | 33
48 | 464
463 | 450
448
446 | 474 | 462
461 | 465 | 459
459
458 | 409 | 466
466
465
464
463 | 469
468 | | | | 458
458
457
456
455
454
454 | 437 | 457 | 451
450 | 445
445
444 | 448 | 496
496 | 474 | 483 | 473 | 576 | | ł | 12 | + - | 38 | 40 | 462 | 445 | 473 | 459 | 464 | 459 | 409 | 400 | 467 | | | | 45/ | 436 | 457
457 | | 444 | 447
447
445 | 496 | 474
474 | 482
482 | 473
472 | 5/5 | | - 1 | 12 | t | 38 | 19 | 461 | 444 | 473 | 459 | 464 | 457 | 405 | 463 | 467 | | | | 456 | 430 | 457 | 449 | 439 | 447 | 495 | 474 | 482 | 470 | 574 | | 1 | 12 | • • | | 34 | 461 | 443 | 472 | 458 | | | 404 | 463 | 467 | | 460 | 443 | 454 | 434 | 457 | 448 | 438 | 445 | 495 | 473 | 482
482 | 470 | - 574 | | | 12 | 1 | 38 | 19
34
49 | 458 | 440 | 472 | 458 | | 456 | 403 | 463 | 466 | | | 443 | 454 | 433 | 457 | 448 | 436 | 444 | 494 | 473 | 482 | 470 | 573 | | 1 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | 38
38
39
39 | 4 | 458
458
457 | 444
443
440
439 | 473
472
472
472
472 | 457 | 464 | 455
455
454
453 | 402 | 462 | 466 | 445 | | 443
443
442
442 | 453
452
452
451 | 434
434
433
432 | 457
457
456 | 447 | 436
434 | 444
443 | 494 | 473 | 482 | 469 | 573 | | - (| | I | 39 | 19 | 457 | 438 | 471 | 456 | | 455 | 401 | 461 | 465 | 445 | 460 | 442 | 452 | 431
430 | 456 | 447 | 433 | 443 | 493 | 473 | 481 | 469 | 572
572 | | 1 | 12 | | 39 | 34 | 455
455
452 | 437 | 471 | 456 | | 454 | 400 | 460 | 465 | 444 | 460 | 441 | 452 | 430 | 456 | 446 | 432 | 442 | 493 | 473 | 481 | 469 | 572 | | | 12 | | 39 | 49 | 455 | 436 | 471 | 455 | 463 | 453 | 399
398 | 459 | 465 | 443
443 | 460 | 441 | 451 | 430 | 456 | 445 | 431 | 442 | 493 | 473 | 481 | 468 | 571
571
571 | | - | 12 | | 40 | - 3 | 452 | 434
433 | 469 | 454 | | | 398 | 459 | 464 | 443 | 459 | 440 | 450 | 429 | 456 | 445 | 431 | 441 | 493 | 473 | 481 | 467 | 571 | | 1 | 12
12
12 | | 40
40 | 33 | 450 | 433 | 469
469 | 453
453 | | 452
451 | 396
394 | 458
458 | 464 | 442
442 | 459
459 | 440
440 | 450
449 | 429
428 | 456
456 | 445
444 | 430
428 | 441
440 | 492
492 | 473
474 | 481 | 467 | 571 | | ~ ~~ | 12 | | 40 | 48 | 449 | 431 | 468 | 452 | | 451 | 391 | 458 | 463 | 441 | 459
459 | 439 | | 428 | 456 | 443 | 428 | 440 | 492 | 474 | 481
482 | 466
466 | 5/1 | | 1 | 12
12 | | 41 | 3 | 448 | 430 | | 451 | | | 389 | 457 | 462 | 441 | 459 | 438 | 448 | 427 | 456 | 443 | 429 | 439 | 492 | 474 | 482 | 465 | 572 | | | 12 | | 41 | 49
49
49
49
48
33
48
33
49
4
49
4
49
4
49
4
49
4
49
49 | 446 | 430 | 468 | 451 | 461 | 449 | 388 | 456 | 462 | 440 | 459 | 438 | 448 | 426 | 456 | | 427 | 439 | 492 | 474 | 482 | 465 | 571
572
572
572
572
573
573
573
572
572
571
571 | | _ | 12
12 | I | 41 | 33 | 446 | 428 | 467 | 450 | 460 | 448 | 387 | 456 | 462 | 439 | 459 | 438 | 447 | 425 | 456 | 442 | 426 | 439 | 492 | 474 | 482 | 464 | 572 | | | 12 | L | 41 | 48 | 445 | 428 | 467 | 449 | | | 385 | 455 | 461 | 439 | 459 | 437 | 446 | 424 | 456 | 441 | 425 | 439 | 493 | 474 | 483 | 464 | 573 | | _ | 12 | | 42 | 3 | 444 | 427 | 467 | 449 | | | 384 | 454 | 461 | 439 | 459 | 437 | 446 | 423 | 456 | 441 | 425 | 438 | 493 | 474 | 483 | 464
464 | 573 | | | 12
12 | | 42
42 | 18 | 443 | 426 | 466 | 448 | | | 382 | 453 | 461 | 438 | 458 | 436 | 445
445 | 422 | 456 | 441 | 424 | 438 | 493 | 474 | 483 | 464 | 572 | | | 12 | | 42 | 33 | 442 | 425 | 466
466 | 447 | | | 381 | 453 | 461 | | 458 | 436 | 445 | 421 | 456 | 440 | 424 | 436 | 493 | 474 | 483 | 462 | 572 | | 1 | 12 | | 42
43 | -49 | 440 | 425
424 | 466 | 446 | | | 378
377 | 452
452 | 461
461 | | 458
458 | 435
435
434
434
433 | 444
444 | 420
419 | 456
456 | 440
439 | 422
422 | 436
435 | 493
493 | 474 | 483
483 | 462
461 | 571 | | | 12 | | 43 | 19 | 438 | 424 | 465 | 445 | | | 375 | 451 | 460 | | 458 | 433 | 443 | 418 | 455 | 439 | 422 | 435 | 493 | 474 | 483 | 461 | 570 | | | 12
12
12
12
12
12
12
12
12
12
12
12
12 | | 43
43
44
44 | 34 | 437 | 422 | 465 | 445 | | 444 | 373 | 450 | 460 | | 457 | 434 | 443 | 417 | 455 | 438 | 420 | 434 | 493 | 474 | 483 | 461 | 570 | | | 12 | 1 | 43 | 49 | 437
434 | 421 | | 444 | | 444 | 371 | 450 | 460 | 435 | 457 | 433 | 442 | 416 | 455 | 438 | 419 | 433 | 493 | 474 | 482 | 459 | 570
569
568
568
568
568
569
569
569
569
569
570 | | | 12 | | 44 | 4 | 434 | 420 | 464 | 444 | | 443 | 369
367 | 449 | 459 | 434 | 456 | 433 | 442 | 415 | 455 | 437 | 418 | 433 | 493 | 474 | 482 | 459 | 568 | | | 12 | | | 19 | 434 | 419 | 463 | 443 | | | 367 | 449 | 459 | 434 | 455 | 433
433
432
432
431
431
430
430 | 441 | 415 | 455 | 437 | 417 | 433 | 493 | 474 | 482 | 459 | 568 | | - | 12 | ļ <i>-</i> | 44 | 34 | 433 | 418 | 461 | 443 | | | 365
363
361 | 448 | 458 | 433 | 454
453
453 | 432 | 441 | 414 | | 436 | 416 | 433 | 493 | 474 | 482 | 458 | 568 | | | 12 | | 44 | 49 | 433 | 417 | 460
459 | 442 | | 442 | 363 | 448
447 | 458 | 433 | 453 | 432 | 440 | 413 | 455 | 436 | 415 | 432 | 493 | 475 | 483 | 458 | 568 | | 1 - | 12 | | 45 | 10 | 431 | 416 | 459 | 441 | | | 361 | 447 | 458
457 | | 453 | 431 | 440
439 | 412
411 | 454 | 435
435 | 415 | 432
432 | 493 | 475
475 | 483
483 | 458
457 | 569 | | - | 12 | | 45 | 33 | 430 | 414 | 457 | 441 | | 440 | 357 | 446 | 457 | 431 | 452
451 | 430 | 439 | 410 | 454 | 435 | 413 | 431 | 494 | 475 | 483 | 457 | 560 | | 1- | 12 | | 45 | 48 | 430 | 413 | 457 | 440 | | 440
440 | 355 | 446 | 456 | | 450 | 430 | 439 | 409 | | 434 | 412 | 431 | 495 | 475 | 484 | 456 | 569 | | | 12 | | 46 | 3 | 428 | 413 | 457 | 439 | 457 | 439 | 351 | 445 | 455 | | 449 | 430 | 438 | 408 | 453 | 434 | 412 | 431 | 495 | 475 | 484 | 456 | 569 | | | 12 | | 46 | 18 | 428
427 | 412 | 455 | 439 | 457 | 439 | 350 | 445 | 455 | 430 | 449 | 430
429
429
428 | 438
438 | 407 | 452 | 433 | 410 | 431 | 495 | 475 | 484 | 456 | 570 | | 1. | 12 | | 46 | 33 | 427 | 411 | 454 | 438 | 456 | 438 | 347 | 444 | 455 | | 448 | 429 | 437 | 406 | 451 | 433 | 409 | 430 | 496 | 475 | 485 | 455 | 570 | | ~ | - 12 | | 46 | 48 | 426 | 410 | 454
453
453
452 | 438 | 456 | 438 | 345 | 444 | 454 | | 447 | 428 | 437 | 405 | 450 | 433 | 408 | 430 | 496 | 476 | 485 | 454 | 569 | | | 12 | | 47 | 10 | 425 | 410 | 453 | 437
437 | | 438 | 343 | 444 | 453
452 | | | 428 | 436 | 403 | 448 | 432
431 | 407 | 429 | 496 | 476
476 | 485 | 454 | - 569 | | | 12 | | 47 | 33 | 422 | 408
407 | 452 | 436 | 454 | 437 | 338 | 443 | 451 | 427 | 440 | 427 | 436 | 402
400 | 445 | 431 | 407
405 | 428
428 | 496
497 | 476 | 485
485 | 452
452 | 508 | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | 444
455
455
456
466
466
477
477
477
477
477
478
488
489
499
499
499
499
550
550 | 48 | 424
422
421
420
419
417
416
416 | 406 | 451 | 436 | 454
453
453
452
452
451
451 | 438
438
438
437
437
436
435
435
435
434
434
434
432
432
432
431
430
430
429
429
428
428
427
427
427 | 358
357
355
351
350
343
340
340
335
335
332
330
324
321
321
317 | 443
442 | 450 | 427 | 445
444
444
443
442 | 426
426
425
424
424
423
423
422
421
420 | 436
436
436
435
435 | 399 | 444 | 430 | 403 | 427 | 497 | 476 | 485 | 451 | 570 569 569 568 567 567 566 566 565 565 565 565 565 566 566 | | | 12 | | 48 | 4 | 421 | 405
403
402
402
401
400
399 | 451
450 | 436
435
435
434 | 453 | 436 | 332 | 442 | 449 | 427 | 444 | 425 | 435 | 397 | 443 | 429 | 403 | 426 | 497 | 476 | 486 | 450 | 566 | | 1 | 12 | | 48 | 19 | 420 | 403 | 449
448 | 435 | 452 | 435 | 330 | 441 | 448 | 426 | 443 | 424 | 434
434 | 396 | 442 | 429 | 403 | 426 | 497 | 476 | 487 | 450 | 566 | | 1. | 12 |
| 48 | 34 | 419 | 402 | 448 | 434 | 452 | 435 | 328 | 441 | 447 | 425 | 442 | 424 | 434 | 395 | 442 | 428 | 400 | 425
425 | 498 | 476 | 487 | 450 | 565 | | - | 12 | | 48 | 49 | 417 | 402 | 448
446
446
445 | 434 | 451 | 435 | 324 | 440 | 447 | 425 | 4421 | 423 | 433
433
432
432
432
431
431
430 | 395
393
392
391 | 441
440 | 428 | 399
398
396
396
394
393
392 | 425 | 498 | 477 | 487 | 449 | 565 | | | 12 | | 49 | 10 | 416 | 401 | 446 | 433
432 | 451 | 434 | 322 | 440
440 | 446 | | - 441 | 423 | 433 | 392 | 440 | 427 | 398 | 424 | 499 | 477 | 488 | 448 | 565 | | | - 12 | | 49 | 34 | 415 | 300 | 446 | 433 | 450
449 | 434 | 310 | 439 | 445
444 | 424 | 4 <u>41</u>
440 | 422 | 432 | 391 | 439
439
438
438
437
437 | 426
426 | 396 | 424 | 500 | 477 | 488
489 | 448
447 | 565 | | 1 | 12 | | 49 | 49 | 414 | 397 | 444 | 432 | 449 | 433 | 317 | 439 | 444 | 423
422
422 | 439 | 421 | 432 | 389 | 439 | 426 | 396 | 423 | 500
501 | $-\frac{477}{478}$ | 489 | 447 | 505 | | | 12 | 7 | 50 | 4 | 414
413 | 397
396
395
394 | 444
444
443
443 | 431 | 449
448 | 432 | 315 | 438 | 443 | 422 | 439 | 419 | 431 | 386 | 438 | 426
425 | 393 | 423
422 | 501 | 478 | 491 | 446 | 566 | | | 12 | 1 | 50 | 19 | 411 | 395 | 443 | 431 | 447 | 432 | 313 | 438 | 442 | 421 | 438 | 419 | 431 | 386
385 | 437 | 424 | 392 | 422 | 502 | 478 | 491 | 446 | 566 | | | 12 | | 50 | 33 | 410 | 394 | 443 | 430 | 446 | 431 | 311 | 438
437
437 | 442 | 420 | 438 | 418
417 | 430 | 383 | 437 | 423 | 390 | 422
421 | 502 | 478 | 491 | 446 | 567 | | | 12 | | 50 | 48 | 409 | 392
391 | 443] | 430 | 446 | 431 | 308 | 437 | 441
440 | 419 | 437 | 417 | 430 | 382 | 436 | 423 | 389
388 | 421 | 503 | 478 | 493 | 446 | 567 | | | 12 | | 51 | 3 | 409 | 391 | 442 | 430 | | 430 | 306 | 437 | 440 | 419 | | 416 | 429 | 380 | 435 | 422 | 388 | 421
420
419
417 | 503 | 478 | 493 | 445 | 567 | | | 12 | | | 18 | 407 | 390
389
387
387 | 442 | 429 | 445 | 430 | 304 | 436 | 439 | 418 | 436 | 416 | 429
429 | 377 | 434 | 421 | 386 | 419 | 504 | 478 | 494 | 445 | 566 | | - | 12 | | 51 | 33 | 406 | 389 | 440 | 428 | 444 | 429 | 303 | 436 | 439 | 417 | 435 | 414 | 429 | 376 | 434 | 420
419 | 384 | 417 | 504 | 478 | 494 | 444 | 565 | | 1 | 12 | 1 | 52 | 3 | 406 | 387 | 440 | 428
428 | 444 | 429 | 300 | 436 | 438 | 416
416 | 435 | 413 | 428 | 373
372 | 433 | 419 | 383 | 417 | 504
504 | 479
479 | 494 | 444 | 565 | | | 12 | | 51
51
52
52
52
53
53 | 18 | 406
406
403
402
400
398
397 | 384 | 440
439
439
437
436 | 427 | 444
443
443
443
442
442 | 42R | 308
306
304
303
301
300
298
296
294
292 | 436
436
435
435
434
434
434
433 | 437
436
436
435 | 415 | 435
435
434
433
433 | 411 | 428
427
427
426
426
426 | 370 | 436
435
434
434
433
433
432
431
431 | 417 | 384
383
381
379 | 410 | 505 | 479 | 494 | 443 | 564 | | | 12 | | 52 | 33 | 402 | 384
383
382
379 | 439 | 427 | 443 | 427 | 296 | 434 | 436 | 414 | 433 | 410 | 427 | 368 | 431 | 416 | 377 | 414
413 | 505 | 479 | 495 | 442 | 563 | | | 12 | | 52 | 48 | 400 | 382 | 437 | 427
426
425 | 442 | 427 | 294 | 434 | 435 | 413 | 433 | 409 | 426 | 368
366 | 431 | 415 | 375 | 412 | 505 | 479 | 496 | 441 | 563 | | | 12 | | 53 | 4 | 398 | 379 | 436 | 425 | 442 | 426 | 292 | 434 | 435 | 412 | 432 | 408 | 426 | 364
362 | 430 | 414 | 374 | 411 | 505 | 479 | 496 | 441 | 562 | | 1 | 12 | | 53 | 19 | 397 | 377 | 436 | 425 | 441 | 426 | 291 | 433 | 434 | 412 | 432 | 407 | 425 | 362 | 429 | 414 | 372 | 410 | 506 | 479 | 497 | 440 | 562 | | Time | Time | - 1 | ime
ec | TEW18
DEG F | TEW17
DEG F | TEW16
DEG F | TEW15 | TEW14 | TEW13
DEG F | TEW12 | TEW11 | TEW10
DEG F | TEW9 | TEW8 | TEW7 | TEW6 | TEW5 | TEW4 | TEW3
DEG F | TEW2 | TEW1 | TEWUHI | TEWLH20 | TEWLH21 | TE970 TE99 | 90 | |------|------|--|--|----------------|---|---|--|---|----------------|--|--|--------------------------|--|--|--|---|--------------------------|------------|-------------------|--------------|--------------|--------------------------|------------|--|---|---| | 1 | | | 34 | 396 | 376 | 435 | 424 | 440 | 425 | 290 | 433 | 433 | DEG F | DEG F 431 | DEG F
406 | DEG F
424 | DEG F | DEG F | DEG F | DEG F
370 | DEG F
410 | DEG F | DEG F | DEG F | | F | | | 2 | 53
54
54
54
55
55
55
55
56
56
56 | 49 | | 373 | 435
435 | 424
424 | 440
440
440
439 | 424 | 288 | 432 | 433 | 409 | | 404 | 424 | 361
359 | 429 | 413
412 | 369 | 409 | 506
507 | 479
480 | 497
498 | 440
439 | 56 | | | 2 | 54 | 19 | | 372
370 | 434
434 | 423 | 440 | 424
423 | | | 432
432 | 409 | | 403 | 423 | 357 | 428 | 411 | 367 | 407 | 507 | 480 | 498 | 439 | 56 | | | 2 | 54 | 34 | 390 | 368 | 433 | 421 | 439 | 423 | | | | | 430
429 | 402
401 | 423
422 | 356
354 | | 410
409 | 365 | 406
405 | 508
508 | 480
480 | 499
500 | 438 | <u>56</u> | | | 2 | 54 | 49 | 389 | 367 | 433 | 421 | 438 | 422 | 281 | 431 | 431 | 406 | 429 | 400 | 422 | 353 | 426 | 408 | 363 | 404 | 509 | 481 | | 438 | 56 | | | 2 | 55 | 19 | 388
386 | 366
364 | 431
431 | 420
420 | | 421
420 | 280
279 | 431
430 | 430
429 | 404
403 | 428 | 398 | 421 | 351 | | 407 | 361) | 403 | 509 | 481 | 501 | 438 | 56 | | | 2 | 55 | 33 | 385 | 362 | 431 | | 437 | 419 | | 430 | 429 | 403 | 427
427 | 396
395 | 420
419 | 349
347 | 425
424 | 405
404 | 360
358 | 402
401 | 510
510 | 481
481 | 501
501 | 437 | _56 | | | 2 | 55 | 19
33
48
3 | 384 | 361 | 430 | 418 | 436 | 419 | 276 | 430 | 428 | 400 | 426 | 393 | 418 | 345 | 423 | 403 | 356 | 398 | 511 | 481 | 502 | 438
438
438
438
437
437
437
437
437
436
436 | 56 | | | 2 | 56 | 18 | 381
380 | 359
357 | 430
429 | 417 | 436
435 | 418
417 | | 429
429 | 427
427 | 399
398 | 425 | 392 | 418 | 344 | 422 | 401 | 355 | 397 | 511 | 481 | 502 | 437 | 56 | | 1 | 2 | 56 | | | 355 | 429 | 416 | 435 | 416 | 271 | 428 | 426 | 396 | 424
424 | 390
389 | 417
416 | 342
341 | 421 | 400
398 | 352
351 | 396
395 | 511
511 | 481
481 | 502 | 436 | 56 | | 1 | 2 | 56 | 48 | 377 | 354 | 429
428
427 | 415 | 435 | 416 | 270 | 428 | 426 | 396
394 | 423 | 387 | 415 | 340 | 420
419 | 397 | 349 | 393 | 512 | 482 | 502 | 435 | - 56 | | | 2 | 57
57
57
57 | 18 | 377
373 | 351
350 | 427
427 | 414 | 434
434 | 415
414 | | 427
427 | 425
424 | 393
392
390
389
387 | 422 | 386 | 415 | 338 | 419 | 396 | 348 | 391 | 512 | 482
482 | 503 | 434 | 56 | | 1 | 2 | 57 | 33 | 372 | 349 | 425 | 412 | 434 | 413 | 265 | 427 | 424 | 390 | 421
421 | 384
382 | 414 | 337
335 | 417 | 394
392
391 | 347
345 | 390
388 | 513
513 | 482
482 | 503 | 434 | 55 | | | 2 | 57 | 48 | 372 | 348 | 425 | 412 | 433 | 412 | 265 | 426 | 423
422 | 389 | 420 | 381 | 412 | 334 | 415 | 391 | 343 | 387 | 513 | 482 | 503 | 433 | 55 | | 1 | 2 | 58
58 | 10 | 371
368 | 347
345 | 424
423 | 410
410 | 433 | 411 | 263 | 426 | 422 | 387 | 419 | 379 | 411 | 333 | 415 | 390 | -341 | 386 | 513 | 482 | 503 | 433 | 55 | | 1 | | | 33
48
3
18
33
48
3
19
34
49 | 367 | 344 | 423 | 410 | 432 | 410 | 261 | 425
425 | 421
421
420 | 386 | 418
418 | 378
376 | 410
409 | 331
330 | 414
413 | 389
387 | 340
339 | 385
385 | 514
514 | 483
483 | 504 | 432 | 55 | | 1 | 2 | 58
59
59
59
59 | 49 | 366 | 344
343
342 | 422 | 407 | 431 | 408 | 259 | 424 | 420 | 386
384
383
382
380 | 417 | 375 | 408 | 329 | 412 | 386 | 338 | 384 | 515 | 483 | 502
502
503
503
503
503
503
503
504
504
505
505 | 434
434
433
433
433
432
432
432
432
432 | 566
566
566
566
566
566
566
566
566
566 | | 1: | 2 | 59 | 4
19
34
49 | 365
362 | 342 | 420
420 | 406
404 | 431 | 407 | 258 | 424 | 419 | 382 | 416 | 373 | 407 | 328 | 411 | 385 | 337 | 383 | 515 | 483 | 505 | 432 | 55 | | 1 | 2 | 59 | 34 | 361 | 339
338 | 419 | 404 | | 406
405 | | 423
423 | 418
417 | | 414 | 371
371 | 405
404 | 326
325 | 410
409 | | 335
334 | 381
380 | 516
516 | 484
484 | 506
506 | 431 | 560 | | 1 | | 59 | 49 | 360 | 336 | 418 | 402 | 429 | 404 | 254 | 422 | 416 | 377 | 413 | 369 | 403 | 324 | | 381 | 334 | 379 | 517 | 484 | 506 | 431 | 56 | | 1: | | 0 | 19 | 359
357 | 336
335
334
333
332
330
330
327
327 | 418 | 401
399 | | 403
401 | 253 | 421 | 416 | 376 | 412 | 368 | 402 | 323 | 407 | 379 | 332 | 379 | 517 | 484 | 507 | 431 | 56 | |
1: | | 히 | 19
34
49 | 356 | 333 | 417
415 | 398 | 428 | 401 | 252 | 421
420 | 415
414 | 375
373 | 411 | 366
365
363
362
361
359
358
357 | 400
399 | 321
320 | 406
405 | 378
377 | 331
330 | 378
377 | 517
517 | 484
484 | 507 | 430 | 560 | | 13 | 3 | 0 | 49 | 355 | 332 | 414 | 200 | 428 | 399 | 250 | 420
420
419 | 413 | 372 | 408 | 363 | 397 | 319 | 403 | 376 | 329 | 375 | 517 | 484 | 507
508 | 428 | 55/ | | 1: | | | 4 | 355
352 | 330 | 414
413
412
411
409 | 395 | 427 | 398 | 248 | 419 | 412 | 371 | 407 | 362 | 396 | 318 | 402 | 374 | 327 | 374 | 518 | 484 | 508
508 | 427
427 | 550 | | 1 | | + | 19
34 | 350 | 327 | 413 | 394 | 427
426 | 397
396 | | 418
418 | 411
410 | 369
368 | 406
405 | 361 | 395
393 | 317
316 | 401 | | 327 | 373 | 519 | 484 | 508 | 427 | 558 | | 1 | 3 | 1 | 49 | 351 | 327 | 411 | 391 | 426 | 394 | 244 | 417 | 409 | 367 | 404 | 358 | 392 | 315 | 400
398 | 372 | 325
324 | 372
371 | 519
519 | 484
485 | 508
508 | 426 | 55 | | 1 | 3 | 2 | , 19 | 349
348 | 326
324 | 409
408 | 390 | 425 | 393 | | 416 | 408 | 366 | 402 | 357 | 390 | 313 | 396 | 369 | 323 | 370 | 519 | 485 | 508 | 425 | 550 | | 1: | | 2 | 33 | 346 | 323 | 407 | 394
392
391
390
388
387 | 426
425
425
424
424
423
422 | 392
390 | 243
241 | 416
415 | 407
405 | 365 | 401
400 | 356
355 | 389
388 | 313
312 | | 368
367 | 322 | 370 | 520 | 485 | 509 | 426
425
425
425
425
425
425
424
423
423
423 | 556 | | 13 | | 2 | 48 | 345 | 322 | 406 | 386 | 424 | 389 | 241 | 414 | 404 | 362 | 398 | 353 | 386 | 310 | | 366 | 320
319 | 368
368 | 520
521 | 485
485 | 509
509 | 425 | 55/ | | 15 | | 킑 | 3
18 | 344
343 | 321
319 | 404
403 | 384
383 | 423 | 387 | 240 | 413 | 403 | 361 | 397 | 352
351
350
349
347
346
345 | 385 | 310 | 391 | 365 | 319 | 367 | 521 | 485 | 509 | 424 | 550 | | 13 | | 3 | 33 | 341 | 318 | 402 | 381 | 421 | 386
384 | 239 | 413
412 | 402
401 | 360
359 | 395
394 | 351 | 383
382 | 308 | 390
388 | 364
363 | 318
318 | 366 | 522 | 486
486 | 510 | 423 | 556 | | 13 | | 3 | 48 | 340 | 317 | 401 | 380 | 421 | 383 | 238
237
235
235
233
233
232
230 | 411 | 399 | 358 | 392 | 349 | 381 | 307
307 | 387 | 362 | 317 | 366
365 | 522
522 | 486 | 510
511 | 423 | 55° | | 15 | | 4 | 3
18 | 339
339 | 317
316 | 400
397 | 379
377 | 420
419 | 381
380 | 235 | 410
409 | 398 | 356 | 391 | 347 | 379 | 306 | 385 | | 315 | 365
365 | 522
523 | 486 | 511 | 423 | 557 | | 13 | 3 | 4 | 33 | 337 | 315 | 396 | 376 | 419 | 378 | 233 | 409 | 397
395 | 355
354 | 389 | 346 | 378
377 | 306
304
304
303 | 384
383 | 359
358 | 314
313 | 364
363 | 523
523 | 487
487 | 511 | 422
422 | 555 | | 15 | | 4 | 48 | | 313 | 395 | 375 | 418 | 377 | 233 | 408 | 395
393
392
390 | 354
353 | 386 | 344 | 375 | 303 | 381 | 357 | 312 | 362 | 524 | 487 | 511
512 | 421 | 560
567 | | 10 | | 5 | 3
18 | | 312
311 | 392
391 | 373
372 | 417
416 | 375
374 | 232 | 406
406 | 392 | 351 | 385 | 342 | 374 | 301 | 380 | 356 | 311 | 362 | 524
524
524
524 | 487 | 512 | 421 | 570 | | 10 | | 5 | 33 | | 310 | 390 | 371 | 416 | 373 | 228 | 405 | 389 | 349 | 383 | 341 | 372
371 | 300
299 | 378
376 | 355
353 | 310
309 | 360
359 | 524 | 487
487 | 512 | 422
422 | 574 | | 10 | | 5 | 48 | 333 | 310 | 389 | 370 | 415 | 372 | 228 | 404 | 387 | 348 | 380 | 339 | 370 | 298 | 375 | 352 | 308 | 359 | 524 | 487 | 512 | 423 | 576
577 | | 10 | | 6 | 3
18 | 330 | 309 | 386
385 | 369
367 | 414
413 | 370
369 | 226
226 | 402
401 | 385
384 | 351
349
348
347
346
345
343
342
341
340
339
338
336
335
334
333
334
333 | 378
377 | 344
342
341
340
339
338
337
336
335
334
332
331
332
322
329
328 | 369 | 297 | 373 | 352 | 308 | 358 | 524 | 487 | 512
512
512
512
512
512
512
512
512 | 423 | 579 | | 13 | 3 | 6 | 34
49 | 329 | 306 | 384 | 366 | 412 | 368 | 224 | 400 | 382 | 345 | 376 | 336 | 367
366 | 296
295 | 372
370 | 350
348 | 306
305 | 357
357 | 524
525 | 487
487 | 512 | 424
424 | 580
581
582
583
584
584
585
586
586
586
586
586
586
585
585
586
586 | | 13 | | 6 | 49 | | 305 | 381 | 365 | 411 | 366 | 223 | 399 | 380 | 344 | 374 | 335 | 365 | 294 | 368 | 348 | 304 | 356 | 525 | 487 | 512 | 425 | 581 | | 15 | | -/- | 19 | 326
326 | 305
304 | 380
379 | 364
362 | 410
409 | 365
364 | 222 | 397
397 | 379
377 | 343 | 373
371 | 334 | 363
362
361
360
358
357
356 | 292 | 367 | 347 | 303 | 356 | 526 | 488 | 512 | 425 | 582 | | 13 | 3 | 7 | 34 | 325 | 303 | 378 | 361 | 408 | 362 | 221 | 395 | 376 | 341 | 370 | 332 | 361 | 292
291 | 366
365 | 346
345 | 302
301 | 354
354 | 526
527 | 488
488 | 512
513 | 426
426 | 582 | | 13 | | 7 | 49 | 324 | 302 | 375 | 360 | 407 | 361 | 220 | 394 | 374 | 340 | 369 | 331 | 360 | 290 | 364 | 344 | 301 | 353 | 527 | 488 | 513 | 426 | 584 | | 13 | | | 19 | 323 | 300 | 374
373 | 359
358 | 406
404 | 359
358 | 220
219 | 393
392 | 373
371 | 339 | 367
366 | 330 | 358 | 289 | 363 | 343 | 300 | 353
352 | 527 | 488 | 513 | 426 | 584 | | 13 | 3 | 8 | 34 | 322 | 299 | 373
372 | 356 | 403 | 357 | 218 | 390 | 370 | 337 | 365 | 328 | 356 | 288
287 | 361
360 | 342
341 | 299
298 | 352
352 | 527
528 | 488
489 | 513
514 | 427
428 | 585 | | 13 | | 8 | 49 | 321 | 298 | 370 | 355 | 402 | 356 | 217 | 389 | 368 | 336 | 365
363
362
361
360
358 | 327 | 355 | 286 | 359 | 341 | 298 | 352 | 528 | 489 | 514 | 428 | 58£ | | 13 | | 9 | 19 | 319 | 297
297 | 369 | 354
353 | 401
400 | 354
353 | 216
215 | 388
386 | 366
365 | 335 | 362 | 326 | 355
354
352
351 | 285 | 358 | 340 | 297 | 352 | 529 | 489 | 514 | 428 | 586 | | 13 | 3 | 9 | 34 | 318 | 295 | 366 | 352 | 398 | 352 | 214 | 385 | 363 | 333 | 360 | 325
324 | 352 | 284
283 | 356
355 | 339
338 | 296
296 | 350
350 | 529
529 | 489
489 | 514
514 | 428
428 | 586 | | 13 | | 9 | 49 | 315 | 294 | 365 | 351 | 397 | 351 | 213 | 384 | 362 | 332 | 358 | 323 | 350 | 282 | 354 | 337 | 294 | 349 | 529 | 489 | 514 | 428 | 586 | | 13 | 3 | 10
10 | 19 | 315
314 | 294
293 | 363 | 350
349 | 396
394 | 350
349 | 212
211 | 383 | 360
359 | 331 | 357
356 | 323
322
321 | 349 | 281 | 352 | 335 | 293 | 348 | 529 | 489 | 514 | 428 | 586 | | 13 | 31 | 10 | 33 | 313 | 292 | 367
366
365
363
362
361
360
358
356 | 348 | 393 | 349 | 210 | 384
383
382
380
379
378 | 359 | 330
329 | 356 | 321 | 350
349
348
347
346
345 | 280
279
278
277 | 351
349 | 334
333 | 292
291 | 347
347 | 530
530 | 489
490 | 514
515 | 428
428 | 585 | | 13 | 3 | 10
11 | 48 | 313 | 291 | 360 | 348
347
346
344 | 391 | 346 | 209 | 379 | 356 | 328 | 353 | 319 | 346 | 278 | 348 | 332 | 291 | 346 | 531 | 490 | 515 | 428 | 585 | | 13 | | 11 | 3
18 | 312
312 | 291
290 | 358 | 346 | 390 | 346
344 | 208
208 | 378
377 | 354
353 | 327 | 352 | 318 | 345 | 277 | 347 | 332 | 290 | 346 | 531 | 490 | 514 | 428 | 585 | | | | • • • | .0) | 512 | 200 | 330 | 344 | 203 | 344 | 208 | 3// | 353 | 326 | 351 | 317 | 344 | 276 | 346 | 331 | 290 | 345 | 531 | 490 | 514 | 428 | 585 | | _ | | | | | | | 122777 | 1 | | | 1 | | | | | George | | | | | | | *** | | | | |-------------|--|--|---|--|---|---
--|--|---|---|---|---|--|---|---|--|--|---
--|--|---|--|--|--|--|---| | | ក្រែម | Time
min
3 11
3 11 | | TEW18 | TEW17
DEG F | TEW16 | TEW15 | TEW14
DEG F | TEW13
DEG F | TEW12
DEG F | TEW11
DEG F | TEW10
DEG F | TEW9
DEG F | TEW8
DEG F | TEW7
DEG F | TEW6 | TEW5
DEG F | TEW4 TI | EW3
EG F | TEW2 | TEW1 | TEWUH19 | TEWLH20 | TEWLH21 | TE970 | TE990 | | լը | our | min | SOC . | DEG F | | DEG F D | EG F | | DEG F | | | | 3 11 | 33
48
3
18
33
48
3
18
33
48
33 | 311
309
308
307
306
305
305
303
303
303
302 | 288
287
287
286 | 355 | 343 | 387
385
384 | 343
342 | 207 | 375
374
373
372 | 352 | 326
325
324
323
322
321
320
319 | 350 | 31
31
31
31 | 5 34 | 275 | 345
344
343
341
340
339
338
337
336
337
331
332
331
329
328
329
328
329
328
329
329
329
329
329
320
321 | 330
329
328
327
326
326
325
324 | 289
289
287
287
286
286 | 34 | 5 531 | 490
490
490
490
490
490 | 515
515
515
515
515
515
515
516
516
516 | 428 | 585 | | l. | 13 | 11 | 48 | 309 | 287 | 354 | 342 | 385 | 342 | 206 | 374 | 350 | 325 | 349 | 31 | 5 34 | 274 | 344 | 329 | 289 | 344 | 532 | 490 | 515 | 429 | 586 | | - 1_ | 18 | 12 | 3 | 308 | 287 | 352 | 341 | 384 | 341 | 205 | 373 | 349 | 324 | 347 | 31 | 5 34 | 273 | 343 | 328 | 287 | 344 | 4 532 | 490 | 515 | 429 | 586 | | ١. | 13 | 12 | 18 | 307 | 286 | 351 | 340 | 382 | 340 | 203 | 372 | 348 | 323 | 346 | 31 | 41 34 | 0 273 | 341 | 327 | 287 | 343 | 533 | 490 | 515 | 429 | 587 | | I. | 13
13
13 | 11
3 12
3 12
3 12
3 12
3 12
3 13
3 13 | 33 | 306 | 285 | 350 | 339 | 381 | 339 | 203 | 371 | 346 | 322 | 345 | 31:
31:
31: | 3 33 | 9 272 | 340 | 326 | 286 | 343 | 3 533 | 490 | 515 | 429 | 587 | | l. | 13 | 3 12 | 48 | 305 | 284 | 349 | 338 | 380
378
377 | 337 | 202 | 369 | 345 | 321 | 344 | 31: | 2 33 | 18 271 | 339 | 326 | 286 | 343 | 534 | 490 | 515 | 430 | 588 | | | 13 | 13 | 3 | 305 | 284 | 347 | 337 | 378 | 336 | 201 | 368 | 344 | 320 | 343 | 31 | 1 33 | 270 | 338 | 325 | 285 | 343 | 3 534 | 490 | 515 | 430 | 588 | | l i | 13 | 3 13 | 18 | 305 | 282 | 346 | 336 | 377 | 335 | 201 | 367 | 342 | 319 | 341 | 31 | 0 33 | 269 | .337 | 324 | 284 | 34 | 1 534 | 491 | 516 | 430 | 589 | | (" | 13 | 13 | 33 | 303 | 282 | 345 | 335 | 375 | 334 | 200 | 366 | 341 | 318 | 341 | 30 | 33 | 5 268 | 336 | 323
322
321 | 284
284
283
283
283
281
280
280
279
278
278
277
277 | 34 | 534 | 491 | 516 | 430 | 589 | | i i | 13 | 13
14
3 14 | 48 | 303 | 281 | 344 | 334 | 374 | 333 | 200 | 365 | 340 | 318 | 339 | 30 | 33 | 4 267 | 334 | 322 | 284 | 34 | 535 | 491 | 516 | 430 | 589 | | r | 13 | 14 | 3 | 302 | 280 | 343 | 333 | 373 | 332 | 199 | 363 | 338 | 317 | 338 | 30 | 7 33 | 3 265 | 333 | 321 | 283 | 339 | 535 | 491 | 516 | 430 | 589 | | r | 13 | 14 | 18 | 301 | 280 | 342 | 332 | 371 | 331 | 198 | 363 | 337 | 316 | 337 | 30 | 33 | 264 | 332 | 320 | 283 | 339 | 535 | 491 | 515 | 430 | 589 | | - | 13 | 14 | 33 | 300 | 279 | 340 | 332 | 370 | 330 | 197 | 361 | 336 | 315 | 336 | 30 | 33 | 264 | 331 | 319 | 281 | 33 | 535 | 491 | 515 | 430 | 589 | | - }- | 13 | | 33
49 | 299 | 278 | 339 | 330 | 368 | 329 | 195 | 360 | 334 | 314 | 334 | 30 | 5 33 | 263 | 329 | 318 | 280 | 330 | 536 | 491 | 515 | 429 | 588 | | - | 13 | | 4 | 298 | 277 | 337 | 330 | 367 | 328 | 194 | 359 | 333 | 313 | 334 | 30 | 32 | 262 | 328 | 317 | 280 | 33 | 536 | 491 | 515 | 420 | 588 | | i | 13 | 15 | 4
19 | 297 | 276 | 336 | 328 | 366 | 328 | 194 | 358 | 332 | 312 | 332 | 30 | 3 - 32 | 8 261 | 326 | 316 | 270 | - 33 | 7 536 | 491 | 515 | 420 | 500 | | - | — - <u>1</u> 3 | 15 | | 206 | 276 | 335 | 328 | 364 | 327 | 104 | 357 | 331 | 312 | 331 | 30 | - 32 | 7 260 | 325 | 215 | 270 | 330 | 530 | 491 | 515
E1E | 420 | 500 | | - }- | 10 | 15 | 34
49 | 206 | 274 | 33/ | 327 | 363 | 325 | 102 | 350 | 330 | 312 | 220 | 30 | 36 | 200 | 323 | 215 | 070 | 330 | 530 | 400 | 515 | 420 | 500 | | }- | 13
13
13 | 10 | 45 | 200 | 274 | 222 | 320 | 303 | 325 | 100 | 350 | 330 | 311 | 230 | 30 | H - 32 | 259 | 324 | - 313 | 270 | 330 | 507 | 492 | 515 | 429 | 500 | | - | | 10 | 4
19 | 200 | 274 | 222 | 320 | 302 | 323 | 101 | 333 | 320 | 310 | 329 | 300 | 32 | 259 | 324 | 314 | 2/8 | 333 | 537 | 492 | 510 | 429 | 589 | | - | 13 | 10 | 34 | 295 | 273 | 332 | 325 | 301 | 324 | 101 | 354 | 327 | 309 | 328 | 293 | 32 | 258 | 323 | 313 | 277 | 33: | 537 | 492 | 510 | 429 | 589 | | I- | 13 | 10 | 49 | 294 | 212 | 200 | 324 | 359 | 323 | 100 | 353 | 320 | 308 | 327 | 293 | 32 | 3 257 | 322 | 312 | 277 | 333 | 537 | 492 | 510 | 429 | 590 | | | | 15 | 49 | 294 | 2/2 | 230 | 323 | 358 | 322 | 190 | 352 | 325 | 308 | 326 | 291 | 32 | 256 | 321 | 312 | 276 | 33 | 538 | 492 | 516 | 429 | 590 | | | 13 | H 17 | 4 | 293 | 2/1 | 329 | 322 | 357 | 321 | 190 | 351 | 324 | 307 | 325 | 29 | 32 | 256 | 320 | 311 | 276 | 334 | 538 | 492 | 516 | 429 | 591 | | [| 13 | 17 | 18 | 300
299
298
297
296
296
295
294
294
293
292
291 | 270 | 328 | 321 | 355 | 320 | 189 | 350 | 322 | 306 | 324 | 29 | 32 | 255 | 319 | 311 | 276 | 334 | 539 | 493 | 516 | 430 | 591 | | - | 13 | 17 | 33
48 | 291 | 270 | 327 | 320 | 354 | 319 | 189 | 349 | 322 | 305 | 323 | 29 | 32 | 0 255 | 318 | 310 | 276 | 334 | 539 | 493
493 | 516 | 430 | 591 | | | 13 | 17 | 48 | 291 | 268 | 325 | 319 | 353 | 318 | 188 | 348 | 320 | 304 | 322 | 29 | 31 | 9 254 | 317 | 309 | 275 | 334 | 540 | 493 | 517 | 430 | 592 | | | 13 | 18 | 3 | 289 | 268 | 324 | 319 | 352 | 317 | 187 | 347 | 319 | 303 | 321 | 293 | 31 | 8 253 | 317 | 308 | 275 | 333 | 540 | 493 | 517 | 430 | 592 | | _ | 13 | | 3
18
33
48 | 291
289
288
288
287
287
286
283
283
283
283 | 285 284 284 284 284 286 280 280 280 280 280 280 280 280 279 276 277 277 277 277 270 270 268 268 268 264 264 264 264 264 263 263 263 263 263 263 263 263 263 264 264 264 264 264 264 264 264 264 264 | 355
355
355
355
344
347
344
342
342
343
333
333
333
322
322 | 3 3434
3 3424
3 340
3 340
3 339
3 338
3 332
3 322
3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 | 3759
3749
37373
37373
368
368
366
366
366
362
361
359
359
355
353
352
352
353
349
349
341
341
341
341
341
341
341
341
341
341 | 341
340
340
340
340
341
341
341
341
341
341
341
341 | 207 206 205 203 203 203 202 201 201 201 200 199 198 198 197 195 194 193 192 191 191 190 189 189 188 187 185 185 185 185
185 185 187 177 177 177 177 177 177 177 177 177 | 967
365
363
363
363
363
363
363
359
359
359
359
359
350
340
341
341
341
341
341
341
341
341 | 3520
349
348
348
341
341
341
333
337
336
337
336
337
320
320
321
321
322
320
321
321
321
321
322
322
320
321
321
321
321
322
322
322
320
321
321
321
322
322
322
322
322 | 315
314
313
312
311
310
309
308
307
306
305
305
305
305
305
305
305
305 | 350 349 349 349 341 341 341 341 341 341 341 341 341 341 | 300
300
300
300
300
300
300
300
300
299
299
299
299
299
299
299
299
299
2 | 66 3446665 3446665 3466 | 32 275 275 273 273 273 273 273 273 275 | 320
319
318
317
317
316
315
313
312
311
309
308
307
306
305
305
305
305
305
305
305
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
306
307
307
306
307
306
307
307
306
307
306
307
307
308
309
309
309
309
309
309
309
309 | 3209
3198
3176
3155
3155
3153
3144
3131
3101
3003
3086
3055
3056
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3066
3055
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056
3056 | 276
276
276
275
274
274
273
272
272
271
271
271
270
270
270
270
270
270
270
270
270
270 | 344 344 344 344 344 344 344 344 344 344 | 5 531 531 531 531 531 531 531 531 531 53 | 493 | 515
515
515
515
515
515
516
516
516
516 | 428
429
429
429
430
430
430
430
430
430
430
430 | 585 586 586 588 588 588 588 588 588 588 | | - 1- | 13 | 18 | 33 | 288 | 265 | 323 | 317 | 349 | 315 | 185 | 344 | 317 | 302 | 319 | 292 | 2 31 | 6 252 | 315 | 307 | 274 | 332 | 2 540 | 493 | 517 | 430 | 592 | | | 13 | 18 | 48 | 287 | 265 | 322 | 316 | 348 | 314 | 185 | 344 | 316 | 301 | 318 | 29 | 31 | 6 251 | 314 | 306 | 273 | 332 | 2 541 | 493 | 517 | 430 | 592 | | I. | 13 | 19 | 3 | 287 | 264 | 320 | 315 | 347 | 314 | 185 | 343 | 315 | 300 | 317 | 290 | 31 | 5 250 | 313 | 305 | 272 | 331 | 541 | 493 | 517 | 429 | 592 | | - 1 | 13 | 19 | 18 | 286 | 264 | 319 | 314 | 346 | 313 | 184 | 342 | 314 | 300 | 316 | 290 | 31 | 4 249 | 312 | 304 | 273 | 331 | 541 | 493 | 517 | 429 | 591 | | l' | 13 | 19 | - <u>33</u>
48 | 283 | 263 | 318 | 314 | 345 | 312 | 182 | 341 | 313 | 299 | 315 | 289 | 31 | 3 248 | 311 | 303 | 272 | 330 | 541 | 493 | 517 | 429 | 591 | | ı | 13 | 19 | 48 | 283 | 263 | 317 | 313 | 344 | 311 | 181 | 340 | 312 | 298 | 314 | 28 | 31 | 2 247 | 309 | 303 | 272 | 330 | 541 | 493 | 517 | 429 | 591 | | - | 13 | 20 | .3
19 | 283 | 262 | 316 | 312 | 343 | 310 | 181 | 339 | 310 | 297 | 313 | 287 | 31 | 2 246 | 308 | 302 | 271 | 330 | 541 | 493 | 517 | 429 | 590 | | <u>-</u> | 13 | 20 | 19 | 282 | 261 | 315 | 311 | 341 | 309 | 180 | 338 | 309 | 296 | 312 | 286 | 31 | 0 246 | 307 | 300 | 271 | 330 | 541 | 493 | 517 | 429 | 590 | | ⊃ - | 13 | 20 | 34
49
4 | 282 | 261 | 315 | 310 | 340 | 309 | 179 | 337 | 308 | 296 | 311 | 289 | 31 | 0 245 | 306 | 300 | 271 | 329 | 542 | 493 | 517 | 429 | 591 | | - 1- | 13 | 20 | 49 | 281 | 259 | 314 | 310 | 339 | 308 | 180 | 336 | 308 | 295 | 310 | 289 | 30 | 9 244 | 305 | 299 | 270 | 329 | 542 | 493 | 517 | 429 | 591 | | - 1- | 13 | - 21 | 4 | 280 | 259 | 312 | 309 | 338 | 307 | 179 | 335 | 306 | 294 | 309 | 28 | 30 | 8 243 | 305 | 299 | 270 | 320 | 543 | 493 | 517 | 429 | 592 | | - | 13 | 21 | 19 | 279 | 259 | 311 | 308 | 337 | 306 | 179 | 334 | 306 | 293 | 308 | 283 | 30 | 7 243 | 304 | 298 | 270 | 320 | 543 | 493 | 517 | 429 | 592 | | - | 13 | 21 | 34 | 279 | 257 | 310 | 307 | 336 | 305 | 178 | 334 | 305 | 293 | 308 | 289 | 30 |
6 242 | 303 | 298 | 270 | 320 | 544 | 494 | 518 | 429 | 593 | | - | 13 | 21 | 49 | 278 | 257 | 310 | 306 | 335 | 304 | 178 | 333 | 304 | 292 | 306 | 28 | 30 | 6 241 | 302 | 297 | 270 | 329 | 544 | 494 | 518 | 429 | 594 | | - 1- | 13 | 22 | | 278 | 257 | 309 | 306 | 334 | 303 | 177 | 332 | 303 | 291 | 306 | 28 | 30 | 5 240 | 302 | 296 | 269 | 325 | 544 | 494 | 518 | 430 | 505 | | - | 13 | 22 | 18 | 277 | 256 | 308 | 305 | 333 | 302 | 177 | 331 | 302 | 291 | 305 | 280 | 30 | 4 240 | 300 | 206 | 260 | 326 | 544 | 494 | 518 | 430 | 505 | | - !- | 13 | 22 | 33 | 277 | 255 | 308 | 304 | 332 | 302 | 176 | 330 | 301 | 290 | 304 | 276 | 30 | 230 | 200 | 295 | 260 | 325 | 545 | 494 | 518
518
518 | 420 | 505 | | - | 13 | 22 | 48 | 276 | 255 | 306 | 303 | 331 | 301 | 175 | 329 | 300 | 289 | 303 | 275 | 30 | 3 238 | 200 | 204 | 268 | 320 | 545 | 404 | 519 | 420 | 505 | | }- | 13 | 23 | 19 34 4 18 33 34 48 34 4 19 34 4 19 34 4 19 34 4 19 34 4 19 34 4 19 34 4 19 34 4 19 34 4 19 34 4 19 34 19 19 19 19 19 19 19 19 19 19 19 19 19 | 282
281
280
279
279
278
278
277
277
275
275
273
273
273
271
271
271
271
269
268
268
266
266
266
266
266
266
264
264
264 | 254 | 319 314 311 311 311 311 310 310 310 310 310 310 | - 303 | 330 | 3022
3021
3011
3000
2999
2996
2966
295
2931
2902
2902
2902
2808
288
287
287
287
284
284
283
282
282
282
282
282
282
283
284
283
284
283
284
285
286
286
286
286
286
286
286
286
286
286 | 174 | 329 | 200 | 288 | 303 | 27 | 7 30 | 2 220 | 209 | 203 | 260 | 220 | E4E | 493
493
493
493
493
493
493
493
494
494 | 510 | 420 | 505 | | | 13 | 23 | 10 | 275 | 254 | 304 | 303 | 320 | 200 | 174 | 320 | 200 | 287 | 301 | 27 | 20 | 237 | 207 | 203 | 260 | 207 | 245 | 404 | 510 | 420 | 504 | | - | - 13 | 23 | | 272 | 252 | 303 | 301 | 320 | 200 | 1/4
174 | 227 | 200 | 287 | 300 | - 27 | | 0 222 | 200 | 200 | 200 | 321 | 7 540 | 494 | 518
518
518 | 429 | 594 | | }- | 13 | 1 23 | 33 | 273 | 250 | 303 | 301 | 327 | 200 | 174 | 320 | 200 | 286 | 200 | - 27 | - 30 | 230 | 200 | 201 | 200 | 327 | 2 640 | 494 | 510 | 429 | 502 | | - | 13 | 23 | 3 | 270 | 252 | 303 | 300 | 326 | 207 | - 173 | 325 | 205 | 285 | 200 | 276 | 20 | 230 | 204 | 200 | 200 | 200 | 540 | 404 | 518
518 | 429 | 593 | | - | 13
13
13
13
13
13
13
13 | | 19 | 271 | 250 | 301 | 200 | 325 | 206 | 170 | 324 | 204 | 285 | 207 | 27 | 29 | 233 | 202 | 200 | 267 | 220 | 540 | 404 | 510 | 420 | 503 | | | - 10 | | 22 | 271 | 250 | 300 | 200 | 325 | 200 | 170 | 222 | 294 | 205 | 207 | 27 | 29 | 7 234 | 293 | 290 | 20/ | 320 | 240 | 494 | 518
518 | 420 | 593 | | - }- | 10 | H 57 | - 33 | 271 | 240 | 200 | 290 | 323 | 590 | - 1/2 | 323 | 294 | 284
283 | 297 | 27 | 29 | 233 | 293 | 289 | 207 | 320 | 547 | 495 | 518 | 429 | 593 | | } | . 13 | 5 | | 270 | 240 | 200 | - 207 | - 324 | 293 | - 1/1 | 322 | 293 | 283 | 290 | 27 | 29 | 233 | 291 | 289 | 207 | 320 | 547 | 495
495 | 518
518 | 429
429
429
429
429 | 593 | | - | 13 | 음 음 | | 209 | 240 | 200 | 297 | - 322 | 294 | 170 | - 321 | 291 | 282
282
281
280 | 295 | 2/2 | - 29 | 5 232 | 291 | 288 | 268
267 | 320 | 547 | 495 | 518 | 429 | 593 | | - | 13 | 25 | 18 | 200 | | 297 | 296 | 321 | 293 | 170 | 321 | 291 | 282 | 294 | 27 | 29 | 231 | 290 | 287 | 267 | 326 | 547 | 495 | 518 | 429 | 594 | | | . 13 | - 25 | _ 33 | 268 | 247 | 296 | 295 | _ 320 | _ 292 | 169 | 320 | 290 | 281 | 294 | 2/0 | 29 | 4 231 | 290 | 287 | 267 | 325 | 548 | 495 | 518 | 429 | 594 | | - 1 | 13 | - 25 | 48 | 267 | 246 | 295 | 294 | 320 | 291 | 169 | 319 | 289 | 280 | 293 | 26 | 29 | 3 230 | 289 | 286 | 267 | 328 | 548 | 495 | 518 | 429 | 595 | | - 1 | 13 | 26 | 4 | 266 | 245 | 295 | 294 | 318 | 290 | 168 | 318 | 288 | 279 | 291 | 268 | 29 | 2 230 | 288 | 285 | 267 | 326 | 549 | 495 | 518 | 429 | 596 | | - 1 | 13 | 26 | 19 | 266 | 245 | 294 | 293 | 317 | 290 | 167 | 317 | 287 | 279
279
278 | 291 | _ 268 | 29 | 2 229 | 287 | 285 | 267 | 326 | 549 | 495 | 518 | 429 | 596 | | - | 13 | 26 | 34 | 266 | 244 | 292 | 292 | 317 | 289 | 167 | 317 | 286 | 278 | 290 | 267 | 29 | 1 228 | 286 | 284 | 267 | 325 | 550 | 496 | 518
518
518
518
518
519
519
519 | 429 | 597 | | l_ | 13 | 26 | 49 | 265 | 244 | 292 | 291 | 316 | 288 | 166 | 316 | 285 | 277 | 289 | 266 | 29 | 0 227 | 285 | 284 | 267 | 325 | 550 | 496 | 519 | 429 | 596 | | | _ 13 | 27 | 4 | 264 | 244 | 291 | 291 | 315 | 287 | 165 | 315 | 285 | 277
276
276 | 288 | 266 | 29 | 0 227 | 284 | 283 | 266 | 325 | 550 | 496 | 519 | 429 | 589 | | | 13
13
13
13
13
13
13
13 | 27 | 19 | 264 | 242 | 290 | 290 | 314 | 287 | 165 | 316
315
314
314
313
313 | 284 | 276 | 287 | 269 | 28 | 9 226 | 290
289
288
287
286
285
284
283
283
282
281 | 282 | 267
267
267
266
266
265
265
265
265
265
265
265 | 325 | 550 | 495
496
496
496
496
496
496
496
497
497 | 519 | 429
429
429
429
430
430
430
431
431
431
431 | 582 | | 1. | 13 | 27 | 34 | 264 | 242 | 289 | 289 | 313 | 286 | 164 | 314 | 283 | 275
274 | 286 | 264 | 28 | 8 226 | 282 | 281 | 266 | 324 | 550 | 496 | 519 | 430 | 578 | | [] | 13 | 27 | 48 | 262
262 | 241 | 289 | 289 | 312 | 285 | 163 | 313 | 282 | 274 | 286
285
284
283
282
281 | 264 | 28 | 7 225 | 281 | 281 | 265 | 324 | 550 | 496 | 519 | 430 | 573 | | | 13 | 28 | 3 | 262 | 240 | 288 | 288 | 312 | 284 | 164 | 312 | 281 | 274
273
272
272
271
270 | 285 | 263 | 2 2B | 7 225 | 281 | 280 | 265 | 324 | 550 | 496 | 519 | 430 | 571 | | | 13 | 28 | 18 | 261
260
260
259 | 240 | 287 | 287 | 311 | 284 | 163 | 311 | 280 | 273 | 284 | 262 | 28 | 6 224
5 223
4 222
4 222 | 280
279
278
277 | 279 | 265 | 324 | 551 | 496 | 519 | 431 | 568 | | | _ 13 | 28 | 33 | 260 | 239 | 287 | 286 | 310 | 283 | 162 | 311
310
309
308 | 279 | 272 | 283 | 261 | 28 | 5 223 | 279 | 278 | 266 | 323 | 551 | 497 | 519 | 431 | 566 | | 1 | 13 | 28 | 48 | 260 | 239 | 285 | 286 | 309 | 282 | 161 | 310 | 279 | 272 | 282 | 26 | 28 | 4 222 | 278 | 278 | 265 | 323 | 551 | 497 | 519 | 431 | 565 | | | 13 | 29 | 3 | 259 | 238 | 284
283 | 285 | 308 | 281 | 160 | 309 | 278 | 271 | 281 | 260 | 28 | 4 222 | 277 | 277 | 265 | 322 | 551 | 498 | 519 | 431 | 564 | | L | 13 | 29 | 18 | 258 | 238 | 283 | 284 | 308 | 281 | 159 | 308 | 277 | 270 | 281 | 259 | 28
28
28
28
28
28 | 3 221 | 276 | 276 | 265 | 322 | 552 | 498 | 519
519
519
519
519 | 432 | 564 | | Time | Tim | ne | | TEW18
DEG F | | | | | TEW13 | | TEW11
DEG F | | | | | | | | TEW3
DEG F | | | | | TEWLH21 TES | 70 TE | 990
G F | |----------|-----|----|----|----------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|-------------------|-----|------------|---------------|------------|------------|------------|------------|-------------|------------|---| | illous. | 13 | 29 | | | | 283 | 283 | 307 | | 160 | 307 | | | 279 | | | | | 276 | | | | | 519 | | | | | 13 | 29 | | | 236 | 282 | 283 | 306 | 279 | 160 | 307 | 276 | | 279 | 258 | 281 | 220 | 274 | 275 | 265
265 | 322
322 | 552
552 | 499
499 | 518 | 433
433 | 563
563
563
564
564
564
564
563
563 | | | 13 | 30 | | | | 281 | 282 | 305 | 278 | 159 | 306 | 275 | 268 | 278 | | 281 | | | 275 | 265 | 322 | 552 | 499 | 518 | 433 | 563 | | | 13 | 30 | | | 235 | 279 | 281 | 304 | 278 | 158 | 305 | 274 | 267 | 277 | | 280 | 218 | | 274 | 265 | 322
322 | 553 | 499 | 518 | 433 | 563 | | | 13 | 30 | 34 | 254 | 234 | 279 | 280 | 303 | 277 | 158 | 304 | 273 | 267 | 276 | 256 | 279 | 218 | | 273 | | 321 | 553 | 500 | 518 | 434 | 564 | | | 13 | 30 | 48 | | 234 | 279 | 280 | 302 | 276 | 158 | 304 | 272 | 266 | 276 | | 280
279
278 | 218 | 272 | 273 | 265 | 321 | 554 | 500 | 519 | 434 | 564 | | | 13 | 31 | 4 | 254 | 233 | 277 | 279 | 301 | 275 | 157 | 303 | 271 | | 275 | | 278 | 217 | | 272 | | | 554 | 500
500 | 519 | 434 | 564 | | | 13 | 31 | | | 233 | 276 | 278 | 300 | 274 | 156 | 302 | 270 | | 274 | | 277 | | | 272 | | 321 | 555 | 500 | 519 | 434 | 564 | | | 13 | 31 | | | 232 | 276 | 278 | 300 | 273 | 156 | 301 | 269 | 264 | 273 | | | | | 271 | | 320 | 555 | 500 | 519 | 434 | 563 | | | 13 | 31 | | | | 275 | 277 | 299 | | 155 | 301 | 268 | 263 | 272 | | | | | 270 | | 320 | 555 | 500 | 519 | 434 | 563 | | | 13 | 32 | | 252 | 232 | 275 | 276 | 298 | 272 | 155 | 300 | 268 | 263 | 271 | | 275 | | | 269 | | 319 | 555 | 500 | 519 | 434 | 562 | | ļ | 13 | 32 | | | 230 | 274 | 276 | 297 | 272 | 153 | 299 | 267 | | 270 | | 274 | | | | | | 555 | 500 | 519 | 434 | 562 | | | 13 | 32 | | | 230 | 273 | 275 | 296 | 271 | 153 | 298 | 266 | 261 | 270 | | | | | 268 | | 318 | 555 | 500 | 519 | 434 | 562
561
560
560
559
559
560
560 | | | 13 | 32 | | | 229 | 271 | 274 | 296 | 270 | 153 | 298 | 265 | 260 | 269 | | | | | 267 | | 318 | 556 | 500 | | 434 | 560 | | | 13 | 33 | | | 229 | 271 | 273 | 295 | 270 | 152 | 297 | 264 | | 268 | | | | | 266 | | 316 | 556 | 501 | 519 | 434 | 560 | | | 13 | 33 | | | | 270
269 | 273
272 | 294 | 269
268 | 153 | 296
295 | 264 | 259 | 267 | 248 | | | | 266 | | 316 | | 501 | 520 | 434 | 559 | | | 13 | 33 | | | | 269 | 272 | 293
293 | | 152
152 | 295 | 263
262 | 259
258 | 266
265 | | | | | 266
265 | | 316
316 | 556 | 501 | 520
520 | 434 | 559 | | | 13 | 34 | | | | 268 | 271 | | | 151 | 295 | 262 | | 265 | | | | | | | 315 | 557
557 | 501
502 | | | 560 | | | 13 | 34 | | | | 266 | 270 | 291 | 266 | 151 | 293 | 261 | | 264 | 245 | 268
| | 260 | 264
264 | | 315 | 557 | 502 | 520
521 | 434 | 560
ECO | | | 13 | 34 | | | | 265 | 270 | 290 | | 151 | 292 | 260 | | 263 | | 268 | | | 264 | | 315 | 557 | 502 | 521 | 434 | 561 | | <u> </u> | 13 | 34 | | | | 265 | 269 | 290 | | 151 | 292 | 259 | | 263 | 244 | 267 | | | 263 | | 315 | 558 | 503 | 521 | 435 | | | - | 13 | 35 | | | | 264 | 268 | 289 | | 151 | 291 | 258 | 255 | 262 | 243 | | | | 263 | | 314 | 558 | 503 | 521 | 435 | 562 | | | 13 | 35 | | | | 264 | 267 | 288 | | 150 | 290 | 258 | 254 | 261 | 243 | | | | 262 | | 314 | 559 | 503 | 522 | 435 | 564 | | | 13 | 35 | | | 223 | 263 | 267 | 287 | | 150 | 290 | 257 | 254 | 261 | 242 | 265 | | | 262 | | 313 | 559 | 505 | 522 | 435 | 564 | | | 13 | 35 | | | 223 | 263 | 266 | 287 | 262 | 150 | 289 | 256 | 253 | 260 | 241 | 264 | | | 261 | | 313 | 559 | 505 | 523 | 435 | 562
564
564
564
564
564
563
563 | | | 13 | 36 | 3 | 244 | | 262 | 266 | 286 | 261 | 149 | 289 | 256 | 253 | 259 | 241 | | | 256 | 260 | | 313 | 559 | 505 | 523 | 435 | 564 | | | 13 | 36 | 18 | 243 | 223 | 262 | 265 | 285 | 260 | 149 | 288 | 255 | 252 | 258 | 240 | | | | 260 | | 313 | 560 | 505 | 523 | 434 | 564 | | | 13 | 36 | 34 | 243 | 221 | 261 | 264 | 284 | | 149 | 287 | 255 | | | 241 | | | 255 | 260 | 256 | 312 | 560 | 506 | 523 | 434 | 564 | | | 13 | 36 | | | | 259 | 264 | 284 | 259 | 149 | 287 | 254 | 252 | 259 | 242 | 264 | 208 | 256 | 262 | 257 | 313 | 560 | 506 | 523 | 434 | 563 | | | 13 | 37 | | 242 | | 259 | 263 | 283 | | 149 | 286 | 254 | 251 | | | 265 | | | 264 | | 314 | 560 | 506 | 523 | 434 | 563 | | | 13 | 37 | | | 219 | 258 | 263 | 283 | | 149 | 286 | 254 | | | | 266 | | | 266 | | 316 | 560 | 507 | 523 | 434 | 563
563
562 | | | 13 | 37 | | | 219 | 257 | 262 | 282 | 257 | 149 | 285 | 254 | 252 | 262 | 249 | 267 | | | 268 | | 317 | 560 | 507 | 523 | 434 | 563 | | . | 13 | 37 | | | 219 | 257 | 261 | 281 | 257 | 149 | 284 | 254 | 252 | 264 | | 269 | | | 270 | | 318 | 561 | 508 | 524 | 434 | 562 | | | 13 | 38 | | | 218 | 256 | 261 | 280 | 256 | 148 | 284 | 254 | 252 | 265 | | 271 | | 265 | 273 | | 319 | 561 | 509 | 524 | 434 | 562 | | - | 13 | 38 | | | 218 | 256 | 260 | 279 | | 148 | 283 | 254 | 252 | 267 | 258 | 273 | | 267 | 275 | | 322 | 561 | 509 | 524 | 434 | 563
563
564
565 | | | 13 | 38 | | | 216 | 255
254 | 259 | 279 | | 148 | 283 | 254 | 252 | | 262 | 275 | | | 278 | | 323 | 562 | 509 | 525 | 434 | 563 | | | 13 | 38 | | | 216 | | 259 | 278 | | 148
148 | 282 | 254 | 253 | 270 | | 277 | | 271 | 280 | | 324 | 562 | 510 | 525 | 434 | 564 | | | 13 | 39 | | 237 | 215
215 | 253
251 | 258
258 | 277
276 | | 148 | 282 | 255 | 253
254 | 272
274 | | 279 | | | 282 | | 325 | 562 | 511 | 525 | 434 | 565 | | | 13 | 39 | | | | 251 | 258 | 275 | | 148 | 281
280 | 255
255 | | 274 | 271
274 | 281
283 | | 275
277 | 284
287 | | 328
329 | 562
563 | 511
513 | 525
526 | 434 | 565
566 | | | 13] | 39 | 34 | 236 | 214 | 251 | 200 | 2/5 | 252 | 14/ | 280 | 255 | 253 | 2/6 | 2/4 | 283 | 246 | 2// | 287 | 266 | 329 | 563 | 513 | 526 | 434 | 566 | | EOIF | TAC | E: Wed De | c 15 19 | 93 7:39:18 | 3 am | | | | | | <u> </u> | |------|--------------------|-------------|-------------|-------------|-------------|-------------|-----|----------|--------------|---------------|-------------| | ime | | Time | | | PF-001 | FT730 | FT | | | PP-001 | PT720 | | our | | min | sec | Lt/min | Lt/min | Lt/min | Lt/ | /min | PSIG | PSIG | PSIG | | | 7 | 40 | 3 | 0 | 56 | 4 | 1 | 0 | -2 | -2 | | | | 7 | | 18 | 0 | | 4 | ı | 0 | -2 | -2 | | | | 7 | | 33 | 0 | 67 | 3 | | 0 | -2 | -2 | | | | 7 | 40 | 48 | 0 | 61 | 3 | | Oi | -2 | -2 | | | | 7 | | 3 | 0 | | 5 | | 0 | -2 | | | | | 7 | 46 | 6 | 0 | 58 | | 1 | 0 | -2 | | | | | | 46 | 10 | 0 | 58 | 5 | | 0 | -2 | -2 | | | | 7 | | 13 | 0 | 58 | 5 | :- | 0 | -2 | -2 | | | | 7 | 46 | 16 | | | 5 | | 0 | -2 | -2 | | | | | | | | | | | 0 | -2 | -2 | | | | 7 | 46 | | 0 | | | - | | | -2 | | | | 7 | 46 | 22 | 0 | | | - | 0 | -2 | | | | | 7 | 46 | 25 | 0 | | 5 | | . 0 | -2 | -2 | | | | 7 | 46 | 28 | 0 | | | | 0 | -2 | -2 | | | | 7 | 46 | 31 | 0 | | | | 0 | | | | | | 7 | 46 | 34 | 0 | 56 | 5 | | 0 | | -2 | | | | 7 | 46 | 38 | 0 | 56 | | 5 | 0 | -2 | | | | | 7 | | 41 | 0 | | 5 | 5 | 0 | -2 | | | | | 7 | 46 | 44 | 0 | 61 | 5 | | 0 | -2 | | | | | 7 | 46 | 47 | 0 | 61 | 5 | 5 | 0 | -2 | -2 | | | | 7 | 46 | | 0 | | 5 | 5 | 0 | -2 | | | | | 7 | 46 | 53 | 0 | | | 1 | 0 | | | | | | 7 | 46 | | ō | | | | ō | | | | | | 7 | 46 | | Ö | · | | | Ö | | | | | | 7 | 47 | 2 | 0 | | | | 0 | | | | | | - | 47 | 6 | | | | | 0 | | | | | | 7 | 47 | 9 | 0 | | | | 0 | -2 | | | | | 7 | | | 0 | · | | - | 0 | -2 | | | | | - ' 7 | 47 | 15 | 0 | • | | - | 0 | | | | | | | | | | | | | | | | | | | 7 | | | | | 8 | | 0 | | | | | | 7 | 47 | | | | | | 0 | | | | | | 7 | | | | | | | 0 | -2 | | | | | 7 | | | | | | | 0 | | | | | | 7 | | • | | | | 5 | 0 | | | | | | 7 | | | | | | | 0 | | | | | | 7 | 48 | 34 | 0 | 71 | | | 0 | | | | | | 7 | 48 | 49 | 0 | | | 1 | 0 | | | | | | 7 | 49 | 4 | 0 | 53 | 7 | 7 | 0 | -2 | | | | | 7 | 49 | 19 | 0 | 50 | 7 | 7 | 0 | -2 | -2 | 2 | | | 7 | 49 | 34 | 0 | 61 | 2 | 2 | 0 | -2 | -2 | 2 | | | 7 | 49 | 49 | 0 | 56 | 2 | 2 | 0 | -2 | -2 | 2 | | | 7 | 50 | | 0 | | | 2 | 0 | | + | 2 | | | 7 | | · | | | | 2 | 0 | | | | | | 7 | | | | | | 7 | ō | <u> </u> | | | | | 7 | | | | | | 2 | <u>ö</u> | | | | | | 7 | 51 | | | | | 1 | - 0 | | | | | | $\frac{\prime}{7}$ | | | | | | 3 | | • | | | | | | | | | | | _ | | | † · · · · · · | | | | $-\frac{7}{3}$ | | | | | | 7' | - 0 | | -2 | | | | | 51 | 48 | | | |) | 0 | | | | | | 7 | 52 | | | | | 2 | 0 | | -2 | <u> </u> | | | 7 | | | | | ļ | 2 | 0 | | | | | | 7 | 52 | | | | | 7 | 0 | | | | | | 7 | 52 | 48 | 0 | | | 7 | 0 | | -2 | 2 | | | 7 | | | | | | 5 | 0 | | | | | | _ 7 | | | | | | 5 | 0 | | | | | | 7 | | 34 | 0 | | : | 5 | 0 | | | | | | 7 | | | | | ! | 5 | 0 | | -2 | 2 | | | 7 | | | | 52 | | 1 | 0 | -2 | -2 | 2 | | | 7 | | | | | | 5 | 0 | | | | | | 7 | | | | | | 5 | 0 | -2 | -2 | | | | - | | | | | | 5 | 0 | | -2 | | | | - | | | | | , | 5 | 0 | -2 | | | | | - ' 7 | | | | | | 1 | 7 | 55 | | | | | 2 | 0 | | | | | | 7 | 55 | | | | | | 0 | | | | | | | | | | | | 2 | 0 | | | | | | 7 | | | | | | | 0 | | | | | | 7 | | | | | | | 0 | | | | | | 7 | 56 | 48 | 397 | 379 | 18 | 6 | 0 | 64 | 50 |) | | Time | Time | | FT720 | PF-001 | | FT800 | PT710 | | PT720 | |-------------|----------------|----------|------------|------------|---------------|--------|----------|----------|-----------------------| | hour 7 | min 57 | | Lt/min | Lt/min | Lt/min
162 | Lt/min | PSIG | PSIG | PSIG | | 7 | | 18
33 | 386
386 | 361
373 | 148 | 0 | 68
71 | 53
57 | 10 | | | | 48 | 387 | 302 | 5 | | 68 | 55 | 15 | | 7 | | 3 | 387 | 289 | 5 | | 68 | 55 | | | 7 | | 18 | 387 | 336 | 5 | 0 | 68 | 55 | | | 7 | | 34 | 387 | 352 | 5 | | 68 | 55 | 15 | | 7 | | 49 | 74 | 335 | 77 | 0 | -3 | 16 | | | 7 | | 4 | 4 | -4 | 4 | Ö | -6 | 31 | 10 | | 7 | | 19 | 4 | -4 | 4 | | -6 | 31 | 9 | | 7 | | 34 | 4 | -4 | 4 | | -6 | 30 | 9 | | 7 | | 49 | 4 | -4 | 4 | | -6 | 30 | 8 | | 8 | | 4 | 0 | -5 | 0 | | -6 | 30 | 9
8
8 | | 8 | | 19 | ō | •5 | 1 | 0 | •6 | 30 | 8 | | 8 | | 33 | 0 | -5 | 6 | 0 | -6 | 30 | 7 | | 8 | 0 | 48 | 0 | -5 | 6 | 0 | -6 | 30 | 7 | | 8 | 1 | 3 | 0 | -5 | 1 | 0 | -6 | 30 | 7
6 | | 8 | 1 | 18 | 0 | -5 | 2 | 0 | -6 | 30 | 6 | | 8 | 1 | 33 | 0 | -5 | 7 | 0 | -6 | 30 | 6 | | 8 | 1 | 48 | 0 | -5 | 7 | 0 | -6 | 30 | 6
5 | | 8 | 2 | 3 | 0 | 5 | 1 | 0 | -6 | 30 | 5 | | 8 | | 18 | 0 | -5 | 0 | 0 | -6 | 30 | 5 | | 8 | 2 | 33 | 0 | -5 | 0 | 0 | Ģ | 30 | 5
4 | | 8 | 2 | 48 | 0 | -5 | 1 | | -6 | 29 | 4 | | 8 | 3 | 3 | 0 | -5 | 1 | 0 | -6 | 29 | 4 | | 8 | | 18 | 0 | • 5 | 1 | 0 | -6 | 29 | 4 | | 8 | | 34 | 0 | -5 | 0 | 0 | -6 | 29 | 3 | | 8 | | 49 | 0 | -5 | 6 | 0 | -6 | 28 | 3 | | 8 | | 4 | 0 | -5 | 7 | 0 | -6 | 28 | 3
3
2
2
2 | | 8 | | 19 | 0 | •5 | 1 | 0 | -6 | 28 | 3 | | 8 | | 34 | 0 | -5 | 7 | 0 | -6 | 28 | 2 | | 8 | | 49 | 0 | -5 | 7 | 0 | -6 | 28 | 2 | | 8 | | 4 | 0 | -5 | 1 | | -6 | 28 | 2 | | 8 | | 19 | 0 | -5 | 1 | 0 | -6 | 28 | 2 | | 8 | | 33 | 0 | -5 | 0 | 0 | -6 | 28 | 2 | | 8 | | 48 | 0 | -5 | 0 | 0 | -6 | 27 | 1 | | 8 | | 3 | 3 | -5 | 6 | 0 | -6 | 5 | 0 | | 8 | | 18 | 399 | -5 | 221 | 0 | 56 | 49 | 0 | | 8 | | 33 | 399 | 388 | 188 | 0 | 63 | 51 | 2
5 | | 8 | | 48 | 393 | 359 | 183 | 0 | 64 | 51 | 5 | | 8 | | 3
18 | 393 | 366 | 171 | 0 | 66 | 53 | 8 | | 8 | | 33 | 387
380 | 367 | 159
30 | 0 | 69 | 55 | 12 | | 8 | | 48 | | 358 | | 0 | 67 | 55 | 16 | | 8 | | 48 | 387
387 | 361
382 | 4 | 0 | 68
68 | 55
55 | 15 | | 8 | | 19 | 387 | 382 | 4 | 0 | 68 | 55
55 | 15
15 | | 8 | | 34 | 387 | 347 | 4 | 0 | 68 | 55
55 | 15 | | 8 | | 49 | 387 | 320 | 6 | 0 | 68 | 55 | 15 | | 8 | | 4 | 387 | 359 | 5 | 0 | 68 | 55
55 | 15 | | 8 | | 19 | 387 | 371 | 5 | 0 | 68 | | | | 8 | | 34 | 387 | 309 | 5 | Ö | 68 | 55
55 | 15
15 | | 8 | | 49 | 386 | 361 | 5 | 0 | 68 | 55 | 15 | | 8 | | 4 | 386 | 352 | 6 | 0 | 68 | 55 | 15 | | 8 | 10 | 19 | 386 | 370 | 6 | 0 | 68 | 55 | 15 | | 8 | | 34 | 386 | 352 | 2 | 0 | 68 | 55 | 15 | | 8 | | 49 | 386 | 361 | 1 | 0 | 68 | 55 | 15 | | 8 | | 4 | 386 | 364 | 1 | | 68 | 55 | 15 | | 8 | | 19 | 386 | 349 | 1 | ō | 68 | 55 | 15 | | 8 | | 33 | 386 | 355 | 1 | 0 | 68 | 54 | 15 | | 8 | 11 | 48 | 386 | 384 | 1 | 0 | 68 | 54 | 15 | | 8 | 12 | 3 | 386 | 383 | . 0 | 0 | 68 | 54 | 15 | | 8 | | 18 | 386 | 381 | 2 | 0 | 68 | 54 | 15 | | 8 | 12 | 33 | 386 | 373 | 6 | 0 | 68 | 55 | 15 | | 8 | | 48 | 387 | 352 | 1 | . 0 |
68 | 55 | 15 | | 8 | 13 | 3 | 387 | 411 | 1 | 0 | 68 | 55 | 15 | | 8 | | 18 | 387 | 399 | 1 | 0 | 68 | 55 | 15 | | 8 | | 33 | 387 | 360 | 1 | 0 | 68 | 55 | 15 | | 8 | | 48 | 386 | 401 | 0 | 0 | 68 | 55 | 15 | | 8 | | 4 | 386 | 359 | 0 | 0 | 68 | 55 | 15 | | 8 | | 19 | 386 | 355 | 2 | 0 | 68 | 55 | 15 | | 8 | | 34 | 386 | 385 | 1 | 0 | 68 | 55 | 15 | | . 8 | 14 | 49 | 386 | 383 | 2 | 0 | 68 | 55 | 15 | | Time
hour | Time
min | | Time
sec | FT720
Lt/min | PF-001
Lt/min | FT730
Lt/min | FT800
Lt/min | PT710
PSIG | PP-001
PSIG | PT720
PSIG | |--------------|----------------|----------|-------------|-----------------|------------------|-----------------|-----------------|---------------|----------------|---------------| | | 8 | 15 | 4 | 386 | 362 | 6 | 0 | | 55 | 15 | | | B | 15 | 19 | 386 | 390 | 2 | 0 | 68 | 55 | 15 | | | B! | 15 | 34 | 387 | 378 | 2
5 | 0 | 68
68 | 55
55 | 15
15 | | | Bi
B | 15
16 | 49
4 | 387
387 | 383
370 | 0 | 0 | 68 | 55 | 15 | | | | 16 | 19 | 387 | 398 | 1 | 0 | 68 | 55 | | | | | 16 | 33 | 387 | 349 | 1 | 0 | 68 | 55 | | | | 8: | 16 | 48 | 388 | 351 | 1 | 0 | 68 | 55 | 15 | | | 8: | 17 | 3 | 388 | 353 | 1 | 0 | 68 | 55 | 15 | | | 8 | 17 | 18 | 388 | 364 | 1 | 0 | | 55 | 15 | | | В | 17 | | | 364 | 1 | 0 | | 55 | 15 | | | 8 | 17 | 48 | 387 | 360 | 2 | 0 | 68 | 55 | | | | | 18 | 3 | 387 | 352 | 2 | 0 | 68 | 55
55 | | | | 8 | 18
18 | 18
33 | 387
387 | 358
325 | 1 | 0 | 68 | 55 | | | | 8 | 18 | 48 | 387 | 360 | 1 | | | | 15 | | | 8 | 19 | 4 | | 378 | 1 | 0 | | 55 | | | | 8 | 19 | | | 342 | 1 | 0 | | 55 | 15 | | | 8 | 19 | | | 340 | 7 | | | 55 | 15 | | | 8 - | 19 | | | 342 | 7 | 0 | | 55 | 15 | | | 81 | 20 | | | 365 | 6 | 0 | | 55 | 15 | | | 8
8 | 20
20 | 19
34 | | 314
322 | 7 | 0 | | 55
54 | 15 | | | 8 | 20 | 49 | | | 2 | 0 | | | | | | 8 | 21 | 49 | | 364 | | 0 | | | 15 | | | 8 | 21 | 19 | | | 2 | Ö | | | 15 | | | 8 | 21 | 34 | 388 | 386 | 1 | 0 | 68 | 55 | | | | | 21 | 48 | | | | | | | 15 | | | 8 | 22 | 3 | | | 1 | | | | | | | 81 | 22 | 18 | | 398 | | | | 55 | 15 | | | 8
8 | 22
22 | | | 354
357 | 6 | 0 | | 55
55 | | | | 8 | 23 | | | 378 | | 0 | | | 15 | | | 8 | 23 | | | | | 0 | | | | | | 8 | 23 | | | | | | | | 15 | | | 8 | 23 | | | | | 0 | 68 | 55 | 15 | | | 8 | 24 | | | | | | | · | | | | 8 | 24 | | | | | | | | | | | 8; | 24 | | | | | | | | | | | 8 ¹ | 24
25 | | | | | | | | | | | 8, | 25 | | | | | | | | | | | 8 | 25 | | | | | | | | | | | 8 | 25 | | | | | | | | 15 | | | 8 | 26 | | | | | | | | 15 | | | 8 | 26 | | | | | | | | 15 | | | 8 | 26 | | | | | | | | | | | 8: | 26 | | | | | | | | | | | 8 ¹ | 27
27 | <u> </u> | | | | <u> </u> | | | | | | 8 | 27 | | | | | | | | | | | 8; | 27 | | | | | | | | | | | 8 | 28 | | | | | O | | | 15 | | | 8 | 28 | 18 | 387 | 335 | 5 | 0 | 68 | 55 | 15 | | | 8 | 28 | | 387 | 375 | 5 | | | 54 | 15 | | | 8 | 28 | | | | | 0 | | | 15 | | | 8 | 29 | | | | 2 | 0 | | | 15 | | | 8 [;] | 29
29 | | | | | | | • | 15 | | | 81 | 29 | | | | | | | | | | | 8: | 30 | | | | | | | | i 15 | | | 8 | 30 | | 388 | 401 | | | | | 15 | | | 8i | 30 | 34 | 389 | 357 | 7 | | | | 15 | | | 8 | 30 | | 389 | 363 | 2 | C | | | 3 15 | | | 8 | 31 | | | | | | | | | | | 8! | 31 | | | | | | | | | | | 8: | 31 | | | | | | | | | | | 8 | 31
32 | | | | | | • | | | | | 8 | 32 | | | | 6 | | | | 3 13 | | | 8 | 32 | | | | | | | | | | Time | Time | Time | FT720 | PF-001 | FT730 | FT800 | PT710 | PP-001 | PT720 | |----------|---------------------------------------|------|--------|------------|-------|--------|-------------|--------|-------| | hour | min | sec | Lt/min | Lt/min | | Lt/min | PSIG | PSIG | PSIG | | | · · · · · · · · · · · · · · · · · · · | 48 | 0 | -5 | 2 | 0 | | 36 | 11 | | 8 | | 3 | 0 | -5 | 6 | Ŏ | -6 | 35 | 11 | | | | 18 | 0 | -5 | 7 | Ö | -6 | 35 | 10 | | | | 33 | 0 | -5 | 0 | 0 | -6 | 35 | 10 | | 8 | | 48 | 0 | -5 | 7 | 0 | -6 | 35 | 9 | | | | 3 | 0 | | 1 | 0 | | 35 | 9 | | 8 | | 18 | | -5 | | | -6 | | | | | | | 6 | -5 | 1 | 0 | -6 | 35 | 8 | | | | 34 | 6 | -5 | 2 | 0 | | 35 | 8 | | | | 49 | 1 | -5 | 7 | 0 | | 35 | 7 | | | | 4 | 1 | -5 | 1 | | | 33 | 7 | | 8 | | 19 | 6 | -5 | 2 | 0 | | 33 | 6 | | 8 | 35 | 34 | 1 | -5 | 2 | 0 | -6 | 33 | 6 | | 8 | 35 | 49 | 1 | -5 | 2 | 0 | -6 | 32 | 5 | | 8 | | | 6 | -5 | 1 | 0 | -6 | 32 | 5 | | 8 | 36 | 19 | 0 | -5 | 1 | . 0 | -6 | 32 | 5 | | 8 | 36 | 34 | 0 | -5 | 2 | 0 | -6 | 30 | 5 | | 8 | | 49 | 0 | -5 | 8 | 0 | -6 | 30 | 4 | | | | 3 | 0 | -5 | 0 | 0 | -6 | 30 | 4 | | 8 | | 18 | ō | -5 | 1 | 0 | -6 | 30 | 4 | | | | 33 | Ö | -5 | 1 | ō | -6 | 29 | 3 | | 8 | | 48 | 0 | -5 | Ö | 0 | -6 | 29 | 3 | | | + | 3 | 0 | -5 | 1 | 0 | -6 | 29 | 3 | | | | 18 | 0 | -5
-5 | | 0 | -6
-6 | 29 | 3 | | | | | | | 2 | | | | 3 | | 8 | | 33 | 0 | -5 | 2 | 0 | | 27 | 2 | | 8 | | 48 | 0 | -5 | 2 | 0 | -6 | 27 | 2 | | | | 3 | 0 | -5 | 1 | 0 | | 27 | | | | | 18 | 0 | -5 | 2 | 0 | -6 | 27 | 2 | | 8 | | 34 | 0 | -5 | 2 | 0 | -6 | 26 | 2 | | | | 49 | 19 | - 5 | 9 | 0 | -6 | 19 | 1 | | | | 4 | 253 | -5 | | 0 | 58 | 50 | 0 | | 8 | | 19 | 400 | 358 | 195 | 0 | 62 | 52 | 2 | | | | 34 | 394 | 380 | 184 | 0 | 65 | 52 | 5 | | 8 | | 49 | 394 | 348 | 172 | 0 | 67 | 52 | 8 | | 8 | 41 | 4 | 388 | 355 | 160 | 0 | 69 | 55 | 12 | | 8 | 41 | 19 | 382 | 351 | 45 | 0 | 68 | 55 | 16 | | 8 | 41 | 34 | 382 | 365 | 7 | 0 | 68 | 55 | 16 | | ٤ | 41 | 49 | 382 | 365 | 1 | 0 | 68 | 55 | 15 | | | | 4 | 388 | 367 | 1 | 0 | | 55 | 15 | | 8 | | 19 | 388 | 354 | 2 | 0 | 68 | 55 | 15 | | 8 | | 34 | 388 | 364 | 2 | ō | 68 | 55 | 15 | | | | 48 | 388 | 380 | 2 | ō | 68 | 55 | 15 | | 8 | | 3 | 388 | 350 | 2 | Ö | 68 | 55 | 15 | | | | 18 | 388 | 373 | 2 | 0 | | 55 | 15 | | | | 33 | 388 | 349 | 1 | 0 | | 55 | 15 | | | | 48 | 388 | 352 | 2 | 0 | | 55 | 15 | | | | 3 | | 355 | 7 | | | 55 | 15 | | | | | 386 | | | 0 | | | | | | | 18 | 386 | 399 | 5 | 0 | | 55 | 15 | | | · | | | 307 | | 0 | | | | | 8 | | 48 | 386 | | | 0 | | 55 | 15 | | | | 3 | 387 | 379 | | 0 | | 55 | 15 | | | | 19 | 387 | 376 | | 0 | | 55 | 15 | | | | 34 | | 386 | | 0 | | 55 | 15 | | 8 | | 49 | 387 | 354 | 2 | 0 | | 55 | 15 | | | | 4 | | 335 | | 0 | | 55 | 15 | | 8 | | 19 | 386 | 393 | 2 | 0 | | 55 | 15 | | ε | 46 | 34 | 386 | 333 | | 0 | 68 | 55 | 15 | | 8 | | 49 | 386 | 333 | | 0 | 68 | 55 | 15 | | | 47 | 4 | 387 | 344 | | 0 | 68 | 55 | 15 | | 8 | | 19 | | 397 | 2 | 0 | | 55 | 15 | | | | 33 | 387 | 340 | | 0 | 68 | 55 | 15 | | 8 | | 48 | 387 | 366 | | 0 | | 55 | 15 | | | | 3 | 385 | 374 | | 0 | 68 | 55 | 15 | | <u>-</u> | | 18 | | 336 | | ő | | 55 | 15 | | | | 33 | 385 | 353 | | 0 | | 55 | 15 | | | | | | 394 | | 0 | | 55 | 15 | | 8 | | 3 | | 381 | 4 | 0 | | 55 | 15 | | | | | | | | | | | | | | | 18 | 389 | 343 | | 0 | 68 | 55 | 15 | | | | 33 | | 361 | | 0 | | 55 | 15 | | | | 48 | 389 | 376 | | | | 55 | 15 | | | | | | 355 | | 0 | | | 15 | | | 50 | 18 | 387 | 338 | 2 | 0 | 68 | 55 | 15 | ٠. | Time | Time | Time | | FT720 | PF-001 | | FT800 | PT710 | PP-001 | PT720 | |------|-----------------|----------|----------|--------------|--------------|--------|---------|-------------|------------------|----------| | hour | min | sec | | Lt/min | Lt/min | | | PSIG | | PSIG | | | 8 | 50 | 34 | | 301 | 2 | 0 | | | 15 | | | 8 | 50 | 49 | 387 | 386 | 2 | 0 | 68 | 55 | | | | 8! | 51: | 4 | 386 | 347 | 2 | 0 | 68 | 55 | 15 | | | 8 | 51 | 19 | 386 | 366 | . 1 | 0 | 68 | 55 | | | | 8 | 51 | 34 | 386 | 303 | 2 | 0 | 68 | 55 | 15 | | | 8: | 51 | 49 | 386 | 359 | 2 | 0 | 68 | _ 55 | 15 | | | 8 | 52 | 4 | | 341 | 7 | 0 | 68 | 55 | 15 | | | 8 | 52 | 19 | | 347 | 2 | 0 | 68 | 55 | | | | 8 | 52, | 33 | 388 | 370 | 2 | 0 | 68 | 55 | | | | 8. | 52 | 48 | | 343 | 1 | 0 | | 55 | 15 | | | 8 | 53 | 3 | | 369 | 1 | 0 | 68 | 55 | 15 | | | 8 | 53 | 18 | | 337 | 6 | 0 | 68 | 55 | | | | 8 | 53 | 33 | | 365 | 2 | 0 | 68 | 55 | 15 | | | 8 | 53 | 48
3 | | | 5
0 | | 68 | 55 | 15 | | | 8 | 54
54 | 18 | | | | 0 | 68 | 55 | 15 | | | 8. | | | | 353 | 7 | 0 | | | • | | | <u>8.</u>
8. | 54
54 | 33
48 | | 343
337 | 1. | 0 | 68 | 5 <u>5</u>
55 | 10 | | | | | | | | 1 | 0 | 68 | | 15
15 | | | 8:
8: | 55
55 | 19 | 386 | 356
372 | 7 | 0 | 68 | <u>55</u>
55 | 15 | | | 8: | 55 | 34 | | 372 | 7 | 0 | | 55 | 15 | | | 8i | 55 | 49 | | 405 | 6 | 0 | 68 | 55
55 | 15 | | | 8 | 56 | 49 | , | 368 | 0 | | | 55 | | | | <u>8</u> | 56, | 19 | | - | 4 | 0 | | 55 | 15 | | | <u>8</u>
8 | 56 | 34 | | 388 | 4 | 0 | | 55 | | | | 8 | 56 | 48 | | 377 | 4 | 0 | | 55 | | | | 8 | 57 | 3 | | | 4 | <u></u> | 68 | 55 | | | | 8 | 57 | 18 | | 349 | 0 | 0 | 68 | 55 | | | | 8 | 57 | 33 | | | 0 | 0 | | 55 | | | | 8 | 57 | 48 | | | | 0 | • — — | | • | | | 8 | 58 | 3 | | | 2 | 0 | 68 | 55 | | | | 8 | 58 | 18 | | | 0 | 0 | | 55 | 4 | | | 8 | 58 | 33 | | 359 | 2 | 0 | | 55 | | | | 8 | 58 | 48 | | | 0 | 0 | • | 55 | | | | 8. | 59 | 3 | | | 2 | 0 | | | | | | 8. | 59 | 18 | | | 2 | 0 | | | | | | 8. | 59 | 33 | | | | 0 | | | | | | 8 | 591 | 49 | | | 6 | 0 | 68 | 55 | 15 | | | 9 | 0 | 4 | 389 | 379 | 2 | 0 | 68 | 55 | | | | 9 | 0. | 19 | 389 | 395 | 1 | 0 | 68 | 55 | | | | 9 | 0: | 34 | 385 | 354 | 6 | 0 | 68 | 55 | | | | 9 | 0. | 49 | 385 | 370 | 6 | 0 | 68 | 55 | 15 | | | 9 | 1 | 4 | 385 | 356 | 7 | 0 | 68 | 55 | | | | 9 | 1 | 19 | 385 | 367 | 4 | 0 | 68 | 55 | | | | 9 | 1 | 33 | 388 | 373 | 4 | 0 | 68 | 55 | 15 | | | 9 | 1 | 48 | | · | 4 | 0 | | 55 | 15 | | | 9 | 2 | 3 | • | | | 0 | | 55 | | | | 9 | 2 | 18 | | | | 0 | 68 | 55 | 15 | | | 9 | 2 | 33 | | 329 | | 0 | | 55 | | | | 9 | 2 | 48 | | 365 | | | | | | | | 9 | 3
 5 | | 376 | | | | | | | | 9 | 3 | 18 | | 345 | 2 | 0 | | | | | | 9: | 3 | 33 | | | | 0 | • | | | | | 9 | 3 | 48 | | | | | | | | | | 9 | 4 | 3 | | | | 0 | | 55 | | | | 9 | 4 | 18 | | | | | | | | | | 9 | 4 | 34 | | | | 0 | | 55 | | | | 9. | 4! | 49 | | | | | | | | | | 9' | 5 | 4 | | • | 54 | | • | | | | | 9 | 5 | 19 | | | | 0 | • | , | | | | 9. | 5 | 34 | | | | 0 | | | | | | 9 | 5 | 49 | | -3 | | | | | | | | 9 | 6 | 4 | | | | | | | | | | 9 | 6 | 19 | | | | | | | 1 | | | 9 | 6 | 33 | | | 2 | | • | | | | | 9 | 6! | 48 | | | | | 4 | | | | | 9 | 7 | 3 | | | | | | | | | | 9. | 7 | 18 | | | | | | | | | | 9 | 7 | 33 | | | | | | | 1 | | | 9 | 7 | 48 | | | | | | | | | | 9 | 8 | 3 | 12 | -5 | 6 | 0 | -6 | 35 | .1 | | Time | | | | | | -T730 | | | | PT720
PSIG | |------|----|----------|-------------|--|-------------|--------|--------------|----------------|-------------|---------------| | hour | _ | | | Lt/min | | _t/min | | | PSIG | | | | 9 | . 8 | 18 | 9 | -5 | 0 | 0 | -6 | 35 | | | | 9 | 8 | 33 | 4 | -5 | 0 | 0 | -6 | 35
35 | | | | 9 | 8 | 48 | 4 | -5 | 0 | 0 | -6
-6 | 33 | | | | 9 | 9 | 4 | 4 | - 5 | 0 | 0 | -6 | 33 | | | | 9 | 9 | 19 | 4 | -5 | 0 | 0 | -6 | 33 | | | | 9 | 9 | 34 | 4 | -5 | 0 | 0 | - <u>-</u> -6 | 32 | | | | 9 | 9 | 49 | 0 | -5 | 1 | 0 | -6 | 32 | | | | 9 | 10 | 4 | 0 | -5 | 1 | 0 | -6 | 32 | | | | 9 | 10 | 19 | 0 | -5 | 2 | 0 | -6 | 30 | | | | 9 | 10 | 34 | 0 | -5 | 2 | 0 | -6 | 30 | | | | 9 | 10 | 49 | 0 | -5 | | | -6 | 30 | | | | 9 | 11 | 4 | 0 | -5
-5 | 1
 | 0 | -6
-6 | 29 | | | | 9 | 11 | 18 | | -5
-5 | 2 | | -6 | 29 | | | | 9 | 11 | 34
48 | 2 | -5
-5 | 6 | | | 29 | | | | 9 | 11
12 | | | | 6 | | | 29 | | | | 9 | 12 | 3
18 | 2 | | 7 | | | 27 | | | | 9 | 12 | 33 | | | 1 | | | 27 | | | | 9 | 12 | 48 | - 0 | -5 | 1 | | | 27 | | | | | 13 | 3 | | | 4 | | | 27 | | | | 9 | 13 | 18 | | | 4 | | | 26 | | | | 9 | 13 | 33 | | | 4 | | | 26 | | | | 9 | 13 | 48 | | | 10 | | | 12 | | | | 9 | 14 | 3 | | | 194 | | | 52 | | | | 91 | 14 | 18 | | | 189 | | | 52 | | | | 9 | 14 | | | | 177 | | | - 52 | 2 6 | | | 9 | 14 | | | | 165 | | | | | | | 9 | 15 | | | | 153 | 1 | | | | | | 9 | 15 | | | | 4 | } | | 55 | | | | 9 | 15 | | | | 4 | | | | | | | 9 | 15 | | | | 4 | | . 68 | 55 | 5 15 | | | 9 | 16 | | | | 4 | C | 68 | 55 | 15 | | | 9 | 16 | | | | 5 | | 68 | 55 | 5 15 | | | 9 | 16 | | | | C | | 68 | | | | | 9 | 16 | | 385 | 406 | 4 | 1 (| | | | | | 9 | 17 | | 385 | 355 | 4 | (| | | | | | 9 | 17 | 18 | 386 | 326 | 4 | (| | | | | | 9 | 17 | 33 | 386 | | 4 | | | | | | | 9 | 17 | 48 | 386 | | 2 | ? (| | | | | | 9 | 18 | | | | 2 | 2 (| | | | | | 9 | 18 | | | | 2 | 2 (| | | | | | 9 | | | | | - 2 | | | | | | | 9 | | | | | | 5 (| | | | | | 9 | | | | | | 7] (| | | | | | 9 | 19 | | | | | 1 (| | | | | | 9 | 19 | | | | | 7 (| | | | | | 9 | 19 | | | | | | 68 | | | | | 9 | | | 386 | | | | 68 | | | | | 9 | 20 | | | | | | 68 | | | | | 9 | | | | | | | 68 | | | | | 9 | | | | | | | 0 68 | | | | | 9 | 21 | | 387 | | | | 0) 68
0) 68 | - | | | | 9 | 2 | | | | | | 68 | | | | | 9 | | | | | | | 0 68 | | | | | 9 | | | | | | | 68 | | | | | 9 | | | 38 | | | | 0 68 | | | | | 9 | | | | | | | 0 68 | | | | | 9 | 2: | | | | | | 0) 68 | | 5 1 | | | 9 | | | 38 38 38 38 38 38 38 38 38 38 38 38 38 3 | | | | 0 68 | | | | | 9 | 2: | | | | | | 68 | | | | | 9 | | | | | | | 0 68 | | | | | 9 | | | | | | 2 | 0 67 | | 5 1 | | | 9 | | | | | | 6 | 0 68 | | 5 1 | | | 9 | | | 3 38 | | | | 0 68 | | 5 1 | | | 9 | 2. | | | | | | 0 68 | | 5 1 | | | 9 | | | | | | | 0 68 | | 5 1 | | | 9 | | | | | | | 0 68 | | 55 1 | | | 9 | | | | | | | 0 68 | | 55 1 | | | 9 | | | 8 38 | | | | 0 68 | | 55 1 | | | 9 | | | 4 38
9 38 | | | | 0 6 | | 55 1 | | Time | • | Time | Time | F1720 | PF-001 | FT730 | FT800 | PT710 | PP-001 | PT720 | |----------|----|----------|-------------|------------|--------------|-------------|--------|--------------|--------------|-------------| | hour | | | sec | Lt/min | Lt/min | Lt/min | Lt/min | | PSIG | PSIG | | | 9 | 26 | 4 | 388 | 336 | 4 | 0 | 68 | 55 | 15 | | | 9 | 26 | 19 | 387 | 372 | 4 | 0 | 68 | 55 | 15 | | | 9 | 26 | 34 | 387 | 362 | 4 | 0 | 68 | 55 | 15 | | | 9 | 26 | 49 | 387 | 392 | 4 | 0 | 68 | 55 | 15 | | l | 9 | 27 | 3 | 387 | 371 | 8 | 0 | 68 | 55 | 15 | | | 9 | 27 | 18 | 384 | 296 | 1 | 0 | 68 | 55 | 15 | | | 9 | 27 | 33 | 384 | 320 | 6 | 0 | 68 | 55 | 15 | | | 9 | 27 | 48 | 384 | 369 | 1 | 0 | 68 | 55 | 15 | | | 9 | 28 | 3 | 384 | 370 | 2 | 0 | 68 | 55 | 15 | | | 9 | 28 | 18 | 387 | 372 | 0 | 0 | 68 | | 15 | | | 9 | 28 | 33 | 387 | 353 | 6 | 0 | 68 | 55 | 15 | | | 9 | 28 | 48 | 387 | 342 | 7 | 0 | 68 | 55 | 15 | | | 9: | 29 | 3 | 387 | 354 | 1 | 0 | 68 | 55 | | | | 9 | 29 | 18 | 388 | 366 | 1 | 0 | 68 | | | | | 9 | 29 | 33 | 388 | 360 | 1 | Ö | 68 | 55 | 15 | | | 91 | 29 | 48 | 388 | 374 | 6 | 0 | 68 | | 15 | | | 9 | 30 | 4 | 388 | 330 | 0 | 0 | | | | | | 9 | 30 | 19 | 387 | 345 | 2 | 0 | | | | | | 9 | 30 | 34 | 387 | 380 | 7 | ō | · | 55 | | | | 9 | 30 | 49 | 387 | 349 | 1 | 0 | | | | | | 9 | 31 | 4 | 387 | 371 | 1 | | | 55 | | | - | -9 | 31 | 19 | 388 | 385 | 2 | Ö | | | | | | 9, | 31 | 34 | 388 | 352 | 7 | ő | | | | | · | 9 | 31 | 49 | 388 | 351 | Ö | 0 | | | | | | 9 | 32 | 4 | 388 | 325 | 1 | 0 | | | | | | 9 | 32 | | 387 | 359 | | ō | | | | | | 9 | 32 | 34 | 387 | 365 | 2 | ŏ | | | | | | 9 | 32 | | | 354 | | Ö | | | | | | -9 | 33 | 3 | | 343 | | 0 | | | * | | | 9 | 33 | 18 | 385 | 316 | 2 | Ö | | 55 | | | | 9 | 33 | 33 | 385 | 344 | | 0 | | | | | | 9 | 33 | 48 | 385 | 287 | 1 | 0 | | 55 | | | | 9 | 34 | 3 | | 334 | | 0 | | | | | | 9 | 34 | 18 | 385 | | | 0 | | 55 | | | - | 9. | 34 | 33 | 385 | | 6 | 0 | | | | | | 9 | 34 | 48 | | | 7 | | | 55 | | | | 9 | 35 | 4 | 385 | | | | | | · | | | 9 | 35 | 19 | | | 2 | 0 | | | | | | 9 | 35 | | | 346 | 6 | 0 | | | | | - | 9 | 35 | | | 361 | 1 | 0 | • | | | | | 9 | | 49 | | | 1 | 0 | | | | | - | 9 | 36
36 | 19 | 385
385 | 381
309 | | 0 | | | | | | 9 | 36 | | 385 | 309 | | 0 | | | | | | 9 | 36 | 49 | 385 | 392 | | | | | | | | 9 | 37 | 49 | | 331 | | | | | | | <u> </u> | 9 | 37 | • | | | | | | | | | | 9 | | | | | | | | • | | | | | 37 | 33 | | 314 | | | | + | | | | 9 | 37 | 48 | | 343 | 9 | | | | | | | | | | | | 9 | | | | | | | + | | | | - | 9 | | | | | | | | | | | | 9 | | | | 315 | | | | | | | | 9 | | | | | 3 | 0 | + | | 15 | | | 9 | 39 | | | | | 0 | | | | | | 9 | 39 | | | | | 0 | | | 13 | | ļ | 9 | 40 | | | | | | | | | | L | 9 | | | | | | | | | | | | 9 | | | | | | | | | | | | 9 | | | | | | • | | | 11 | | L | 9 | | 4 | | | | | | | 10 | | | 9 | 41 | | 0 | -5 | | | -6 | 35 | 10 | | | 9 | 41 | 34 | 0 | i - 5 | 2 | 0 | -6 | | 9 | | | 9 | | | 0 | | 0 | 0 | | 35 | 9 | | | | POINT DA | | 8:52:37 | Check | 4" | 6"
flange | |-------------|--------------|----------|-----------|---------|-------------|------------------|---------------------------------------| | | ATE: Tue | | | | | flange
TEPL-8 | TEPL-12 | | Time | Time | Time | | T720 | TEPL-5 | | | | hour | min | sec | | t/min | | DEG F | DEG F | | | 8 | 53 | 3 | 0 | 72 | 69 | <u> </u> | | | 8 | 53 | 18 | 0 | 72 | 69 | | | | 8 | 53 | 33 | 0 | | 69 | 92 | | | 8 | 53 | 48 | 0 | | | | | | 8 | 54 | 3 | 0 | | | 92 | | | 8 | 54; | 19 | 0 | | | | | | 8 | 54 | 34 | 0 | | | | | | 8' | 54 | 49 | 0 | | 68 | <u> </u> | | | 8, | 55 | 4 | 0 | | 68 | | | | 8 | 55 | 19 | 0 | | | | | | 8 | 55 | 34 | 0 | | 68 | | | | 8; | 55 | 49 | 0 | | | | | | 8 | 56 | 4 | 0 | | | | | | 8 | 56 | 18 | 0 | | | | | | 8 | 56 | 33 | 0 | | | | | | 8 | 56 | 48 | 0 | 72 | | | | | 8 | 57 | 3 | 0 | 72 | | | | | 8 | 57 | 18 | 323 | 72 | 69 | 9: | | | 8 | 57 | 33 | 355 | 134 | 69 | 9: | | | 8 | 57 | 48 | 361 | 223 | 80 | 9 | | | 8 | 58 | 3 | 361 | 279 | 105 | 12: | | | 8 | 58 | 18 | 361 | 329 | 154 | 14 | | | 8. | 58 | 33 | 361 | 367 | 191 | 16 | | | 8 | 58 | 48 | 360 | 391 | 241 | . 19 | | | 8 | 59 | 3 | 360 | 415 | 283 | 22 | | | 8 | 59 | 18 | 360 | 438 | 320 | 26 | | | 8 | 59 | 33 | 360 | 451 | 344 | 28 | | | 8 | 59 | 49 | 360 | 461 | 367 | 31 | | | 9 | 0 | 4 | 360 | | 390 | 33 | | | 9 | 0 | 19 | 360 | 484 | 402 | 34 | | | 9 | 0 | | 360 | 496 | 414 | 37 | | | 9 | 0 | 34
49 | 361 | | | | | | 9 | 1 | 4 | 361 | | | | | | 9 | 1 | 19 | 361 | 518 | · | | | | 9 | 1 | 34 | 361 | | | | | | 9 | 1, | 49 | 359 | | | · · · · · · · · · · · · · · · · · · · | | | 9 | 2 | 3 | 359 | | | | | | 9 | 2 | 18 | 359 | Per | | +d-u | | | 9 | 2 | 33 | 359 | | + | | | | 9 | 2 | 48 | 359 | · · · · · | An | | | | 9 | 3 | 3 | 359 | | | | | | 9 | 3 | 18 | 359 | | | | | _ | - 9 | 3 | 33 | 359 | | | | | | 9 | 3 | 48 | 357 | 4 | | | | | 9 | 4 | 3 | 357 | | | | | | 9 | 4 | - 3
18 | 357 | | | | | | 9 | 4 | 33 | | 4 | · | | | | | 4 | 55 | 357 | 100 | 482 | . 45 | Thermal Shock Data for Components | Time | Time | Time | | FT720 | TEPL-5 | TEPL-8 | TEPL-12 | |------|------------------|--------------|-------------------|------------|------------------|--------------------|------------| | hour | min | sec | | Lt/min | DEG F | DEG F | DEG F | | | 9 | 5 | 4 | 361 | 568 | 492 | 461 | | | 9 | 5 5 | 19 | 361 | 568 | 492 | 461 | | | 9 | 5 | 34 | 361 | 568 | 492 | 461 | | | 9 | 5 | 49 | 359 | 568 | 492 | 472 | | | 9 | 6 | 4 | 359 | 572 | 500 | 472 | | | 9 | 6 | 19 | 359 | 572 | 500 | | | | 9 | 6 | 34 | 359 |
572 | 500 | | | | 9 | 6 | 48 | 358 | 572 | 500 | 479 | | | 9 | 6.
7 | 3 | 358 | 575 | 505 | 479 | | | 9 | 7 | 18 | 358 | 575 | 505 | 479 | | | 9 | 7 | 33 | 358 | | 505 | | | | 9 | 7 | 48 | 358 | 575 | 505 | 488 | | | 9
9
9
9 | | 3 | 358 | 575 | 512 | 488 | | | 9 | . 8
8 | 18 | 358 | 578 | 512 | 488 | | - | 9 | 8 | 33 | 358 | 578 | 512 | 488 | | | 9 | 8 | 48 | 359 | 578 | 512 | 495 | | - | 9
9 | | 3 | 359 | 578.
578 | 516 | 495 | | | 9 | 9 | 19 | 359 | 579 | 516 | 495 | | | 9 | 9 | 34 | 359 | 579 [°] | 516 | 495 | | | 9 | 9 | 49 | 360 | 579 | 516 | 502 | | - | 9 | 10 | 4 | 360 | 579 | | 502 | | | 9 | 10 | 19 | 360 | 581 | 523 | 502 | | | 9 | 10 | -34· | 360 | | 523 | 502 | | | 9 | 10 | 49 | 359 | 581 | 523 | 507 | | | 9 | 11 | 3 | 359 | 581 | 526 | 507 | | | 9 | 11 | 18 | 359 | 581 | 526 | 507 | | | 9 | 11 | 33 | 359 | 581 | 526 | 507 | | | 9 | 11 | 48 | 358 | 581 | 526 | 507 | | | 9 | 12 | 3 | 358 | 581 | 530 | 512 | | | 9 | 12 | 18 | 358 | 583 | 530 | 512 | | | 9 | 12 | 33 | 358 | 583 | 530 | 512 | | | 9 | 12 | 48 | 358 | 583 | 530 | 512 | | | 9 | 13 | 3 | 358 | 583 | 535 | 518 | | | 9 | 13 | 19 | 358 | 584 | 535 | 518 | | | 9 | 13 | -10
-34 | 358 | 584 | _ 535 | 518 | | | 9 | 13 | 49 | 358 | 584 | 535 | 518 | | - | 9 | 14 | 4 | 358 | 584 | 537 | 522 | | | 9 | 14 | 19 | 358 | 584 | 537 <u>537</u> | 522 | | | 9 | 14 | 34 | 358 | 584 | 537 | 522 | | | 9 | 14 | 49 | 358 | 584 | 537 | 522 | | | | 15 | ~ ~ 3. | 358 | 584 | 542 | 526 | | - | 9 | 15 | 18 | 358 | 584.
586 | 542 | 526
526 | | | | 15 | 33 | 358 | 586 S | 542 | 526 | | | 9 | 15 | 48 | 357 | 586 | 542 | 526 | | | 9 | 16 | 3 | 357 | 586 | 544 | 520
530 | | _ | 9. | 16 | 18 | 357 | 585 | _ 544 _. | 530 | | | 9.9.9.9.9.9.99 | 16 | 33 | 357 | 585
585 | 544 | 530 | | = | - 9 | 16 | 48 | 357 | 585
585 | 544
544 | 530 | | | 9 | 17 | 3 | 357
357 | 585 | 548 | 533 | | | 9 | - ' <i>'</i> | 18 | 357 | 586 | 548 | 533 | | | | 17 | 10 | 337 | 300 | 546 | 333 | Thermal Shock Data for Components | hour min sec Lt/min DEG F DEG F DEG F 9 17 33 357 586 548 538 9 18 4 358 586 548 538 9 18 19 358 586 551 53 9 18 49 358 587 551 53 9 18 49 358 587 551 53 9 19 4 358 587 552 54 9 19 18 358 587 552 54 9 19 18 358 587 552 54 9 19 48 358 587 552 54 9 19 48 358 587 552 54 9 20 3 358 588 556 54 9 20 33 358 < | Time | Time | 'Time | F | T720 | TEPL-5 | TEPL-8 | TEPL-12 | |---|-------------|-------------|-------|-----|-------|---------------------------------|---------------------------------------|---| | 9 | | | | !Li | t/min | DEG F | DEG F | DEG F | | 9 17 49 358 586 548 556 9 18 4 358 586 551 53 9 18 34 358 587 551 53 9 18 49 358 587 551 53 9 18 49 358 587 551 53 9 18 49 358 587 551 53 9 18 49 358 587 551 53 9 19 19 4 358 587 552 54 9 19 19 48 358 587 552 54 9 19 48 358 587 552 54 9 19 48 358 587 552 54 9 19 48 358 587 552 54 9 19 48 358 587 552 54 9 19 48 358 587 552 54 9 19 48 358 587 552 54 9 19 48 358 587 552 54 9 20 3 358 587 552 54 9 20 48 359 588 556 54 9 20 48 359 588 556 54 9 21 4 359 588 556 54 9 21 4 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 49 357 590 561 56 9 23 49 357 590 561 56 9 23 49 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 590 562 56 9 24 18 357 591 564 56 9 25 18 357 591 564 56 9 26 19 357 591 567 56 9 26 19 357 591 567 56 9 26 19 357 591 567 56 9 26 19 357 591 567 56 9 26 19 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 48 356 593 570 5 9 28 18 356 593 570 5 9 28 18 356 593 570 5 | | | | | | | | 533 | | 9 18 4 358 586 551 53
9 18 19 358 587 551 53
9 18 49 358 587 551 53
9 19 4 358 587 551 53
9 19 4 358 587 552 54
9 19 19 4 358 587 552 54
9 19 19 48 358 587 552 54
9 19 48 358 587 552 54
9 19 48 358 587 552 54
9 20 3 358 587 552 54
9 20 3 358 587 556 54
9 20 48 359 588 556 54
9 21 4 359 588 557 55
9 21 4 360 588 557 56
9 21 49 360 588 557 54
9 22 4 360 588 557 54
9 22 19 360 580 561 23 19 357 590 562 56
9 24 18 357 591 564 55
9 25 3 357 591 564 55
9 26 3 357 591 564 55
9 27 4 3857 591 567 55
9 26 19 357 591 567 55
9 27 4 357 591 567 55
9 28 3 356 593 570 55
9 28 18 356 593 570 55
9 28 18 356 593 570 55
9 28 18 356 593 570 55 | | | | | | | | 533 | | 9 18 19 358 587 551 53
9 18 49 358 587 551 53
9 19 19 4 358 587 552 54
9 19 19 18 358 587 552 54
9 19 19 48 358 587 552 54
9 19 19 48 358 587 552 54
9 19 19 48 358 587 552 54
9 20 3 358 587 552 54
9 20 18 358 587 556 54
9 20 33 358 587 556 54
9 20 48 359 588 556 54
9 21 4 359 588 557 56
9 21 19 359 588 557 54
9 21 49 360 588 557 54
9 21 49 360 588 557 54
9 22 4 360 588 557 54
9 22 4 360 588 557 54
9 22 49 357 590 561 54
9 22 49 357 590 561 56
9 23 4 369 580 561 56
9 23 4 367 590 561 56
9 23 49 357 590 561 56
9 23 49 357 590 562 56
9 24 33 357 590 562 56
9 24 48 357 590 562 56
9 25 18 357 591 564 55
9 26 3 357 591 564 55
9 27 48 357 591 567 56
9 28 3 357 591 567 56
9 29 24 48 357 591 564 55
9 27 48 357 591 567 56
9 28 3 357 591 567 56
9 27 48 357 591 567 56
9 26 3 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 27 48 357 591 567 56
9 28 3 357 591 567 56
9 29 26 39 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 49 357 591 567 56
9 28 3 357 591 567 56
9 27 49 357 591 567 56
9 28 39 357 591 567 56
9 27 49 357 591 567 56
9 28 39 357 591 567 56
9 27 49 357 591 567 56
9 28 39 357 591 567 56
9 27 49 357 591 567 56
9 28 39 356 593 570 5 | | | | | | | | 537 | | 9 18 34 358 587 551 53
9 18 49 358 587 551 53
9 19 19 4 358 587 552 54
9 19 33 358 587 552 54
9 19 33 358 587 552 54
9 19 33 358 587 552 54
9 19 20 3 358 587 552 54
9 20 18 358 587 556 54
9 20 48 359 588 556 54
9 20 48 359 588 556 54
9 21 4 359 588 557 56
9 21 49 360 588 557 54
9 21 49 360 588 557 54
9 22 4 360 588 557 54
9 22 49 357 590 561 54
9 22 49 357 590 561 54
9 23 4 357 590 562 55
9 23 49 357 590 562 55
9 24 48 357 590 562 55
9 23 49 357 590 562 55
9 24 48 357 590 562 55
9 25 33 357 591 564 55
9 26 19 27 48 357 591 567 55
9 26 39 37 591 564 55
9 27 4 387 591 567 55
9 28 34 357 591 564 55
9 29 29 3 357 591 564 55
9 29 29 38 357 591 567 55
9 29 29 38 357 591 564 55
9 29 29 38 357 591 567 55
9 29 36 39 357 591 564 55
9 29 36 39 357 591 564 55
9 26 39 357 591 564 55
9 27 4 387 591 567 55
9 26 39 357 591 567 55
9 27 4 357 591 567 55
9 26 39 357 591 567 55
9 27 4 357 591 567 55
9 28 38 357 591 567 55
9 29 36 39 357 591 567 55
9 26 39 357 591 567 55
9 27 4 357 591 567 55
9 28 39 357 591 567 55
9 27 4 357 591 567 55
9 27 4 357 591 567 55
9 27 48 357 591 567 55
9 27 48 357 591 567 55
9 28 38 356 593 570 55
9 28 18 356 593 570 55 | | | | | | | | 537 | | 9 18 49 358 587 551 53
9 19 19 4 358 587 552 54
9 19 19 33 358 587 552 54
9 19 48 358 587 552 54
9 19 48 358 587 552 54
9 20 3 358 587 556 54
9 20 3 358 587 556 54
9 20 33 358 587 556 54
9 20 48 359 588 556 56
9 21 4 359 588 557 56
9 21 19 359 588 557 56
9 21 49 360 588 557 54
9 22 4 360 588 557 54
9 22 4 360 588 557 54
9 22 19 360 590 561 56
9 22 49 357 590 561 56
9 23 49 357 590 562 56
9 24 18 357 590 562 56
9 25 3 357 591 564 56
9 26 39 357 591 567 56
9 26 39 357 591 567 56
9 26 49 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 26 49 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 26 39 357 591 567 56
9 27 48 357 591 567 56
9 28 38 356 593 570 5 | | | | | | | | 537 | | 9 | | | | | | | | 537 | | 9 19 18 358 587 552 54 9 19 19 33 358 587 552 54 9 19 48 358 587 552 54 9 20 3 358 587 556 54 9 20
18 358 588 556 54 9 20 33 358 588 556 54 9 20 33 358 588 556 54 9 20 33 358 588 556 54 9 20 33 358 588 556 54 9 21 48 359 588 556 54 9 21 49 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 588 557 54 9 22 4 360 580 557 54 9 22 4 360 580 557 54 9 22 4 360 580 557 54 9 22 4 360 590 561 56 9 23 4 357 590 561 56 9 23 4 357 590 562 55 9 23 49 357 590 562 55 9 24 3 357 590 562 55 9 24 3 357 590 562 55 9 24 3 357 590 562 55 9 24 3 357 590 562 55 9 24 3 357 591 564 55 9 25 3 357 591 564 55 9 26 3 357 591 564 55 9 26 3 357 591 564 55 9 26 3 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 48 356 593 570 5 | | | | | | | | | | 9 19 33 358 587 552 54 9 19 48 358 587 552 54 9 20 3 358 587 556 54 9 20 18 358 588 556 54 9 20 48 359 588 556 54 9 21 4 359 588 556 54 9 21 4 359 588 557 54 9 21 34 359 588 557 54 9 21 49 360 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 34 360 590 561 54 9 23 4 357 590 | | | | | | | | | | 9 19 48 358 587 552 54 9 20 3 358 587 556 54 9 20 18 358 588 556 54 9 20 33 358 588 556 54 9 20 48 359 588 556 54 9 21 4 359 588 557 54 9 21 19 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 590 561 56 9 22 49 357 590 561 56 9 23 49 357 590 562 55 9 23 49 357 590 562 55 9 24 18 357 590 562 55 9 24 18 357 591 564 55 9 24 48 357 591 564 55 9 25 48 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 26 34 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 357 591 567 55 9 27 48 356 593 570 5 | | | | | | | | 540 | | 9 20 3 358 587 556 54 9 20 18 358 588 556 54 9 20 33 358 588 556 54 9 20 48 359 588 556 54 9 21 4 359 588 557 54 9 21 19 359 588 557 54 9 21 49 360 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 590 561 56 9 22 34 360 590 561 56 9 22 49 357 590 561 56 9 23 49 357 590 561 56 9 23 49 357 590 562 55 9 23 34 357 590 562 55 9 24 38 357 590 562 55 9 24 38 357 591 564 55 9 24 48 357 591 564 55 9 25 48 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 59 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 48 356 593 570 5 | | | | | | | | 540 | | 9 20 18 358 588 556 54 9 20 33 358 588 556 54 9 20 48 359 588 556 54 9 21 4 359 588 557 54 9 21 19 359 588 557 54 9 21 49 360 588 557 54 9 21 49 360 588 557 54 9 22 19 360 590 561 56 9 22 19 360 590 561 56 9 22 49 357 590 561 56 9 23 49 357 590 561 56 9 23 49 357 590 562 56 9 23 49 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 25 3 357 591 564 56 9 26 39 357 591 564 56 9 27 4 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 48 357 591 567 56 9 27 48 357 591 567 56 9 27 48 357 591 567 56 9 27 48 356 593 570 5 | | | | | | · | | 543 | | 9 20 33 358 588 556 54 9 20 48 359 588 556 54 9 21 4 359 588 557 54 9 21 19 359 588 557 54 9 21 34 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 588 557 54 9 22 19 360 588 557 54 9 22 19 360 580 561 56 9 22 34 360 590 561 56 9 22 34 360 590 561 56 9 22 34 360 590 561 56 9 23 4 357 590 561 56 9 23 4 357 590 562 56 9 23 49 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 591 564 56 9 24 33 357 591 564 56 9 25 33 357 591 564 56 9 25 48 357 591 567 56 9 26 39 357 591 567 56 9 26 39 357 591 567 56 9 26 39 357 591 567 56 9 26 39 357 591 567 56 9 26 39 357 591 567 56 9 26 39 357 591 567 56 9 27 4 357 591 567 56 9 26 39 357 591 567 56 9 26 39 357 591 567 56 9 27 4 357 591 567 56 9 26 39 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 48 356 593 570 5 | <u> </u> | | | | | | | | | 9 20 48 359 588 556 54 9 21 4 359 588 557 54 9 21 19 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 590 561 54 9 22 34 360 590 561 54 9 22 49 357 590 561 56 9 23 49 357 590 562 56 9 23 49 357 590 562 56 9 24 38 357 591 564 56 9 24 48 357 591 567 56 9 25 48 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 48 356 593 570 5 9 28 18 356 593 570 5 9 28 18 356 593 570 5 | | | | | | | | 543 | | 9 21 4 359 588 557 54 9 21 19 359 588 557 54 9 21 34 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 590 561 54 9 22 34 360 590 561 54 9 22 49 357 590 561 54 9 23 49 357 590 562 55 9 23 34 367 590 562 55 9 24 33 357 591 564 55 9 25 48 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 48 356 593 570 5 | - · | | | | | 4 | | | | 9 21 19 359 588 557 54 9 21 34 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 590 561 56 9 22 34 360 590 561 56 9 22 49 357 590 561 56 9 23 4 367 590 562 56 9 23 34 357 590 562 56 9 23 34 357 590 562 56 9 23 34 357 590 562 56 9 23 34 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 38 357 591 564 56 9 25 3 357 591 564 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 48 356 593 570 5 | | | | | | | | 545 | | 9 21 34 359 588 557 54 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 590 561 54 9 22 34 360 590 561 54 9 22 49 357 590 561 56 9 23 4 357 590 561 56 9 23 19 357 590 562 56 9 23 34 357 590 562 56 9 23 34 357 590 562 56 9 23 34 357 590 562 56 9 23 34 357 590 562 56 9 24 3 357 590 562 56 9 24 3 357 590 562 56 9 24 18 357 591 564 56 9 24 48 357 591 564 56 9 25 3 357 591 564 56 9 25 3 357 591 564 56 9 25 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 3 357 591 567 56 9 26 39 357 591 567 56 9 26 39 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 48 356 593 570 5 | | | · | | | | | 545 | | 9 21 49 360 588 557 54 9 22 4 360 588 557 54 9 22 19 360 590 561 54 9 22 34 360 590 561 54 9 22 49 357 590 561 54 9 23 4 357 590 561 55 9 23 19 357 590 562 56 9 23 34 357 590 562 56 9 23 49 357 590 562 56 9 23 49 357 590 562 56 9 24 3 357 590 562 56 9 24 18 357 591 564 56 9 24 48 357 591 | | | | | | | | 545 | | 9 22 4 360 588 557 54 9 22 19 360 590 561 54 9 22 34 360 590 561 54 9 22 49 357 590 561 54 9 23 4 357 590 561 55 9 23 19 357 590 562 55 9 23 49 357 590 562 55 9 23 49 357 590 562 55 9 23 49 357 590 562 55 9 24 3 357 590 562 55 9 24 18 357 591 564 55 9 24 48 357 591 564 55 9 25 3 357 591 | | | | | | | | | | 9 22 19 360 590 561 54 9 22 34 360 590 561 54 9 22 49 357 590 561 56 9 23 4 357 590 562 56 9 23 34 357 590 562 56 9 23 49 357 590 562 56 9 23 49 357 590 562 56 9 24 3 357 590 562 56 9 24 18 357 591 564 56 9 24 18 357 591 564 56 9 24 48 357 591 564 56 9 25 3 357 591 567 56 9 25 48 357 591 | | | | | | | | 545 | | 9 22 34 360 590 561 54 9 22 49 357 590 561 54 9 23 4 357 590 561 55 9 23 19 357 590 562 55 9 23 49 357 590 562 55 9 24 3 357 590 562 55 9 24 3 357 590 562 55 9 24 18 357 591 564 55 9 24 18 357 591 564 55 9 24 48 357 591 564 55 9 25 3 357 591 564 55 9 25 18 357 591 567 55 9 25 48 357 591 | | | | | | | | 548 | | 9 22
49 357 590 561 56
9 23 4 357 590 561 56
9 23 19 357 590 562 56
9 23 34 357 590 562 56
9 23 49 357 590 562 56
9 24 3 357 590 562 56
9 24 18 357 591 564 56
9 24 33 357 591 564 56
9 24 48 357 591 564 56
9 25 3 357 591 564 56
9 25 18 357 591 567 56
9 25 48 357 591 567 56
9 26 3 357 591 567 56
9 26 34 357 591 567 56
9 26 34 357 591 567 56
9 26 49 357 591 567 56
9 27 4 48 356 593 570 55
9 28 3 356 593 570 55
9 28 18 356 593 570 55
9 28 18 356 593 570 55 | | | | | | | | | | 9 23 4 357 590 561 58 9 23 19 357 590 562 58 9 23 34 357 590 562 58 9 23 49 357 590 562 58 9 24 3 357 590 562 58 9 24 18 357 591 564 58 9 24 33 357 591 564 58 9 24 48 357 591 564 58 9 25 3 357 591 564 58 9 25 18 357 591 564 58 9 25 33 357 591 564 58 9 25 33 357 591 567 58 9 26 3 357 591 567 58 9 26 34 357 591 567 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>548</td></t<> | | | | | | | | 548 | | 9 23 19 357 590 562 55 9 23 34 357 590 562 55 9 24 3 357 590 562 55 9 24 18 357 591 564 55 9 24 33 357 591 564 55 9 24 48 357 591 564 55 9 24 48 357 591 564 55 9 25 3 357 591 564 55 9 25 18 357 591 567 55 9 25 33 357 591 567 55 9 25 48 357 591 567 55 9 26 3 357 591 567 55 9 26 49 357 591 | | | | | | · · · · · · · · · · · · · · · · | | 548 | | 9 23 34 357 590 562 55 9 23 49 357 590 562 55 9 24 3 357 590 562 55 9 24 18 357 591 564 55 9 24 48 357 591 564 55 9 25 3 357 591 564 55 9 25 3 357 591 564 55 9 25 33 357 591 567 55 9 25 48 357 591 567 55 9 26 3 357 591 567 55 9 26 3 357 591 567 55 9 26 19 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>····</td><td></td><td>550</td></td<> | | | | | | ···· | | 550 | | 9 23 49 357 590 562 562 9 24 18 357 590 562 564 9 24 18 357 591 564 56 9 24 48 357 591 564 56 9 25 3 357 591 564 56 9 25 18 357 591 564 56 9 25 18 357 591 567 56 9 25 33 357 591 567 56 9 25 48 357 591 567 56 9 26 3 357 591 567 56 9 26 19 357 591 567 56 9 26 34 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 | | | | | | | | | | 9 24 3 357 590 562 564 9 24 18 357 591 564 564 9 24 33 357 591 564 56 9 24 48 357 591 564 56 9 25 3 357 591 564 56 9 25 18 357 591 567 56 9 25 33 357 591 567 56 9 25 48 357 591 567 56 9 26 3 357 591 567 56 9 26 19 357 591 567 56 9 26 34 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 < | | | | | | | | | | 9 24 18 357 591 564 56 9 24 33 357 591 564 56 9 24 48 357 591 564 56 9 25 3 357 591 564 56 9 25 18 357 591 567 56 9 25 33 357 591 567 56 9 25 48 357 591 567 56 9 26 3 357 591 567 56 9 26 19 357 591 567 56 9 26 34 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 27 19 357 591 567 56 9 27 34 357 591 570 < | | | | | | | | | | 9 24 33 357 591 564 564 9 24 48 357 591 564 56 9 25 3 357 591 564 56 9 25 18 357 591 567 56 9 25 33 357 591 567 56 9 25 48 357 591 567 56 9 26 3 357 591 567 56 9 26 19 357 591 567 56 9 26 34 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 27 19 357 591 570 5 9 27 48 356 593 570 < | <u> </u> | | | | | | | | | 9 24 48 357 591 564 55 9 25 3 357 591 564 55 9 25 18 357 591 567 55 9 25 33 357 591 567 55 9 26 3 357 591 567 55 9 26 19 357 591 567 55 9 26 34 357 591 567 55 9 26 34 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 27 4 357 591 567 55 9 27 34 357 591 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 | | | | | | | | | | 9 25 3 357 591 564 55 9 25 18 357 591 567 55 9 25 33 357 591 567 56 9 26 3 357 591 567 55 9 26 19 357 591 567 56 9 26 34 357 591 567 56 9 26 49 357 591 567 56 9 26 49 357 591 567 56 9 27 4 357 591 567 56 9 27 4 357 591 567 56 9 27 19 357 591 567 56 9 27 34 357 591 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 | | | | | | | | | | 9 25 18 357 591 567 55 9 25 33 357 591 567 55 9 25 48 357 591 567 55 9 26 3 357 591 567 55 9 26 19 357 591 567 55 9 26 49 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 27 19 357 591 567 55 9 27 19 357 591 570 55 9 27 34 357 593 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 | | | | | | 4 | | | | 9 25 33 357 591 567 567 9 25 48 357 591 567 567 9 26 3 357 591 567 567 9 26 19 357 591 567 567 9 26 49 357 591 567 567 9 26 49 357 591 567 567 9 27 4 357 591 567 567 9 27 19 357 591 570 567 9 27 34 357 591 570 567 9 27 34 357 593 570 567 9 27 48 356 593 570 567 9 28 3 356 593 570 567 9 28 18 356 593 570 567 9 28 33 356 592 570 | | | 25 | | | | | | | 9 25 48 357 591 567 55 9 26 3 357 591 567 55 9 26 19 357 591 567 55 9 26 34 357 591 567 55 9 26 49 357 591 567 55 9 27 4 357 591 567 55 9 27 19 357 591 570 55 9 27 34 357 593 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 592 570 5 | | 9 | 25 | 18 | | | | | | 9 26 3 357 591 567 567 9 26 19 357 591 567 567 9 26 34 357 591 567 567 9 26 49 357 591 567 567 9 27 4 357 591 567 567 9 27 19 357 591 570 567 9 27 34 357 593 570 567 9 27 48 356 593 570 567 9 28 3 356 593 570 567 9 28 18 356 593 570 567 9 28 33 356 592 570 567 | | 9 | | | | | 567 | | | 9 26 19 357 591 567 567 9 26 34 357 591 567 567 9 26 49 357 591 567 567 9 27 4 357 591 567 567 9 27 19 357 591 570 567 9 27 34 357 593 570 567 9 27 48 356 593 570 567 9 28 3 356 593 570 567 9 28 18 356 593 570 567 9 28 33 356 593 570 567 9 28 33 356 592 570 567 | | 9 | | | | | · · · · · · · · · · · · · · · · · · · | | | 9 26 34 357 591 567 5 9 26 49 357 591 567 5 9 27 4 357 591 567 5 9 27 19 357 591 570 5 9 27 34 357 593 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 592 570 5 | | 9 | | | | | | | | 9 26 49 357 591 567 5 9 27 4 357 591 567 5 9 27 19 357 591 570 5 9 27 34 357 593 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 593 570 5 9 28 33 356 592 570 5 | | 9 | | | | | | | | 9 27 4 357 591 567 5 9 27 19 357 591 570 5 9 27 34 357 593 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 592 570 5 9 28 33 356 592 570 5 | | 9 | 26 | 34 | | | | | | 9 27 19 357 591 570 5 9 27 34 357 593 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 592 570 5 | | 9 | 26 | 49 | | | | *** | | 9 27 34 357 593 570 5 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 592 570 5 9 28 33 356 592 570 5 | | 9 | 27 | 4 | | | | | | 9 27 48 356 593 570 5 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 592 570 5 | | 9 | 27 | 19 | | | | ~ · · · · · · · · · · · · · · · · · · · | | 9 28 3 356 593 570 5 9 28 18 356 593 570 5 9 28 33 356 592 570 5 | | 9 | 27 | 34 | 357 | 593 | 570 | | | 9 28 18 356 593 570 5 9 28 33 356 592 570 5 | | 9 | 27 | 48 | 356 | 593 | 570 | | | 9 28 18 356 593 570 5 9 28 33 356 592 570 5 | | 9 | 28 | 3 | 356 | 593 | 570 | | | 9 28 33 356 592 570 5 | | | 28 | 18 | 356 | 593 | 570 | 560 | | | | | | 33 | 356 | 5 592 | 570 | 560 | | 9 28 48 358 592 570 5 | | 9 | 28 | 48 | 358 | 592 | 570 | 560 | Data for Slow Cool Down of Components with Fan Simulating Nightly Cool Down. | | | | Check | 4"flg | 6"flg | | |---|--------|------|------------|-------|--------------|-------------------------| | | Time Z | | | | Z 524 | Z 525 | | OCT20,1993 12:28:20 12 28 20 | 12.5 | 583 | 585 | 585 | 582 | 575 DEG F | | OCT20,1993 12:43:20 12 43 20 | 12.7 | 586 | 588 | | 586 | 581 DEG F | | OCT20,1993 12:58:20 12 58 20 | 13.0 | 592 | 594 | 594 | 591 | 586 DEG F | | OCT20,1993 13:13:20 13 13 20 | 13.2 | 574 | 582 | 579 | 581 | 575 DEG F | | OCT20,1993 13:28:20 13 28 20 | 13.5 | 572 | 566 | 559 | | 560 DEG F | | OCT20,1993 13:43:20 13 43 20 | 13.7 | 584 | 550 | | - | 546 DEG F | | OCT20,1993 13:58:20 13 58 20 | 14.0 | 586 | 533 | 519 | | - | | OCT20,1993 14:13:20 14 13 20 | 14.2 | 579 | 518 | 501 | 506 | | | OCT20,1993 14:28:20 14 28 20 | | 589 | 502 | 482 | | 505 DEG F | | OCT20,1993 14:43:20 14 43 20 | 14.7 | 570 | 486 | 462 | 466 | | | OCT20,1993 14:58:20 14 58 20 | 15.0 | 591 | 469 | 444 | 449 | | | OCT20,1993 15:13:20 15 13 20 | 15.2 | 567 | 454 | 424 | 432 | 456 DEG F | | OCT20,1993 15:28:20 15 28 20 | 15.5 | 585 | 437 | 406 | | | | OCT20,1993 15:43:20 15 43 20 | 15.7 | 569 | 423 | 390 | | | | OCT20,1993 15:58:20 15 58 20 | 16.0 | 575. | 408 | 374 | 384 | 412 DEG F | | OCT20,1993 16:13:20 16 13 20 | 16.2 | 572 | 393 | 358 | 370 | 396 DEG F | | OCT20,1993 16:28:20 16 28 20 | 16.5 | 564 | 378 | 343 | | | | OCT20,1993 16:43:20 16 43 20 | 16.7 | 575 | 364 | 330 | 345 | 372 DEG F | | OCT20,1993 16:58:20 16 58 20 | 17.0 | 565 | 350 | 317 | 332 | 360 DEG F | | OCT20,1993 17:13:20 17 13 20 | 17.2 | 573 | 339 | 304 | 322 | 355 DEG F | | OCT20,1993 17:28:20 17 28 20 | 17.5 | 554 | 327 | 292 | 311 | 339 DEG F | | OCT20,1993 17:43:20 17 43 20 | 17.7 | 575 | 315 | 282 | 301 | 334 DEG F | | OCT20,1993 17:58:20 17 58 20 | 18.0 | 553 | 304 | 272 | | 323 DEG F | | OCT20,1993 18:13:20 18 13 20 | | 572 | 294
294 | 261 | 282 | 310 DEG F | | OCT20,1993 18:28:20 18 28 20 | 18.5 | 551 | 283 | 252 | 273 | 308 DEG F | | OCT20,1993 18:43:20 18 43 20 | 18.7 | 571 | 273 | 243 | 265 | 296 DEG F | | OCT20,1993 18:58:20 18 58 20 | 19.0 | 549 | 264 | 235 | 256 | 287 DEG F | | OCT20,1993 19:13:20 19 13 20 | 19.2 | 570 | 255 | 227 | 248 | 284 DEG F | | OCT20,1993 19:28:20 19 28 20 | 19.5 | 547 | 247 | 218 | 241 | 271 DEG F | | OCT20,1993 19:43:20 19 43 20 | 19.7 | 569 | 239 | 212 | | 269 DEG F | | OCT20,1993 19:58:20 19 58 20 | 20.0 | 547 | 232 | 205 | 227 | 261 DEG F | | OCT20,1993 20:13:20 20 13 20 | 20.0 | 568 | 224 | 198 | 221 | 250 DEG F | | OCT20,1993 20:28:20 20 28 20 | 20.5 | 546 | 218 | 192 | 215 | 250 DEG F | | OCT20,1993 20:43:20 20 43 20 | 20.7 | 567 | 211 | 186 | 209 | 242 DEG F | | OCT20,1993 20:58:20 20 58 20 | 21.0 | 545 | 205 | 181 | 209 | | | OCT20,1993 21:13:20 21 13 20 | 21.2 | 565 | 199 | 176 | 199 | 234 DEG F
234 DEG F | | OCT20,1993 21:28:20 21 28 20 | | | | | - • | | | OCT20,1993
21:28:20 21 28 20 OCT20,1993 21:43:20 21 43 20 | 21.5 | 542 | 194 | 171 | 194 | 224 DEG F | | | 21.7 | 563 | 188 | 166 | 189 | 223 DEG F | | | 22.0 | 547 | 183 | 162 | 185 | 217 DEG F | | OCT20,1993 22:13:20 22 13 20 | 22.2 | 562 | 179 | 157 | 181 | 208 DEG F | | OCT20,1993 22:28:20 22 28 20 | 22.5 | 544 | 174 | 153 | 177 | 211 DEG F | | OCT20,1993 22:43:20 22 43 20 | _22.7 | 567 | 170 | 149 | 172 | 203 DEG F | | OCT20,1993 22:58:20 22 58 20 | 23.0 | 541 | _ 165 | 144 | 168 | _ 198 DEG F | | OCT20,1993 23:13:20 23 13 20 | 23.2 | 564 | 162 | 142 | 166 | 199 DEG F | | OCT20,1993 23:28:20 23 28 20 | 23.5 | 538 | 159 | 139 | 162 | 190 DEG F | | OCT20,1993 23:43:20 23 43 20 | 23.7 | 563 | 155 | 135 | 159 | 192 DEG F | | OCT20,1993 23:58:20 23 58 20 | 24.0 | 539 | 151 | 132 | 156 | 187 DEG F | Data for Slow Heat Up of Components with Two Heat Trace Circuits. | | Heatup Wit | h Two Circ | uits | |---------|------------|------------|----------| | | CheckV | 4"Flange | 6"flange | | Time,hr | TEPL-4 | TEPL-8 | TEPL-10 | | 0 | 104.8205 | 104.8205 | 104.8205 | | 0.4135 | 137.351 | 169.8815 | 148.1945 | | 0.827 | 202.412 | 281.931 | 238.557 | | 1.2405 | 245.786 | 354.221 | 289.16 | | 1.654 | 285.5455 | 401.2095 | 354.221 | | 2.0675 | 325.305 | 433.74 | 397.595 | | 2.481 | 383.137 | 484.343 | 444.5835 | | 2.8945 | 379.5225 | 469.885 | 448.198 | | 3.308 | 404.824 | 502.4155 | 495.1865 | | 3.7215 | 415.6675 | 502.4155 | 495.1865 | | 4.135 | 422.8965 | 506.03 | 502.4155 | | 4.5485 | 433.74 | 516.8735 | 516.8735 | | 4.962 | 448.198 | 527.717 | 527.717 | | 5.3755 | 459.0415 | 538.5605 | 538.5605 | | 5.789 | 451.8125 | 520.488 | 520.488 | #### Unlimited Distribution Attn: Tom Tracey 6922 S. Adams Way Littleton, CO 80122 Advanced Thermal Systems Attn: Dave Gorman 7600 East Arapahoe Road, Suite 215 Englewood, CO 80112 Advanced Thermal Systems Attn: Robert Thomas 7600 East Araphoe Road, Suite 215 Englewood, CO 80112 Arizona Public Service Co. Attn: Scott McLellan P.O. Box 53999 MS 1424 Phoenix, AZ 85072-3999 Arizona State University Attn: Paul Russell College of Engineering Tempe, AZ 85287 Battelle Pacific Northwest Laboratory Attn: K. Drumheller P.O. Box 999 Richland, WA 99352 Bechtel Group, Inc. Attn: Madanjit Singh 50 Beale Street 45/4/C27 P.O. Box 193965 San Francisco, CA 94119-3965 Bechtel National, Inc. Attn: Pat DeLaquil 50 Beale Street 50/15 D8 P.O. Box 193965 San Francisco, CA 94119-3965 Bechtel National, Inc. Attn: William Gould 50 Beale Street 45/4/C27 P.O. Box 193965 San Francisco, CA 94119-3965 Bechtel National, Inc. Attn: Bruce Kelly 50 Beale Street 45/4/C27 P.O. Box 193965 San Francisco, CA 94119-3965 Bechtel National, Inc. Attn: Lorne Marjerison 50 Beale Street 45/4/C27 P.O. Box 193965 San Francisco, CA 94119-3965 Bechtel National, Inc. Attn: S. Nickovich 50 Beale Street 50/15 D8 P.O. Box 193965 San Francisco, CA 94119-3965 Bechtel National, Inc. Attn: Brock Parsens 50 Beale Street 45/4/C27 P.O. Box 193965 San Francisco, CA 94119-3965 Bechtel National, Inc. Attn: Alex Zavoico 50 Beale Street 45/4/C27 P.O. Box 193965 San Francisco, CA 94119-3965 Bureau of Reclamation Attn: Stanley Hightower Code D-3710 P.O. Box 205007 Denver, CO 80225 California Energy Commission Attn: Alec Jenkins Energy Technology Development Div. R&D Office 1516 9th Street MS-43 Sacramento, CA 95814-5512 California Polytechnic State University Attn: William B. Stine Department of Mechanical Engineering 3801 West Temple Avenue Pomona, CA 91768-4062 Carrizo Solar Corporation Attn: Mike Elliston P.O. Box 10239 1011-C Sawmill Road NW Albuquerque, NM 87184-0239 Carrizo Solar Corporation Attn: John Kusianovich P.O. Box 10239 1011-C Sawmill Road NW Albuquerque, NM 87184-0239 Central and Southwest Services Attn: E.L. Gastineau 1616 Woodall Rogers Freeway MS 7RES Dallas, TX 75202 Centro Investigaciones Energeticas Attn: M. Macias Medioambientales y Technologicas Institudo de Energias Renovables Avda. Complutense, 22 28040 Madrid, SPAIN Centro Investigaciones Energeticas Attn: M. Romero Medioambientales y Technologicas Institudo de Energias Renovables Avda. Complutense, 22 28040 Madrid, SPAIN Conservation and Renewable Energy System Attn: Ben Wolff 6918 N.E. Fourth Plain Blvd., Suite B Vancouver, WA 98661 DEO Enterprises Attn: Dave Ochenreider P.O. Box 2110 Helendale, CA 92342 DLR Attn: Reiner Buck Pfaffenwaldring 38-40 7000 Stuttgart 80, GERMANY Dynatherm Corporation Attn: D. Wolf 1 Beaver Court P.O. Box 398 Cockeyville, MD 21030 Electric Power Research Institute Attn: Doug Morris P.O. Box 10412 3412 Hillview Avenue Palo Alto, CA 94303 Electric Power Research Institute Attn: J. Schaeffer P.O. Box 10412 3412 Hillview Avenue Palo Alto, CA 94303 Flachglas Solartechnik GmbH Attn: M. Geyer Theodor-Heuss-Ring 1 5000 Koln 1, GERMANY Florida Solar Energy Center Attn: Library 300 State Road, Suite 401 Cape Canaveral, FL 32920-4099 Fricker Consulting Attn: Hans Fricker Breitestr. 22 CH 8544 Rickenbach, SWITZERLAND Georgia Power Co. Attn: W. Rosskist 7 Solar Circle Shenandoah, GA 30265 Idaho Power Attn: John Carstensen P.O. Box 70 Boise, ID 83707 Idaho Power Attn: Jerry Young P.O. Box 70 Boise, ID 83707 Institute of Gas Technology Attn: Library 34245 State Street Chicago, IL 60616 Dick Holl 1938A Avenida Del Oro Oceanside, CA 92056 Jet Propulsion Laboratory Attn: M. Alper 4800 Oak Grove Drive Pasadena, CA 91109 Kearney & Associates Attn: David W. Kearney 14022 Condessa Drive Del Mar, CA 92014 KJC Operating Company Attn: Gilbert Cohen 41100 Highway 395 Boron, CA 93516 KJC Operating Company Attn: R. Hollis 41100 Highway 395 Boron, CA 93516 Lawrence Berkeley Laboratory Attn: Arlon Hunt University of California MS 90-2024 One Cyclotron Road Berkeley, CA 94720 Los Alamos National Laboratory Attn: M. Merrigan P.O. Box 1663 MS-E13 Los Alamos, NM 87545 Los Angeles Dept. of Water and Power . Attn: David Anderson Alternate Energy Systems 111 North Hope Street, Rm. 661A Los Angeles, CA 90012 Los Angeles Dept. of Water and Power Attn: Daryl Yonamine Alternate Energy Systems 111 North Hope Street, Rm. 661A Los Angeles, CA 90012 McDonnell-Douglas Astronautics Co. Attn: Bob Drubka 5301 Bolsa Avenue Huntington Beach, CA 92647-2048 McDonnell-Douglas Astronautics Co. Attn: J. Rogan 5301 Bolsa Avenue Huntington Beach, CA 92647 McDonnell-Douglas Astronautics Co. Attn: D. Steinmeyer (3) 5301 Bolsa Avenue Huntington Beach, CA 92647 National Renewable Energy Laboratory Attn: Mark Bohn 1617 Cole Blvd. Golden, CO 80401-3393 National Renewable Energy Laboratory Attn: Gary Jorgensen 1617 Cole Blvd. Golden, CO 80401-3393 National Renewable Energy Laboratory Attn: A. Lewandowski 1617 Cole Blvd. Golden, CO 80401-3393 National Renewable Energy Laboratory Attn: L.M. Murphy 1617 Cole Blvd. Golden, CO 80401-3393 National Renewable Energy Laboratory Attn: Hank Price 1617 Cole Blvd. Golden, CO 80401-3393 National Renewable Energy Laboratory Attn: Tim Wendelin 1617 Cole Blvd. Golden, CO 80401-3393 National Renewable Energy Laboratory Attn: Tom Williams 1617 Cole Blvd. Golden, CO 80401-3393 Nevada Power Co. Attn: Doug Bailey P.O. Box 230 Las Vegas, NV 89151 Nevada Power Co. Attn: Eric Dominguez P.O. Box 230 Las Vegas, NV 89151 Nevada Power Co. Attn: Mark Shank P.O. Box 230 Las Vegas, NV 89151 Northern Research & Engineering Corp. Attn: James B. Kesseli 39 Olympia Avenue Woburn, MA 01801-2073 Pacific Gas and Electric Co. Attn: Chris Haslund (2) 3400 Crow Canyon Road San Ramon, CA 94583 Pacific Power Attn: Stephen Schuck Park and Elizabeth Streets GPO Box 5257 Sydney New South Wales, 2001 AUSTRALIA PacifiCorp Attn: Ian Andrews Utah Power 1407 West North Temple Salt Lake City, UT 84140-0001 Power Kinetics, Inc. Attn: W.E. Rogers 415 River Street Troy, NY 12180-2822 Renewable Energy Training Institute Attn: Kevin Porter 122 C St. NW, Suite 520 Washington, DC 20001 Research International Attn: E. Saaski 18706 142nd Avenue, NE Woodinville, WA 98072 Rockwell International Corp. Attn: William Bigelow Energy Technology Engineering Center P.O. Box 1449 Canoga Park, CA 91304 Rockwell International Corp. Attn: Tom M. Griffin P.O. Box 582808 Tulsa, OK 74158 Rockwell International Corp. Attn: R. LeChevalier Energy Technology Engineering Center P.O. Box 1449 Canoga Park, CA 91304 Rockwell International Corp. Attn: Bob Litwin Rocketdyne Division P.O. Box 7922 6633 Canoga Avenue MS SA70 Canoga Park, CA 91309-7922 Rockwell International Corp. Attn: Mark Marko Rocketdyne Division P.O. Box 7922 6633 Canoga Avenue MS SA70 Canoga Park, CA 91309-7922 Rockwell International Corp. Attn: W. Marlatt Rocketdyne Division P.O. Box 7922 6633 Canoga Avenue Canoga Park, CA 91309-7922 Rockwell International Corp. Attn: Bob Musica Energy Technology Engineering Center P.O. Box 1449 Canoga Park, CA 91304 Rockwell International Corp. Attn: Ron Pauckert Rocketdyne Division P.O. Box 7922 6633 Canoga Avenue MS SA70 Canoga Park, CA 91309-7922 Sacramento Municipal Utility District Attn: Bud Beebee Generation Systems Planning Power Systems Dept. 6201 'S' St. P.O. Box 15830 Sacramento, CA 95852-1830 Sacramento Municipal Utility District Attn: Don Osborne Generation Systems Planning Power Systems Dept. 6201 'S' St. P.O. Box 15830 Sacramento, CA 95852-1830 Sacramento Municipal Utility District Attn: R. Wichert Generation Systems Planning Power Systems Dept. 6201 'S' St. P.O. Box 15830 Sacramento, CA 95852-1830 Salt River Project Attn: Bob Hess Research and Development P.O. Box 52025 Phoenix, AZ 85072-2025 Salt River Project Attn: Ernie Palomino Research and Development P.O. Box 52025 Phoenix, AZ 85072-2025 Schlaich, Bergermann & Partner Attn: W. Schiel Hohenzollernstr. 1 D-7000 Stuttgart 1, GERMANY Science Applications International Corp. Attn: Kelly Beninga 15000 W. 6th Avenue Suite 202 Golden, CO 80401 Science Applications International Corp. Attn: Bill Bruninga 15000 W. 6th Avenue Suite 202 Golden, CO 80401 Science Applications International Corp. Attn: Barry L. Butler Room 2043, M/S C2J 10260 Campus Point Dr. San Diego, CA 92121 Science
Applications International Corp. Attn: Roger L. Davenport 15000 W. 6th Avenue Suite 202 Division 448 Golden, CO 80401 Science Applications International Corp. Attn: Neil Otto 10260 Campus Point Dr. Mail Stop 32 San Diego, CA 92121 Solar Energy Industries Association Attn: Linda Ladas 122 C Street, NW 4th Floor Washington, DC 20001-2109 Solar Energy Industries Association Attn: Ken Sheinkopf 122 C Street, NW 4th Floor Washington, DC 20001-2109 Solar Energy Industries Association Attn: Scott Sklar 122 C Street., NW 4th Floor Washington, DC 20001-2109 Solar Kinetics, Inc. Attn: Gus Hutchinson 10635 King William Drive P.O. Box 540636 Dallas, TX 75354-0636 Solar Kinetics, Inc. Attn: D. White 10635 King William Drive P.O. Box 540636 Dallas, TX 75354-0636 South Coast AQMD Attn: Ranji George 21865 Copley Drive Diamond Bar, CA 91765 Southern California Edison Co. Attn: Amy Brown P.O. Box 800 2244 Walnut Grove Avenue Rosemead, CA 91770 Southern California Edison Co. Attn: Donald Brundage P.O. Box 800 2131 Walnut Grove Avenue Rosemead, CA 91770 Southern California Edison Co. Attn: Irving Katter P.O. Box 800 2244 Walnut Grove Avenue Rosemead, CA 91770 Southern California Edison Co. Attn: Chuck Lopez P.O. Box 800 Rosemead, CA 91770 Southern California Edison Co. Attn: Hugh Reilly P.O. Box 800, G01 2244 Walnut Grove Avenue Rosemead, CA 91770 Southern California Edison Co. Attn: Mark Skowronski P.O. Box 800 2244 Walnut Grove Avenue Rosemead, CA 91770 Southern California Edison Co. Attn: Paul Sutherland P.O. Box 800 2131 Walnut Grove Avenue Rosemead, CA 91770 Southern California Edison Co. Attn: Roy Takekawa 37000 Santa Fe Road Daggett, CA 92327 Sunpower, Inc. Attn: W. Beale 6 Byard Street Athens, OH 45701 Technology Properties Limited Attn: Janet Neal 4010 Moorpark Avenue, Suite 215 San Jose, CA 95117 The Solar Letter Attn: Allan L. Frank 9124 Bradford Road Silver Spring, MD 20901-4918 U.S. Department of Energy Attn: Dan Alpert 2140 L Street, #709 Washington, DC 20037-1530 U.S. Department of Energy Attn: R. (Bud) Annan (2) Code EE-13 Forrestal Building 1000 Independence Ave. SW Washington, DC 20585 U.S. Department of Energy Attn: Gary Burch (5) Code EE-132 Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 U.S. Department of Energy Attn: R. Hughey San Francisco Operations Office 1333 Broadway Oakland, CA 94612 U.S. Department of Energy Attn: Bob Martin Golden Field Office 1617 Cole Boulevard Golden, CO 80401 U.S. Department of Energy Attn: John Meeker Golden Field Office 1617 Cole Boulevard Golden, CO 80401 U.S. Department of Energy Attn: D.A. Sanchez (2) Albuquerque Operations Office P.O. Box 5400 Albuquerque, NM 87115 Union of Concerned Scientists Attn: Donald Aitken 20100 Skyline Boulevard Woodside, CA 94062 University of Houston Attn: James Richardson (2) Solar Energy Laboratory 4800 Calhoun Road Houston, TX 77704 University of Houston Attn: Lorin Vant-Hull (2) Energy Laboratory 5505 4800 Calhoun Road Houston, TX 77004 University of Minnesota Attn: E.A. Fletcher 1111 Church Street, SE Dept. of Mech. Engr. Minneapolis, MN 55455 Zomeworks Attn: Steve Baer 1011A Sawmill Road, NW Albuquerque, NM 87104 #### Internal Distribution: | MS 0100 | Document Proc. for DOE/OSTI, 7613-2 (2) | |---------|---| | MS 0619 | G.C. Claycomb, 13416 | | MS 0619 | Technical Publications, 12613 | | MS 0702 | D.E. Arvizu, 6200 | | MS 0703 | R.B. Diver, 6216 | | MS 0703 | L.R. Evans, 6216 | | MS 0703 | S.A. Jones, 6216 | | MS 0703 | G.J. Kolb, 6216 | | MS 0703 | F. Lippke, 6216 | | MS 0703 | T.R. Mancini, 6216 | | MS 0703 | J.E. Pacheco, 6216 | | MS 0703 | M.R. Prairie, 6216 | | MS 0703 | C.E. Tyner, 6216 | | MS 0704 | P.C. Klimas, 6201 | | MS 0724 | D.L. Hartley, 6000 | | MS 0753 | C.P. Cameron, 6218 | | MS 0753 | M.E. Ralph, 6218 | | MS 0835 | R.E. Hogan, Jr., 1513 | | MS 0835 | V.J. Romero, 1513 | | MS 0835 | R.D. Skocypec, 1513 | | MS 0899 | Technical Library, 13414 (5) | | MS 0980 | G.S. Phipps, 9225 | | MS 1127 | J.M. Chavez, 6215 | | MS 1127 | S.R. Dunkin, 6215 | | MS 1127 | R.M. Edgar, 6215 | | MS 1127 | C.M. Ghanbari, 6215 | | MS 1127 | J.W. Grossman, 6215 | | MS 1127 | R.M. Houser, 6215 | | MS 1127 | D.W. Johnson, 6215 | | MS 1127 | J.J. Kelton, 6215 | | MS 1127 | W.J. Kolb, 6215 | | MS 1127 | Library, 6215 (5) | | MS 1127 | A.R. Mahoney, 6215 | | MS 1127 | K.S. Rawlinson, 6215 | | MS 1127 | E.E. Rush, 6215 | | MS 1127 | R.K. Tucker, 6215 | | MS 9018 | Central Technical Files, 8523-2 | | | |