Electrochemical determination of the Gibbs free energies of rock-forming minerals. Final report

PDF Version Also Available for Download.

Description

This grant provided support for a series of measurements of thermodynamic data for rock-forming minerals using an electrochemical approach. The relative accuracy of electrochemical measurements and the fact that this technique is the only one that directly measures the Gibbs energy of a phase as a function of temperature makes data obtained in this manner ideal for many types of geochemical calculations. A laboratory for these measurements was completed, and data were acquired on a series of metal-oxide buffers. Data were obtained with precisions of approximately {plus_minus}20 J/mole O{sub 2} at a single temperature, and fitted precisions of {plus_minus}50 J/mole ... continued below

Physical Description

46 p.

Creation Information

Anovitz, L.M. January 1, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This grant provided support for a series of measurements of thermodynamic data for rock-forming minerals using an electrochemical approach. The relative accuracy of electrochemical measurements and the fact that this technique is the only one that directly measures the Gibbs energy of a phase as a function of temperature makes data obtained in this manner ideal for many types of geochemical calculations. A laboratory for these measurements was completed, and data were acquired on a series of metal-oxide buffers. Data were obtained with precisions of approximately {plus_minus}20 J/mole O{sub 2} at a single temperature, and fitted precisions of {plus_minus}50 J/mole O{sub 2}. Tests of the accuracy of these data were completed by running relative to air, to air through an intermediate gas stage, and relative to a solid buffer, and temperatures were calibrated relative to a primary standard obtained from NIST. These tests suggested that precision of currently available electrochemical studies may not reflect the accuracy of these measurements. The chemical potential of oxygen measured at any given temperature for all solid buffers tested appears to be a direct function of the voltage across the electrolyte containing the solid sample. Further tests of this effect, and recalibration of most or all of these reactions are needed if truly accurate data for these basic reactions are to be available. Preliminary to a planned electrochemical measurements on pyroxenes, a thermodynamic model of the system diopside-enstatite was derived. These results suggest that the activity/composition relations derived from solvus data are strongly dependent on the thermodynamic formulation chosen. This appears to be especially true for ordered intermediate compositions like diopside.

Physical Description

46 p.

Notes

OSTI as DE95009682

Source

  • Other Information: PBD: [1994]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95009682
  • Report No.: DOE/ER/14115--T1
  • Grant Number: FG02-90ER14115
  • DOI: 10.2172/41335 | External Link
  • Office of Scientific & Technical Information Report Number: 41335
  • Archival Resource Key: ark:/67531/metadc676659

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1994

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 19, 2015, 10:27 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Anovitz, L.M. Electrochemical determination of the Gibbs free energies of rock-forming minerals. Final report, report, January 1, 1994; United States. (digital.library.unt.edu/ark:/67531/metadc676659/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.