Investigation into environmentally friendly alternative cleaning processes for hybrid microcircuits to replace vapor degreasing with 1,1,1-trichloroethane. Final report

PDF Version Also Available for Download.

Description

Two cleaning processes, one aqueous and one nonaqueous, were investigated as potential replacements for the vapor degreasing process using 1,1,1 trichloroethane (TCA) for hybrid microcircuit assemblies. The aqueous process was based upon saponification chemistry. A 10% solution of either Kester 5768 or Armakleen 2001, heated to 140 F, was sprayed on the hybrid at 450 psig and a flow rate of 5 gpm through a specially designed nozzle which created microdroplets. The nonaqueous process was based upon dissolution chemistry and used d-limonene as the solvent in an immersion and spray process. The d-limonene solvent was followed by an isopropyl alcohol ... continued below

Physical Description

30 p.

Creation Information

Adams, B.E. February 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Allied-Signal Aerospace Company
    Publisher Info: Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.
    Place of Publication: Kansas City, Missouri

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Two cleaning processes, one aqueous and one nonaqueous, were investigated as potential replacements for the vapor degreasing process using 1,1,1 trichloroethane (TCA) for hybrid microcircuit assemblies. The aqueous process was based upon saponification chemistry. A 10% solution of either Kester 5768 or Armakleen 2001, heated to 140 F, was sprayed on the hybrid at 450 psig and a flow rate of 5 gpm through a specially designed nozzle which created microdroplets. The nonaqueous process was based upon dissolution chemistry and used d-limonene as the solvent in an immersion and spray process. The d-limonene solvent was followed by an isopropyl alcohol spray rinse to remove the excess d-limonene. The aqueous microdroplet process was found to be successful only for solder reflow profiles that did not exceed 210 C. Furthermore, removal of component marking was a problem and the spray pressure had to be reduced to 130 psig to eliminate damage to capacitor end caps. The d-limonene cleaning was found to be successful for solder reflow temperature up to 250 C when using a four-step cleaning process. The four steps included refluxing the hybrid at 80 C, followed by soaking the hybrid in d-limonene which is heated to 80 C, followed by spray cleaning at 80 psig with room temperature d-limonene, followed by spray cleaning at 80 psig with room temperature IPA was developed to remove residual flux from the hybrid microcircuits. This process was the most robust and most closely matched the cleaning ability of TCA.

Physical Description

30 p.

Notes

OSTI as DE97052911

Source

  • Other Information: PBD: Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97052911
  • Report No.: KCP--613-5850
  • Grant Number: AC04-76DP00613
  • DOI: 10.2172/481597 | External Link
  • Office of Scientific & Technical Information Report Number: 481597
  • Archival Resource Key: ark:/67531/metadc676613

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Feb. 20, 2017, 3:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Adams, B.E. Investigation into environmentally friendly alternative cleaning processes for hybrid microcircuits to replace vapor degreasing with 1,1,1-trichloroethane. Final report, report, February 1, 1997; Kansas City, Missouri. (digital.library.unt.edu/ark:/67531/metadc676613/: accessed August 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.