Radiation Effects in Materials for Accelerator-Driven Neutron Technologies

Title:

Submitted to:

SYMPOSIUM OF RADIATION MATERIALS SCIENCE & TECHNOLOGY APPLICATIONS
ANAHEIM, CA
FEBRUARY 4–8, 1996

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
1. Introduction

Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. For spallation to occur, the energy of the proton must be sufficiently high so that its DeBroglie wavelength is short compared to the size of the target nucleus, thus enabling the incident proton to interact separately with individual nucleons within the nucleus. The DeBroglie wavelength is given by

\[\lambda = \frac{h}{p}, \]

(1)

where \(h \) is Planck’s constant and \(p \) is the momentum of the proton, given by

\[p^2 = \frac{E(E + 2E_0)}{c^2}, \]

(2)

where \(E \) is the proton’s kinetic energy, \(E_0 \) is its rest energy, and \(c \) is the speed of light. Thus,

\[\lambda = \frac{ch}{E(E + 2E_0)}^{1/2}. \]

(3)

For the nuclear radius, we may take as a crude approximation [1]

\[R = R_0 A^{1/3}, \]

(4)

where \(A \) is the atomic weight of the target nucleus. As pointed out in [1], the nuclear radius does not have a definite value for a given target element, and different types of experiments yield different measures of \(R \) (e.g., nuclear-force radius and nuclear-charge
radius. Taking the approximate minimum energy for spallation, \(E_L \), as the energy corresponding to the condition \(\lambda = R \), we find from (3) and (4) that

\[
E_L = [E_0 + (hc/R_0)^2 A^{1/3}]^{-1/2} - E_0.
\]

Fig. 1 shows \(E_L \) versus \(A \), for two values of \(R_0 \), 1.1 and 1.6 fm (1 fm = 10^{-15} m) that may be considered to span a reasonable range of possible values [1]. We see that even for the heaviest targets the approximate minimum energy for spallation is likely to be above about 20 MeV and for the lightest targets like Li or Be this energy is much higher. However, Fig. 1 should probably be regarded as being rather conservative; in fact, spallation is generally not considered to be a prominent reaction in the heavy targets unless the proton energies are above about 100 MeV [1,2].

It may have been about 1947 that the term “spallation” began to be used in the context of nuclear interactions [3, 4]. Serber [4] proposed a model in which spallation reactions are considered to occur in two stages, an intranuclear cascade stage followed by a de-excitation stage. In the intranuclear cascade, the incoming projectile collides with one nucleon at a time within the nucleus, and the struck nucleons leave the nucleus with considerable energy. The nucleus, left in an excited state, then de-excites by nucleon evaporation or by fission. In nucleon evaporation, nucleons are ejected until the excitation energy falls below the nucleon binding energy of several MeV, whereupon the remaining energy is removed by gamma-ray emission. As concerns de-excitation by fission, it is perhaps useful to refer to this as high-energy fission, in order to distinguish it from the low-energy fission \((E < \sim 20 \text{ MeV}) \) that occurs in thermal and fast reactors. Low-energy fission shows the familiar double-humped mass yield curve, whereas high-energy fission
resulting from spallation gives a broader curve. The spallation product generation rate vs atomic number, Z, of the yielded product is illustrated in Fig. 2, taken from Russell et al. [5] for Pb and W targets bombarded by 1000 MeV protons. We see in Fig. 2 a large product yield near Z of the original target plus a lower single broad peak near Z/2. Semi-empirical formulae for cross sections expressing the product yield as a function of Z and A have been given by Rudstam [6] and by Silberberg and Tsao [7,8]. Cloth et al. [9] have noted that the probability that fission occurs during de-excitation is proportional to Z²/A. Since Z/A is roughly constant over the periodic table (at a value of about 0.45, except for hydrogen), this probability should be approximately proportional to Z.

Spallation-induced high-energy fission may be contrasted to nuclear-reactor low-energy fission in a number of other ways, as is pointed out in [5,10]. The number of neutrons produced by spallation in a heavy target nucleus is quite high; for example, calculations described below indicate that 32 neutrons per proton are produced upon bombardment of tungsten by 1000 MeV protons. By contrast, only about 2.5 neutrons are produced upon low-energy fission of a fissile or fissionable nucleus. Also, the energy distribution of the neutrons is quite different for the two cases. Spallation neutrons have an energy distribution that may be described as a degraded fission spectrum with a high-energy tail that extends up to the incident energy above ~100 MeV of the bombarding protons, whereas the average neutron energy in the low-energy fission flux is only 1-2 MeV. Calculated spallation neutron spectra are presented in [11] for 800 MeV protons on Cu and W, and a study of neutron and proton dosimetry at the LAMPF 800-MeV proton accelerator is described in [12]. Furthermore, despite the greater number of neutrons
produced in spallation, the energy deposited per neutron produced is less for spallation
reactions (~25 MeV) than for low-energy fissions (~180 MeV) [5].

In the above discussion, we have considered the incident projectiles to be protons,
but spallation also occurs when the bombarding particles are neutrons (or deuterons,
pions, muons, etc.), provided that the condition \(\lambda < R \) is satisfied. This means that many
of the particles ejected from the nucleus in the initial intranuclear cascade will strike other
nuclei and produce additional intranuclear cascades there, and the ejected particles may in
turn stimulate further spallation events. This succession of events is known as an
internuclear cascade. Radiation damage specialists will be aware of the analogy to
displacement cascades.

Accelerator-driven spallation neutron sources (SNS’s) are found to be extremely
useful in facilities for neutron scattering (and diffraction) research. In this application, the
incident protons are pulsed at frequencies in the range 10-60 Hz. Presently, there are four
operating pulsed SNS’s: ISIS, LANSCE, IPNS, and KENS. As noted in Table 1, the
highest operating beam power is only 160 kW. There are, however, a number of higher-
powered SNS’s in various stages of development, ranging from slightly under 1 MW for
SINQ (under construction in Switzerland, 1.5 mA beam current, 590 MeV proton energy)
to 5 MW for ESS (under design in the European Union, 1330 MeV proton energy) [13].
In addition, studies are underway for higher-powered SNS’s for the production of tritium
[14] and the transmutation of nuclear waste [15,16]. These are to be continuous-wave
systems with beam powers that range up to 200 MW (200 mA beam current, 1000 MeV
proton energy), specifications that are believed to be achievable with the present advanced state of accelerator technology [17].

The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS’s are discussed in [18,19]. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS’s (Table 1) and under consideration for the 1-5 MW SNS’s are W, U, and Pb. Tungsten is the target material at LANSCE (Table 1), and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL [14].

In this paper, we present the results of spallation radiation damage calculations (displacement and He production) for tungsten. Earlier spallation radiation damage results were given for copper [20, 21], Inconel 718 [22], stainless steel [23], and tungsten [24].
2. Computer codes

The computer codes used in this investigation are LAHET, MCNP, and SPECTER. LAHET [25] is the LANL version of the High Energy Transport Code, HETC, which was originally developed at ORNL [26]. It calculates the energy and direction of particles ejected from the intranuclear cascades and subsequent evaporation and fission. It also calculates the masses and recoil energies of recoiling nuclei and fission products. An option is available that gives the primary knocked-on atom (PKA) spectrum in terms of the raw recoil energies and the damage energies calculated according to the Lindhard model [27]. This option also gives the average damage energy per incident particle, \(\langle T_{\text{dam}} \rangle / n' \), where the average is taken over the \(n' \) histories being run. The thin-target damage energy cross section is then given by

\[
\sigma_E = \frac{\langle T_{\text{dam}} \rangle / n'}{N_V x}, \tag{6}
\]

where \(N_V \) is the atom density of the target and \(x \) is the target thickness. In accord with [28], the displacement cross section is then given by

\[
\sigma_d = (\beta / 2 T_d) \sigma_E, \tag{7}
\]

where \(\beta = 0.8 \) and \(T_d \) is the (effective) threshold displacement energy. The output for He gas production from LAHET gives the number of helium atoms produced per incident particle, \(\frac{n(He)}{n'} \). In analogy to Eqn. (6), the helium production cross section is given by

\[
\sigma(He) = \frac{n(He) / n'}{N_V x}. \tag{8}
\]
For all the LAHET calculations in the present work, the target was assumed to be a circular cylinder, 0.5 m in radius, with thickness $x = 0.01$ m. The atom density for W was taken to be $N_V = 6.30 \times 10^{28}$ atoms/m3.

MCNP, the Monte Carlo Code for the Transport of Neutrons and Photons [29], is a continuous-energy code that transports neutrons and photons. It contains a sophisticated generalized-geometry utility that permits complex geometries to be modelled, and it employs the ENDF/B cross section library [30]. We use MCNP to evaluate neutron fluxes and spectra.

For assessing radiation damage due to incident neutrons of energies below 20 MeV, we employed the SPECTER code [31], which uses the DISCS program [32] for displacement calculations. The underlying cross sections stem from the ENDF/B libraries [30], and they extend up to 20 MeV. The calculations embrace elastic and inelastic scattering, including thermal neutron capture (n, γ) events. As is the case for LAHET, SPECTER partitions recoil energies into nuclear and electronic components in accord with the Lindhard model [27].

3. Displacement production

Figure 3 shows the damage energy cross section and the displacement cross section for tungsten as a function of the energy of incident neutrons or protons from near 20 to 1600 MeV as calculated by LAHET, where the conversion from σ_E in Eqn. (6) to σ_d in Eqn. (7) involved the use of threshold displacement energy $T_d = 90$ eV [28]. The number of incident neutrons or protons run was 150,000; thus, $<T_{\text{dam}}>$ in Eq. (6) represents an average over 150,000 histories. We see that the proton cross sections lie
distinctly below those for neutrons at energies of about 100 MeV and below, and only slightly below the neutron values at 200 MeV and above. Fig. 4 shows the damage energy and displacement cross sections versus neutron energy for tungsten, where the calculations for \(E < 20 \text{ MeV} \) were done by SPECTER and for \(E > 20 \text{ MeV} \) by LAHET. The SPECTER output gives displacement cross sections directly for the stable tungsten isotopes, W-182, W-183, W-184, and W-186, which have abundances of 26.3, 14.3, 30.7, and 28.6%. To obtain the plotted values for natural tungsten, we calculated an average weighted over these atomic fractions. The threshold displacement energy used for W in SPECTER was again 90 eV. One sees in Fig. 4 that the LAHET cross section lies somewhat below the SPECTER one at the dividing line energy of 20 MeV between the two sets of calculations. We have observed this to be the case for a number of target materials, as is discussed further below.

The differential displacement production rate is given by

\[
K_d' = \sigma_d \phi_E',
\]

where \(\phi_E' \) is the differential neutron flux. The exact form of \(\phi_E' \) for an SNS depends, of course, on the particular design of the facility. As an example, we shall use the \(\phi_E' \) that was calculated for an accelerator transmutation of waste (ATW) target consisting of a homogeneous mixture of tungsten and water (0.25 m radius; 85% volume fraction occupied by the tungsten) surrounded by heavy water [22]. The incident protons were assumed to have an energy of 1600 MeV, a current density of about 200 \(\mu \text{A/cm}^2 \), and a flat-profile beam radius of 0.2 m. A current density of 200 \(\mu \text{A/cm}^2 \) may represent an
upper limit, and a more realistic value may well be perhaps one-third of this value.

However, 200 µA/cm² is being used as a reference parameter for the ESS [13], for which a liquid mercury target is anticipated. At the edge of the our target (i.e., at \(r = 0.25 \) m), the flux of neutrons of all energies down to 0.025 eV was calculated to be \(1.3 \times 10^{20} \) n/m²s. The calculated differential neutron flux and the displacement cross section discussed above are shown in Fig. 5. The somewhat irregular cross section points for energies below about 0.01 MeV are due to \((n,\gamma)\) recoil events. As expected because of the presence of light and heavy water, Fig. 5 indicates a highly moderated neutron spectrum and a large increase in \(\phi_E \) with decreasing neutron energy, \(E \). The plot in Fig. 6 shows the trend toward increasing \(K_d' \) with decreasing \(E \). Nevertheless, as seen in Fig. 7, the displacement production rate due to neutrons in the flux with energies below \(E \) begins to rise significantly only for energies above about 0.1 MeV, reaching a displacement rate of 44 dpa/y or 0.12 dpa/d (dpa/day) for neutrons of all energies in the spectrum. Fig. 7 suggests that about 60% of the displacements are due to neutrons with energies below 20 MeV, and the median energy corresponding to fractional integral displacement rate of 0.5 is about 10 MeV.

The displacement production rate for tungsten in the direct proton beam is based on the incident current density of 1600 MeV protons near 200 µA/cm² or \(1.24 \times 10^{19} \) p/m²s and the displacement cross section of 9184 b (Fig. 3). This gives \(K_d = 0.99 \) dpa/d, a quite substantial displacement rate. Bauer et al. [13] cite 2.8 dpa/d for W due to the protons in a 5 MW SNS.
4. Helium production

Fig. 8 gives the He production cross section versus incident energy for 150,000 incident neutrons or protons and 20,000 incident neutrons. The three curves are in reasonable agreement with the He production cross section reaching about 2.5 barns at 1600 MeV. When the neutron cross sections (150,000 histories) are multiplied by the ATW differential flux in accord with the analog to Eqn. (9), we find that the differential helium production rate rises to a peak at about 200 MeV (Fig. 9) and then decreases monotonically upon further increase in neutron energy.

Integrating $K'(\text{He})$ in Fig. 9 from 0 to E, we obtain the helium production rate due to neutrons of energies below E (Fig. 10). The production rate for all neutrons up to 1600 MeV is 1.02 ppm He/d. Fig. 10 also shows Φ, the fractional He production rate in the ATW spectrum. The median neutron energy corresponding to $\Phi = 0.5$ is about 330 MeV.

To obtain the helium production rate in W subjected to the direct 1600 MeV proton beam, we use the cross section of 2.37 barns (Fig. 8) and again the incident flux of 1.24×10^{19} p/m²s, which gives 254 ppm He/d. Bauer et al. [13] estimate 173 ppm He/d for W in a 5 MW SNS.

It is often of interest to examine the ratio, R, of the helium and displacement production rates. From the rates given above due to the spallation neutron spectrum, 1.02 ppm He/d and 0.12 dpa/d, we get 8.4 ppm He/dpa. For the 1600 MeV protons, we calculate 254 ppm He/d and 0.99 dpa/d, giving 258 ppm He/dpa. The R ratio decreases with decreasing proton energy, as is seen in Fig. 11.
5. Discussion

As mentioned above, the discrepancy at 20 MeV shown in Fig. 4 between displacement cross sections calculated using LAHET and SPECTER has been observed for a number of materials, the LAHET cross section always lying below the SPECTER one. In addition, there seems to be a trend toward greater relative discrepancy for lighter target materials. Fig. 1 shows that the approximate minimum energy for spallation increases with decreasing atomic weight of the target material. This suggests that the condition for spallation is more difficult to achieve in the lighter targets, and therefore the discrepancy may be associated with lack of validity in the intranuclear cascade model at energies as low as 20 MeV. Another possibility is that LAHET does not transport neutrons below 20 MeV, so that the displacement production due to neutrons leaving a reaction with energies below 20 MeV is not taken into account. Fig. 4 shows that the discrepancy for W is not large, but this is a matter that will receive further investigation.

The results of our calculations concerning the displacement production indicate rates of 0.12 and 0.99 dpa/d due to the spallation neutrons and the incident protons, respectively, or a total of about 1.1 dpa/d. A rough indication of the consequences of this radiation exposure may be obtained by considering the effect of fission reactor irradiation on the ductility of tungsten. Krautwasser et al. [33] studied the effect of irradiations at about 250-300 C in the FRJ2 reactor at Jülich and the HFR reactor at Petten on the ductile-brittle properties of pure W and two tungsten alloys as revealed by three-point bending tests. The pure W showed the least effect of the irradiation. But, even for the pure W, exposure to 1.1 dpa produced an increase in the ductile-brittle transition
temperature of 485°C. For the full 200 μA/cm² (1.2 x 10¹⁹ p/m²s) proton beam, this suggests that after only one day in the SNS, the W target rods would be operating well into the brittle domain. For a proton beam with one-third of this current density, the time for a 485°C increase in the ductile-brittle transition temperature would still be only three days. This may be a matter of some concern, possibly suggesting that the target rods should be clad in a more radiation resistant envelope, even though the target rods will probably have low loads applied to them.

Green et al. [30] presented the results of HETC calculations of displacement and He production for 600 and 750 MeV protons and measured He production for 750 MeV protons on W and other metals. The calculations were performed using HETC, and the measurements employed mass spectrometry following vacuum vaporization in a resistance-heated graphite crucible. The calculated results of Green et al. for the average damage energy per recoil and the damage energy, displacement, and helium cross sections for 600 and 750 MeV protons on W and their measured He production cross section for 750 MeV protons are shown in Table 2. The results of the present study are also shown for comparison. The calculated \(\langle T_{\text{dam}} \rangle \) per recoil, \(\sigma_E \), and \(\sigma_d \) in the present study are somewhat lower than those calculated by Green et al., but nevertheless in reasonable agreement. However, for the He cross section for 750 MeV protons, the value calculated by Green et al. is much greater than the measured value, whereas the value calculated in the present work, 0.74 b, is quite close to the measured cross section, 0.76 b. The reason for the discrepancy in the measured and calculated 750-MeV-proton cross sections, 0.76 and 2.11 b, respectively, in the Green et al. study is not clear, but one possibility lies in the
selected nuclear level density option. In our version of LAHET, this refers to the 13'th data item in Record 4, ILVDEN. This item has three options as indicated in [25]: Option 1, the original HETC level density formulation; Option 2, the Gilbert-Cameron-Cook-Ignatyuk level density model (default option), and Option 3, the Jülich level density parametrization as a function of mass number. In all of our results presented in this paper, we have used Option 2, which gives the He production cross section of 0.74 b for 750 MeV protons on W, as shown in Table 2. But, we have also done the calculation for 750 MeV protons on W using the other two options. Option 1 gives 0.89 b and Option 3 gives 2.45 b. Thus, the calculated He production can depend greatly on the ILVDEN option selected. The above discussion indicates the importance of stating the particular options that are used in reporting the results of HETC and LAHET calculations. But chiefly, perhaps, it indicates that the codes need to be checked by comparison with experimental results wherever possible.

6. Summary

SPECTER calculations for neutron and proton energies below 20 MeV and LAHET calculations above 20 MeV were used to calculate displacement cross sections for tungsten. The displacement cross section for tungsten rises to about 9000 barns for 1600 MeV neutrons or protons. The total displacement rate in a neutron spectrum based on a simulated ATW SNS with incident proton current density of 200 μA/cm² is calculated to be about 0.12 dpa/d due to the spallation neutrons, and about 60% of the displacements are due to neutrons below 20 MeV. For tungsten in the direct proton beam, the displacement rate is about 1 dpa/d. The helium production rate in the ATW
spectrum of spallation neutrons and in the direct 200 μA/cm² proton beam are calculated to be 1.0 and 254 appm He/d, respectively. The current density of 200 μA/cm² may represent an upper limit to what is achievable, with more reasonable levels reduced from these by a factor of about 1/3. However, even for this lower current density case, radiation damage to the tungsten target rods is likely to be substantial.
Table 1. Operating Pulsed Spallation Neutron Sources for Neutron Scattering Research

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>SITE*</th>
<th>BEAM POWER (kW)</th>
<th>BEAM CURRENT (mA)</th>
<th>PROTON ENERGY (MeV)</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIS</td>
<td>RAL, UK</td>
<td>160</td>
<td>0.2</td>
<td>800</td>
<td>U</td>
</tr>
<tr>
<td>LANSCE</td>
<td>LANL, USA</td>
<td>48</td>
<td>0.06</td>
<td>800</td>
<td>W</td>
</tr>
<tr>
<td>IPNS</td>
<td>ANL, USA</td>
<td>6.8</td>
<td>0.015</td>
<td>450</td>
<td>U</td>
</tr>
<tr>
<td>KENS</td>
<td>KEK, Japan</td>
<td>3</td>
<td>0.006</td>
<td>500</td>
<td>U</td>
</tr>
</tbody>
</table>

*RAL, Rutherford Appleton Laboratory; LANL, Los Alamos National Laboratory; ANL, Argonne National Laboratory; KEK, National Laboratory for High Energy Physics.
Table 2. Comparison of Present Work with Green et al. [30]

<table>
<thead>
<tr>
<th></th>
<th>Green et al., Meas'd</th>
<th>Green et al, Calc'd</th>
<th>Present Work, Calc'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<T_{dam}>$ per recoil, keV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 MeV p's</td>
<td></td>
<td>658</td>
<td>641</td>
</tr>
<tr>
<td>750 MeV p's</td>
<td></td>
<td>722</td>
<td>688</td>
</tr>
<tr>
<td>σ_E, b-keV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 MeV p's</td>
<td></td>
<td>1533</td>
<td>1356</td>
</tr>
<tr>
<td>750 MeV p's</td>
<td></td>
<td>1743</td>
<td>1578</td>
</tr>
<tr>
<td>σ_d, b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 MeV p's</td>
<td></td>
<td>6813</td>
<td>6065</td>
</tr>
<tr>
<td>750 MeV p's</td>
<td></td>
<td>7747</td>
<td>7015</td>
</tr>
<tr>
<td>σ(He), b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 MeV p's</td>
<td></td>
<td>0.762</td>
<td>0.452</td>
</tr>
<tr>
<td>750 MeV p's</td>
<td></td>
<td>2.109</td>
<td>0.744</td>
</tr>
<tr>
<td>R, appm He/dpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 MeV p's</td>
<td></td>
<td>245</td>
<td>75</td>
</tr>
<tr>
<td>750 MeV p's</td>
<td></td>
<td>272</td>
<td>106</td>
</tr>
</tbody>
</table>

* $R = \text{appm He (meas'd)/dpa (calc'd)}$
References

Figure captions

1. E_L versus atomic weight of target for two values of R_0 in Eq. 4. E_L is a rough measure of the minimum neutron (or proton) energy for spallation.

2. Spallation product generation rate (number of product nuclei per incident proton) versus atomic number, Z, of the product for Pb and W targets, diameter 0.5 m, length 2 m, bombarded on axis by 1000 MeV protons. After Russell et al. [5].

3. Damage energy and displacement cross sections for tungsten versus energy of incident particles. Threshold displacement energy, 90 eV. LAHET calculations for 150,000 incident neutrons or protons.

4. Damage energy cross section and displacement cross section (using threshold displacement energy 90 eV) versus neutron energy for W as calculated by SPECTER ($E < 20$ MeV) and LAHET ($E > 20$ MeV). A polynomial fitted curve is also shown.

5. Displacement cross section for tungsten and differential neutron flux at 0.25 m from the axis of the 1600 MeV proton beam for a simulated ATW SNS [18]. Flux of neutrons of all energies from 0.025 eV to 1600 MeV, 1.3 x 10^{20} n/m2s.

6. Differential displacement production rate, K_d', versus neutron energy for tungsten in the ATW differential neutron flux shown in Fig. 5.

7. Integral displacement rate (dpa/s due to neutrons of energies < E) and fractional integral displacement rate (fractional number of dpa's due to neutrons of energies < E) versus neutron energy E.

8. Helium production cross section versus incident energy for tungsten.

10. Integral helium production rate (appm He/s due to neutrons of energies < E) and fractional integral displacement rate (fractional number of He atoms due to neutrons of energies < E) versus neutron energy E for tungsten.

11. Helium to dpa ratio, R, versus incident proton energy for tungsten.
Approximate minimum energy for spallation (MeV) vs. atomic weight (A). The graph shows two curves, one for R0 = 1.1 fm and another for R0 = 1.6 fm. The elements Li, Be, C, Al, Cr, Fe, Ni, Cu, Mo, W, Pb, and U are depicted along the atomic weight axis.
FIG. 3

Damage Energy Cross Section (b keV) vs. Incident Energy (MeV)

- NEUTRONS
- PROTONS

Displacement Cross Section (b)
Displacement Cross Section (b)

Damage Energy Cross Section (b keV)

- SPECTER
- LAHET
- Fitted Curve

E, Neutron Energy
Differential Displacement Production Rate (per s MeV)
44.2 dpa/yr

20 MeV

INTEGRAL DISPLACEMENT PRODUCTION RATE (dpa/yr)

E, NEUTRON ENERGY (MeV)

FRACTIONAL INTEGRAL DISPLACEMENT RATE (%)
Incident Neutrons

Incident Protons

2.5
2.0
1.5
1.0
0.5
0.0

0.0
0
400
800
1200
1600

E, INCIDENT ENERGY (MeV)

He PRODUCTION CROSS SECTION (barns)

1.5E5 Incident Neutrons

1.5E5 Incident Protons

2E4 Incident Neutrons
K, HELIUM PRODUCTION RATE DUE TO NEUTRONS OF ENERGIES BELOW E (appmHe/d)

f, FRACTIONAL He PRODUCTION DUE TO NEUTRONS OF ENERGY BELOW E

FIG. 10