Status of the DIII-D 110 GHz ECH system

PDF Version Also Available for Download.

Description

The DIII-D program is presently commissioning the first NM gyrotron of a planned 3 MW, I 10 GHz electron cyclotron heating (ECH) system for off-axis electron heating and current drive. Advanced tokamak (AT) research in DIII-D and other tokamaks requires the ability to control the current density profile. ECH offers the ability to localize the heating and driven current in a controllable manner and is not dependent upon, the local plasma conditions, so it appears to be an ideal tool for AT research. The planned rf sources for the DIII-D system are I MW state-of-the-art internal mode-converter gyrotrons, with one ... continued below

Physical Description

5 p.

Creation Information

Callis, R.W.; Lohr, J.; O`Neill, R.C.; Tooker, J.F. & Ponce, D. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • General Atomic Company
    Publisher Info: General Atomics, San Diego, CA (United States)
    Place of Publication: San Diego, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The DIII-D program is presently commissioning the first NM gyrotron of a planned 3 MW, I 10 GHz electron cyclotron heating (ECH) system for off-axis electron heating and current drive. Advanced tokamak (AT) research in DIII-D and other tokamaks requires the ability to control the current density profile. ECH offers the ability to localize the heating and driven current in a controllable manner and is not dependent upon, the local plasma conditions, so it appears to be an ideal tool for AT research. The planned rf sources for the DIII-D system are I MW state-of-the-art internal mode-converter gyrotrons, with one gyrotron being manufactured by GYCOM, a Russian company, and two gyrotrons being manufactured by CPI (formerly Varian). The GYCOM gyrotron has been tested at the factory to 960 kW, 2 seconds and has been shipped to GA where it is now undergoing initial checkout and testing. The first CPI gyrotron has been assembled and factory tested to 530 kW, 2 seconds and 350 1352 kW, 10 seconds. Both the GYCOM and CPI gyrotrons are limited in pulse length at full power by thermal limits on the output window. The second CPI gyrotron is expected to be ready for testing in April 1996. This paper will report on the initial experiences of using the GYCOM I MW, 110 GHz internal mode- converter gyrotron, at General Atomics, and the observed effects the ECRH power has on the DIII-D plasma.

Physical Description

5 p.

Notes

INIS; OSTI as DE97003081

Source

  • Annual meeting of the American Nuclear Society (ANS), Reno, NV (United States), 16-20 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97003081
  • Report No.: GA--A22378
  • Report No.: CONF-9606116--90
  • Grant Number: AC03-89ER51114
  • Office of Scientific & Technical Information Report Number: 458599
  • Archival Resource Key: ark:/67531/metadc676381

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • April 18, 2016, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Callis, R.W.; Lohr, J.; O`Neill, R.C.; Tooker, J.F. & Ponce, D. Status of the DIII-D 110 GHz ECH system, article, June 1, 1996; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc676381/: accessed December 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.