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Generalized master equation via aging continuous-time random walks

Paolo Allegrini,1 Gerardo Aquino,2 Paolo Grigolini,2,3,4 Luigi Palatella,3 and Angelo Rosa5
1Istituto di Linguistica Computazionale del Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa,

Via Moruzzi 1, 56124 Pisa, Italy
2Center for Nonlinear Science, University of North Texas, P. O. Box 311427, Denton, Texas 76203-1427, USA

3Dipartimento di Fisica dell’Universita` di Pisa and INFM, via Buonarroti 2, 56127 Pisa, Italy
4Istituto dei Processi Chimico Fisici del CNR, Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy

5International School For Advanced Studies and INFM, Via Beirut 2-4, 34014 Trieste, Italy
~Received 4 April 2003; published 25 November 2003!

We discuss the problem of the equivalence between continuous-time random walk~CTRW! and generalized
master equation~GME!. The walker, making instantaneous jumps from one site of the lattice to another, resides
in each site for extended times. The sojourn times have a distribution densityc(t) that is assumed to be an
inverse power law with the power indexm. We assume that the Onsager principle is fulfilled, and we use this
assumption to establish a complete equivalence between GME and the Montroll-Weiss CTRW. We prove that
this equivalence is confined to the case wherec(t) is an exponential. We argue that is so because the
Montroll-Weiss CTRW, as recently proved by Barkai@E. Barkai, Phys. Rev. Lett.90, 104101~2003!#, is
nonstationary, thereby implying aging, while the Onsager principle is valid only in the case of fully aged
systems. The case of a Poisson distribution of sojourn times is the only one with no aging associated to it, and
consequently with no need to establish special initial conditions to fulfill the Onsager principle. We consider
the case of a dichotomous fluctuation, and we prove that the Onsager principle is fulfilled for any form of
regression to equilibrium provided that the stationary condition holds true. We set the stationary condition on
both the CTRW and the GME, thereby creating a condition of total equivalence, regardless of the nature of the
waiting-time distribution. As a consequence of this procedure we create a GME that is abona fidemaster
equation, in spite of being non-Markov. We note that the memory kernel of the GME affords information on
the interaction between system of interest and its bath. The Poisson case yields a bath with infinitely fast
fluctuations. We argue that departing from the Poisson form has the effect of creating a condition of infinite
memory and that these results might be useful to shed light on the problem of how to unravel non-Markov
quantum master equations.

DOI: 10.1103/PhysRevE.68.056123 PACS number~s!: 02.50.Ey, 05.40.Fb, 05.60.Cd
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I. INTRODUCTION

The Onsager principle@1# is one of the basic tenets o
statistical mechanics insofar as it establishes a connec
between a property of equilibrium, the correlation functi
of a given variableA, and the regression to equilibrium of
macroscopic signal. For this reason, we judge the Ons
principle to be a fundamental step for the connection
tween dynamics and thermodynamics. It is important
stress, as clearly stated by Onsager himself@1#, that this prin-
ciple holds true for aged systems, namely, systems in con
with heat reservoirs that are supposed to be in a conditio
thermal equilibrium. A heat reservoir is a Hamiltonian sy
tem with infinitely many degrees of freedom. In the ordina
treatments this means a system equivalent to an ideal the
source. Here we do not specify the nature of this system,
we try to imagine its properties on the basis of the effe
produced on the system of interest under study. These p
erties suggest that this system is the source of fluctuat
with unusually extended time correlation. Nevertheless,
simplicity, we shall keep imagining it as a heat reservoir a
for the sake of concision, we shall refer to it asbath.

If the regression to equilibrium of the system of interes
very fast, it is not so important to ensure the equilibriu
condition of the bath, at the moment when we begin mea
ing the regression to equilibrium of the system of interest
1063-651X/2003/68~5!/056123~11!/$20.00 68 0561
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fact, in the specific case where the bath is responsible
fluctuations that can be assumed to be white, the regres
to equilibrium of the bath is instantaneous.

The Onsager principle refers to a variable of inter
whose dynamics are made stochastic by the interaction
a bath. Thus, when we discuss the process of regressio
equilibrium, we have to specify if we are referring to th
system of interest or to its bath. As earlier said, if we ad
the white noise approximation to describe the fluctuatio
that are responsible for the erratic motion of the variable
interest, the regression to equilibrium of the reservoir is v
tually instantaneous, thereby ensuring the validity of the O
sager principle with no need of adopting special initial co
ditions. The variable of interest is characterized by
stationary correlation functionFA(t1 ,t2)5^A(t1)A(t2)&,
which only depends onut12t2u. The stochastic behavior o
the variable of interest is caused by the interaction betw
system of interest and bath, and this kind of process is o
studied by means of the master equation method. A pop
method to derive the master equation is the project
method by Zwanzig@2#. However, this method is easy an
convenient to use, when special initial conditions can
adopted, with the total distribution expressed as the prod
of the relevant, or reduced distribution, and of the bath d
tribution @3#.

These special initial conditions have the beneficial eff
©2003 The American Physical Society23-1
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of annihilating the inhomogeneous term that makes the
duced equation of motion explicitly dependent on the init
condition @3#. If no initial condition of this kind is adopted
we have to consider also the inhomogeneous term and
have to wait a time comparable to the bath relaxation ti
for this term to disappear. This suggests that a non-Mar
master equation with the same structure as the Zwanzig m
ter equation, with no inhomogeneous term, does not ne
sarily refer to a stationary condition. We hope that the res
of this paper might afford useful suggestions on how to m
a master equation, with no inhomogeneous term compa
with the stationary condition.

In the past few years there has been a growing interes
the formalism of continuous-time random walk~CTRW! @4#,
because of its close connection with the adoption of fr
tional operators that, in turn, are revealing a powerful too
describe cooperative processes in condensed matter@5#. On
the other hand, the connection between the master equ
formalism and the CTRW walk has been discussed over
years, beginning with the pioneering work of Ref.@6#. Ac-
cording to the CTRW, the walker traveling through a on
dimensional path alternates quiescent states to abrupt
instantaneous jumps from one site to another of this p
The distribution density of sojourn times, assumed to be
dependent of the walker position, is denoted by the funct
c(t). The pioneering work of Ref.@6# proves that the Mar-
kov master equation is compatible with the CTRW, ifc(t) is
a Poisson distribution.

The results of the pioneering work of Ref.@6# raise the
important issue of the connection between CTRW, with n
Poissonc(t), and a non-Markov master equation. Appa
ently, this important problem is solved by adopting the no
Markov master equation proposed by the authors of Ref.@7#.
We consider this theoretical tool to be very important, a
we denote with the term generalized master equation~GME!
all transport equations with the same structure. Recently
GME has been discussed by Metzler@8# who argued that this
equation unifies fractional calculus and CTRW. We addr
the related problem of the equivalence between GME
CTRW.

We want to stress that another reason of interest of
GME of Kenkre, Montroll, and Shlesinger is that it is fo
mally identical to the master equation that the authors of R
@9# derived from a quantum mechanical tight-binding mod
with an erratic distribution of energy sites. The calculati
was done along the lines established by Zwanzig@2# using a
projection operator similar to that used by Kenkre in an e
lier work @10#. This means that in principle understanding t
connection between a master equation and CTRW m
contribute to shedding light on the intriguing issue of unra
elling quantum mechanical master equations. This prob
becomes challenging in the case of non-Markov proces
For some very recent references on this issue, we refer
reader to Refs.@11,12#. The purpose of this paper is not s
ambitious as to afford direct contributions to the settlem
of this problem. However, we focus our attention on the c
of a two-site system that seems to be closer to the problem
decoherence of aq-bit than to the random walk over an in
finite path for which the CTRW theory was originally de
05612
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signed. We address a problem that is closely related to
recently discussed by Sokolov and Metzler@13#, the connec-
tion between the CTRW and a two-state non-Markov mas
equation. The focus of the present paper is on making
GME compatible with the stationary condition, and we
not deal yet with the interesting issue of Ref.@13#, of the
connection with fractional calculus.

The Onsager principle is a property that makes it poss
for us to derive the correlation function from the GME. If w
set a condition of total equivalence between the GME a
the CTRW, we find the apparently disconcerting result t
only the Poisson statistics is compatible with the equivale
condition. The reason for this restriction is due to the fa
that the departure from the Poisson statistics gener
memory properties that make the GME incompatible w
the Markov approximation. This means that the structure
the GME is dictated by the initial condition. If this is no
stationary, the resulting GME is not abona fidetransport
equation@14#. On the other hand, if the waiting-time distr
bution c(t) is not exponential, there are aging effects. Th
means that we have to leave the system age till it reaches
condition where the Onsager principle holds true. In t
condition it is possible to establish abona fideGME. We do
it, and in doing so we establish a complete equivalence
tween CTRW and GME. At the same time, we prove that
transition from the Poisson to the non-Poisson statistics
the effect of creating a memory condition incompatible w
the Markov approximation, at least in principle. In fact, th
Markov approximation, as we shall see, means that the b
is infinitely fast, and this condition, in turn, is proven to forc
the waiting-time distributionc(t) to be exponential. This
means that the Markov condition is incompatible with t
non-Poisson nature of the waiting-time distribution.

II. THE POISSON CASE AND THE ONSAGER PRINCIPLE

In this section we address the problem of the equivale
between the Montroll and Weiss CTRW and the GME. W
go beyond the results of the work of Ref.@7# insofar as we
set also the condition of extending the equivalence so
both theoretical tools yields the same stationary correla
function. Let us express the GME under the following co
cise form:

d

dt
p~ t !52E

0

t

F~ t2t8!Kp~ t8!dt8, ~1!

wherep is them-dimensional population vector ofm sites,K
a transition matrix between the sites, andF(t) the memory
kernel. The prescription of the CTRW@4# yields

p~ t !5 (
n50

` E
0

t

dt8cn~ t8!C~ t2t8!Mnp~0!. ~2!

Note thatcn(t) is the probability thatn jumps occurred and
that the last took place at timet5t8. This means that

cn~ t !5E
0

t

cn21~ t2t8!c1~ t8!dt8, ~3!
3-2
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GENERALIZED MASTER EQUATION VIA AGING . . . PHYSICAL REVIEW E68, 056123 ~2003!
with

c0~ t !5d~ t !. ~4!

The symbolM denotes the transition matrix. Thus, the vec
Mp denotes the population vector immediately after the
currence of a jump event. The functionC(t) is the probabil-
ity that no jump occurs in the time intervalt, namely,

C~ t !5E
t

`

c1~ t8!dt8. ~5!

It is evident that the time convolution structure of both Eq
~1! and ~2! makes it straightforward to derive in both cas
the Laplace transform ofp(t). Furthermore, Eqs.~3! and~5!
make it possible to express the Laplace transform ofp(t), in
the second case, in terms of the functionc1(t) only. This
function is the earlier mentioned waiting-time distributio
and from now on it will be denoted with the symbolc(t).
By comparing the Laplace transform of the GME to t
Laplace transform of the CTRW we get

F̂~u!5
uĉ~u!

12ĉ~u!

M2I

K
, ~6!

whereI is the unity operator. We limit our discussion in th
paper to the two-state case, where

M5S 0 1

1 0D ~7!

and

K5S 1 21

21 1 D , ~8!

thereby turning Eq.~6! into

F̂~u!5
uĉ~u!

12ĉ~u!
. ~9!

We note that the two-state master equation studied in
paper has to be related to the two-site CTRW. If we ass
the valueW to the right, and the value2W to the left site,
and we adopt a discrete time representation, the motio
the random walker corresponds to a symbolic
quence $j%, with the form $WWWWWWWW2W2W
2 W2 WWWWWWW2W2W2W2W2W2W2W . . . %,
which shows a significant time persistence of both sta
The waiting-time distributionc(t) is the distribution of the
patches filled with eitherW’s or 2W’s. We assume a sym
metric condition.

For the sake of clarity, it is convenient to make the rea
know that in this paper we shall deal with waiting-time d
tribution densities with the following form:
05612
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c~ t !5~m21!
T(m21)

~T1t !m
, ~10!

with m.1. The Poisson case corresponds to the limit
case ofm tending to`. This function is properly normalized
However, let us note that its first and second moments va
for m,2 andm,3, respectively. This assigns to the valu
m52 and m53 an important physical meaning. Whenm
.2, and consequently, the first moment ofc(t) is finite, the
stationary condition is possible@15,16#. In the stationary
condition the correlation function of the fluctuationj(t), de-
noted with the symbolFj(t), exists and its asymptotic form
is

Fj~ t !(t@T);
1

tm22
. ~11!

Thus the transition fromm,2 to m.2 corresponds to the
transition from a condition incompatible with the stationa
condition, and with the existence itself of the correlati
functionFj(t), to a condition compatible with the existenc
of both of them. The transition fromm,3 to m.3 is usually
regarded as the transition from the regime of anomalou
that of ordinary statistical mechanics. We shall see that th
not quite true, since the departure from the Poisson co
tion, namelym,`, is enough to generate infinite memor
However, the physical effects of this condition become es
cially evident in the casem,3, thereby makingm53 to be,
in practice, the border between normal and anomalous st
tical mechanics.

It is now the right time to use the Onsager principle. W
set the Onsager principle in the form

Fj~ t !5
p1~ t !2p2~ t !

p1~0!2p2~0!
, ~12!

wherep1(t) and p2(t) are the probabilities for the random
walker to be, at timet, in the first and second state, respe
tively. In his original work Onsager referred himself to th
case of a macroscopic fluctuation that is supposed to reg
to the vanishing equilibrium value through a phenomenolo
cal equation of motion. We realize this macroscopic fluctu
tion selecting a large numberN of walkers, divided into two
groups, withN1 and N2 walkers belonging to the first an
second state, respectively. Then we relate this choice to
probabilitiesp1(t) and p2(t), by settingp15N1 /N and p2
5N2 /N. The regression to equilibrium of this macroscop
fluctuation does not fit any phenomenological law. For t
reason, we can refer ourselves to Eq.~12! as a generalized
version of the Onsager principle. We plan to derive the ma
ematical expression of the law of regression to equilibriu
from the use of this generalized version of the Onsage
regression principle, which, as shown in Sec. III, is exact
the dichotomous case. Due to its nature, the GME affo
information only onp1(t) and p2(t). There is no direct in-
formation on the correlation functionFj(t), and the only
possible way to get this information is through the Onsage
principle, which, as shown by Eq.~12!, implies that an initial
3-3
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off-equilibrium condition p1(0)2p2(0)Þ0 is established.
Then, the regression to equilibrium is expected to take pl
in such a way as to establish a connection with the corr
tion function in the form of Eq.~12!. This assumption, ap
plied to Eq.~1!, yields

d

dt
Fj~ t !522E

0

t

dt8 Fj~ t2t8!F~ t8!. ~13!

This equation is the non-Markov counterpart of the pheno
enological regression to equilibrium of the original work
Onsager@1#. Using the time convoluted expression of E
~13! and the central result of Eq.~9!, we establish a connec
tion between the correlation functionFj(t) and the waiting-
time distribution densityc(t), through their Laplace trans
forms, as follows:

F̂j~u!5
1

u1
2uĉ~u!

@12ĉ~u!#

. ~14!

On the other hand, the correlation function is connecte
c(t) through properties established by the renewal the
@15#. To properly establish this connection, we have to n
tice, with Zumofen and Klafter@17#, that it is convenient to
introduce another type of waiting-time distribution dens
that we callc* (t). What is the connection betweenc(t) and
c* (t)? The waiting-time distribution densityc(t) is the ex-
perimental waiting-time distribution. It could be evaluat
experimentally observing the sequence$j%, and recording
the time length of the laminar regions occupied only byW or
by 2W. However, we can imagine that a theoretical waitin
time distribution density exists, denoted byc* (t), and that
the sequencej(t) is obtained as follows. We select random
a number t1 from the waiting-time distribution density
c* (t). We toss a coin, and assign to the first laminar regi
of length t1, the symbolW or 2W, according to the coin-
tossing prescription. At the end of this laminar region, fi
we select, again from the waiting-time distribution dens
c* (t), a numbert2. This is the length of the second lamin
region. We toss the coin again to decide the sign of it. I
evident that there is 50% probability of getting the same s
as the earlier laminar region. We proceed in the same
with the length and the sign of third laminar region, and
on. We adopt this rule to create the sequence$j(t)%. Thus,
from the renewal theory@15# we obtain the following impor-
tant result:

Fj~ t !5
1

^t&Et

`

~ t82t !c* ~ t8!dt8, ~15!

where^t& is the mean waiting time of thec* (t)-distribution
density. It is interesting to notice that this equation mea
that the second derivative of the correlation function is p
portional toc* (t),

d2

dt2
Fj~ t !5

c* ~ t !

^t&
. ~16!
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Zumofen and Klafter@17# explained with clear physica
arguments the connection betweenc(t) and c* (t). They
prove that their Laplace transforms are related to one ano
by

ĉ* ~u!5
2ĉ~u!

11ĉ~u!
. ~17!

Using Eqs.~16! and ~17! we derive a further connection
between the Laplace transform ofFj(t) and the Laplace
transform ofc(t). In fact, by Laplace transforming Eq.~16!
and using Eq.~17!, we derive a new expression for th
Laplace transform ofFj(t). By equating this new expres
sion to that of Eq.~14!, we find, after some algebra, th
following form for the Laplace transform ofc(t):

ĉ~u!5

2
1

2
Fj8~0!

u1
1

^t&
1

1

2
Fj8~0!

. ~18!

Using Eq.~15! we prove that

Fj8~0!52
1

^t&
. ~19!

This equation allows us to write Eq.~18! under the form

ĉ~u!5
1

2^t&

1

S u1
1

2^t& D
. ~20!

This means thatc(t) is exponential and the explicit forms o
c(t) andFj(t) are given by

c~ t !5
g

2
expS 2

g

2
t D ~21!

and

Fj~ t !5exp~2gt !, ~22!

respectively.
This is the first result of this paper. It is to some exte

disconcerting since it seems to restrict the complete equ
lence between GME and CTRW to the exponential case, w
the effect of making the GME useless, since in the expon
tial case, it turns out to be an ordinary, memory less, ma
equation. We want to notice that Sokolov and Metzler@13#
have recently discussed the derivation of a fractional tra
port equation totally equivalent to the CTRW. However, th
did not discuss the intimately related problem of the equi
lence between CTRW and GME, which is the main goal
the present paper.

The second result of this paper is even more import
than the first. This is the discovery of a GME that is equiv
lent to the CTRW, with no restriction to the Poisson ca
This second important result will be illustrated in Sec. V.
derive this important result we have to mention a fact
3-4
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cently observed by Barkai@18#: the Montroll-Weiss CTRW
refers to a nonstationary condition. This means that Ons
er’s regression principle is invalidated. Therefore, we sh
conclude that the disconcerting result of this section is du
the fact that the case of Poisson statistics is the only
where aging does not exist. At this stage, this is only a c
jecture. We can notice, however, that this is a plausible c
jecture. In fact, the exponential condition of Eq.~21! when

applied to Eq.~9! makesF̂(u) independent ofu, thereby
implying that the memory kernelF(t) has a vanishing life-
time. This means that the fluctuations of the variablej take
place while its bath is always at equilibrium.

III. ONSAGER’S REGRESSION FOR DICHOTOMOUS
SIGNALS

We note that the constraint posed in the earlier section
the waiting-time distribution densityc(t), to ensure the
equivalence between the master equation and the CTRW
been based on the assumption that the Onsager princip
valid. The fact that the equivalence between CTRW a
GME is restricted only to the Poisson case, and so to the
of ordinary master equation, might generate the false imp
sion that the Onsager principle is valid only in the Poiss
case. It is not so. It is already known@19# that in the case of
Gaussian statistics the Onsager’s regression hypothesis i
act, and it holds true for initial excitation of any intensity.
this section, having in mind the two-state master equat
we focus our attention on the case of dichotomous statis
In the dichotomous case, we show that the Onsager’s reg
sion hypothesis turns out to be exact again, for initial dep
tures from equilibrium of whatsoever intensity, and with a
type of relaxation process, with an exponential form, a
with an inverse power law form as well, provided that t
system is ergodic. In short, in this section we prove tha
the dichotomous case the Onsager regression principle h
true provided that the system is ergodic.

The ergodic property implies that we can create a Gi
ensemble in two different, but equivalent, ways. The fi
refers to the original idea of Gibbs, that the same system
repeated infinitely many times. This means that we have
generate infinitely many sequences using the same phy
prescription. The second way is based on the adoption
only one sequence, denoted byj(t), which is supposed to be
infinitely long. Then we define a generic trajectoryj (s)(t)
with the following prescription:

j (s)~ t !5j~ t1s!. ~23!

In the practical case of a numerical treatment, time is d
crete, time unity being, for instance,t51. In this case the
superscripts is an integer number.

We denote byP1 andP2 the probability that the variable
j gets the valuesW and2W, respectively. These probabil
ties are frequencies that can be evaluated using either the
or the second ensemble of sequences. We divide our
semble of sequences into two groups, characterized by
initial condition j(0)51, andj(0)521, respectively. We
05612
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define two distinct averages for the two groups, denoted
^•&1 and ^•&2 , respectively. Of course, we have that

^•&5P1^•&11P2^•&2 , ~24!

with

P11P251. ~25!

Although it is not essential for the main goal of this pap
we make our discussion as general as possible. Thus, w
not assume the two probabilities to be equal. We do not r
out that a bias might exist, given by

P12P25c. ~26!

Thus both kinds of ensembles yield the same mean valu
the variablej(t), which is denoted by us with the symbo
^j&, this value beinĝ j&5c. In the ergodic, and stationary
condition that we are assuming, the stationary autocorr
tion function exists, and it is defined as

Fj~ t ![
^„j~0!2^j&…„j~ t !2^j&…&

^j2&2^j&2
5

^j~0!j~ t !&2c2

12c2
.

~27!

Expressing the total average in terms of the averages ove
two groups, according to the prescription of Eq.~24!, we
make Eq.~27! become

Fj~ t !5
^~11!j~ t !&11^~21!j~ t !&22c2

12c2

5
^j~ t !&12^j~ t !&22c2

12c2
. ~28!

Note that on the same token the property^j&5c can be
written as follows:

P1^j&11P2^j&25c. ~29!

We also note that

P15
c11

2
. ~30!

Using Eqs.~29! and~30! we express the correlation functio
of Eq. ~28! as follows:

Fj~ t !5
2P1^j&12c2c2

12c2
5

^j&1~c11!2c~c11!

12c2
.

~31!

Finally, by dividing both numerator and denominator of t
ratio corresponding to the last term of Eq.~31! by 11c, we
obtain

Fj~ t !5
^j&12c

12c
. ~32!
3-5
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Equation~32! can be interpreted as follows. The group
trajectories corresponding to the conditionj(0)51 can be
thought of as a way of creating an out of equilibrium con
tion ^j&1 . This out of equilibrium condition undergoes
process of regression to equilibrium that is proportional
the equilibrium correlation function. Using Eq.~29!, we can
express the correlation function in terms of^j&2 , and we
reach the same conclusion. It is evident that the same
clusion would be reached using an arbitrary mixture of^j&1

and ^j&2 , departing from the vanishing equilibrium valu
In conclusion, the Onsager’s regression principle is fulfille

We notice that the waiting-time distribution densities th
we are considering in this paper have an inverse power
nature with the power indexm. If this power index fits the
condition m.2 the ergodic condition is ensured. We sh
focus our attention on this condition, and we shall prove t
we can make the CTRW compatible with the GME if we s
the constraint that the system is aged enough as to mak
Onsager principle valid. As we shall see, this means
adoption of a form of CTRW different from that of Montro
and Weiss@4#, which corresponds to a condition very fa
from the stationary state. It is evident that the ergodic c
dition might become hard to fulfill in practice, with relax
ation processes described by inverse power laws. This
fact the case where aging becomes important.

IV. AGING IN RENEWAL PROCESSES

In Sec. II we found that the GME and the CTRW a
equivalent only in the Poisson case. Since the use of
Onsager’s regression assumption is the key ingredient u
to establish this equivalence, we might be tempted to c
clude that the Onsager principle does not hold true in
non-Poisson case. In Sec. III, we found that it is not so,
that the Onsager principle is valid, provided thatm.2. Here
we shall prove that also in the casem.2 there are significan
aging effects, in spite of the fact that the conditionm.2 is
compatible with the stationary state. If the CTRW used d
not refer to the stationary~aged! condition, it cannot be com
patible with the Onsager regression principle. The probl
of aging within the context of intermittent processes has b
discussed recently in a very attractive paper by Barkai@18#.
The work of Barkai focuses on the conditionm,2, where
no invariant measure exists, and consequently, it is imp
sible to realize conditions compatible with the Onsager
gression principle. In Sec. IV A, using the renewal theo
@16#, we shall study the casem.2, and we shall discuss tw
limiting conditions, corresponding to the birth and the de
of the system, respectively. It is interesting to remark t
death, meaning an ordinary thermodynamical conditi
takes place eventually at the end of an infinitely long ag
process.

A. Young and aged systems

First of all, we should define, as Barkai does@18,20,21#,
the waiting-time distribution densityc ta

(t). This means that

we establish non-stationary conditions at timeta,0, and we
begin our observation at timet50. The waiting-time distri-
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bution density depends onta . The naive conviction that the
waiting-time distribution density is given byc(t), actually is
based on the assumption thatta50. This means, in fact, tha
we are considering a set of random walkers and that at t
t50 all of them begin their sojourn in the laminar regio
This leads immediately toc ta50(t)5c(t). It is straightfor-
ward to evaluate also the distribution density of sojou
times corresponding tota52`. We denote this distribution
density with the symbolc`(t).

This is the stationary case, corresponding to the follow
procedure. In the stationary condition, the probability of s
lecting a laminar zone of lengthT, by a random choice, is
(T/^t&)c(T)dT, where^t& is the mean length of a lamina
zone. The probability density of observing the first change
laminar phase after a timet, being in a laminar zone o
lengthT, is Q(T2t)(1/T). Consequently, for the probability
density of having the first change of laminar phase at timt
@i.e., c`(t)], we have, integrating over all possibleT,

c`~ t !5
1

^t&E0

`

dT Tc~T!
1

T
Q~T2t !5

1

^t&Et

`

dT c~T!.

~33!

Note that due to the renewal theory, the distribution de
sity c`(t) concerns only the time that we have to wait
detect the first event. After the first event we have a to
rejuvenation. In fact, measuring the time at the moment
the first jump is equivalent to beginning the measurem
process at the precise moment when the walker enters
laminar region. As a result of these arguments, the Lapl
transform ofp(t) is given by

p̂~u!5S Ĉ`~u!I 1
ĉ`~u!Ĉ~u!M

12ĉ~u!M
D p~0!. ~34!

This result is derived from Eq.~2! as follows. First of all, we
evaluate the Laplace transform of Eq.~2!. We obtain

p̂~u!5@Ĉ~u!1Ĉ~u!ĉ~u!M1Ĉ~u!ĉ2M21•••#p~0!

5Ĉ~u! (
n50

`

~ĉM !np~0!5
Ĉ~u!

12ĉ~u!M
p~0!.

Then, we replace the probability of occurrence, or of no
occurrence, of the first event, calledc(t) andC(t), respec-
tively, with the corresponding aged quantities. These
calledc`(t) andC`(t), respectively. The functionc`(t) is
given by Eq.~33! and the functionC`(t) is given by

C`~ t !5E
t

`

c`~ t8!dt8. ~35!

All this yields Eq.~34!.
We expect that the inverse Laplace transform of Eq.~35!

is a function oft that asymptotically will become equivalen
to the asymptotic value of the inverse Laplace transform
Eq. ~34!. What about the Onsager prescription of Eq.~12!? If
we adopt the GME corresponding to the young condition,
3-6
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adoption of Eq.~12! would be equivalent, as far as the lef
hand side of this equation is concerned, to adopting the n
stationary condition. We have to remark, in fact, that t
GME corresponding to the Montroll-Weiss CTRW is not
bona fidemaster equation. The importance of abona fide
transport equation has been pointed out in a remarkable
per by Fox @14#. A master equation is abona fidemaster
equation when it can be used with any initial condition~like
thebona fideFokker-Planck equation of Ref.@14#!. The mas-
ter equation of Sec. III, on the contrary, implies the choice
only one initial condition.

B. A theory for systems of any age

The purpose of this section is to shed further light into
aging problem, and into the ensuing conflict with the O
sager postulate. At the same time we shall derive an exp
sion for the distribution density of the first exit times val
for any age, and not only forta50 and ta52`, which
denote observation taking place at the moment of birth
death of the dynamic process under study, respectively.
discussion is based on the following dynamic model. A va
able x moves in the intervalI[@0,1# according to the fol-
lowing prescription

dx

dt
5lx~ t !z. ~36!

When it reaches the pointx51 it is injected back with uni-
form distribution, thereby producing another laminar regio
We assign alternated signs to the sequel of laminar regi
The sojourn in a laminar region with a given sign is equiv
lent to sojourn in one of the two states discussed in Sec
The resulting waiting-time distribution density coincid
with the one earlier calledc(t). The explicit expression for
c(t) is obtained by expressing the exit timet as a function of
the initial conditionx0. Then we have to assume

p~x0!dx05c~ t !dt. ~37!

The choice of a uniform of back injection process impli
p(x0)51. This is the condition behind the CTRW of Mon
troll and Weiss. All this results into

c~ t !5~m21!
T(m21)

~T1t !m
, ~38!

with

m5
z

~z21!
~39!

and

T5
1

l~z21!
. ~40!

We propose for the aging process a calculation proced
different from that adopted by Barkai@18#. As we shall see,
this procedure yields the same results as those of Barka
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done in Ref.@22#, we discuss the equation of motion for th
probability densityr(x,t). This is given by

]

]t
r~x,t !52

]

]x
@lxzr~x,t !#1C~ t !. ~41!

The time evolution of the distribution function is de
scribed by the following formula:

r~x,t !.E
2ta

t C~t1ta!

@111/a~ t2t!x1/a#11a
dt, ~42!

where we have used the following new parameter:

a5
1

~z21!
. ~43!

We have assumed that the flat initial distribution is a
signed at timet52ta . We have neglected the contributio
@111/a(t1ta)(1/a)#2(11a), necessary to recover att5
2ta , the flat initial distribution. On the basis of the approa
that we shall detail hereby to derive the distribution dens
of the first exit times, it is straightforward to check that th
term yields negligible contributions. Using the property

r~x,t50!dx5c ta
~ t !dt, ~44!

where r(x,t50) is given by Eq.~42!, with t50, we can
evaluate the distribution density of the first exit times
general, and not only forta50 andta52`. It is interesting
to remark that the infinitely old distribution densityc`(t) of
Sec. IV A is easily obtained by noticing that

r~x,`!5~22z!/xz21. ~45!

Using Eqs.~45! and~44!, after some algebra, we rederive th
distribution of Eq.~33!.

We can also establish a connection with the case
cussed by Barkai@18#, namely, the casez.2. In the case of
z.2⇒a,1, the long time behavior of the functionC(t) is

C~ t !.
sin~ap!

aap
t2(12a). ~46!

We now use the prescription of Eq.~44!. A close inspection
of Eqs.~42! and~46! reveals that it is not possible to give
close formula for the functionc ta

(t). Then, we must study

the two casesta@t and ta!t separately.
3-7
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~1! ta@t:

r~x,t50!;E
2ta

0 ~t1ta!2(12a)

@121/atx1/a#11a
dt

5ta
21E

21

0 ~11y!2(12a)

@1/ta2y/ax1/a#11a
dy

5ta
21E

0

1 ~12y!2(12a)

@1/ta1y/ax1/a#11a
dy

;ta
21E

0

1 1

@1/ta1y/ax1/a#11a
dy

5ta
aE

0

1 1

@11y/atax1/a#11a
dy;

ta
2(12a)

x1/a
. ~47!

In Eq. ~47!, we have carried out the operation limta→` ,

while keepingxÞ0 fixed. The next step is based on the u
of Eq. ~44!, of x5(11t/a)2a and of udx/dtu5(1
1t/a)2(a11). This allows us to obtain

c ta
~ t !u ta@t;

ta
2(12a)

ta
. ~48!

~2! ta!t:

r~x,t50!;E
2ta

0 ~t1ta!2(12a)

@121/atx1/a#11a
dt

;E
2ta

0

~t1ta!2(12a) dt

5ta
a . ~49!

Thus, in this condition we have

c ta
~ t !u ta!t;

ta
a

t11a
. ~50!

Let us note that Eqs.~48! and ~50! correctly reproduce the
behavior predicted by Ref.@18# in the corresponding limits
by means of the formula

c ta
~ t !;

sin~ap!

p

ta
a

ta~ t1ta!
, ~51!

where a[1/(z21). In conclusion, our way of proceedin
fits the conclusions of Barkai@18#. As earlier pointed out, in
the conditionm,2 the Onsager principle is always violate
This is expected, since it is known@23# that the nonstationary
condition m,2 is incompatible with the existence of th
stationary correlation functionFj(t).
05612
e

V. THE STATIONARY MASTER EQUATION

In this section we prove that the GME can be ma
equivalent to the CTRW, with no restriction to the Poiss
statistics, if we set the stationary condition in both of the
The deep difference between stationary and nonstation
condition has been discussed years ago by Zumofen
Klafter in two pioneering papers@25,26#. This means that we
have to compare the GME of Eq.~1! to the stationary CTRW,
which yields

p̂~u!5S Ĉ`~u!I 1
ĉ`~u!Ĉ~u!M

12ĉ~u!M
D p~0!, ~52!

where, according to the stationary prescription@27#,

c`~ t !5
1

^t&Et

`

dt8c~ t8!, ~53!

as also explained in Sec. IV A, and̂t& is used again to
denote the mean waiting time of the distribution dens
c(t). For M we make the same choice as in Eq.~7!. For
calculation convenience, we adopt forK the more genera
symmetric form

K5S x y

y zD . ~54!

From Eq.~1! we get

p̂~u!5
1

uI1F̂~u!K
p~0!. ~55!

By equating Eqs.~55! and ~52! we derive

1

uI1F̂~u!K
5Ĉ`~u!I 1ĉ`~u!Ĉ~u!M (

n50

`

ĉ~u!nMn.

~56!

By multiplying both sides byuI1F̂(u)K and using the
propertiesM2n5I andM2n115M , we obtain

I 5Ĉ`~u!@uI1F̂~u!K#

1ĉ`~u!Ĉ~u!S u

12ĉ~u!2
M1

F̂~u!

12ĉ~u!2
MK

1
ĉ~u!u

12ĉ~u!2
I 1

ĉ~u!F̂~u!

12ĉ~u!2
K D . ~57!

With some algebra we extract from Eq.~57! the following set
of equations forx, y, andz:
3-8
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15Ĉ`~u!@u1F̂~u!x#1ĉ`~u!Ĉ~u!S F̂~u!

12ĉ~u!2
y

1
ĉ~u!u

12ĉ~u!2
1

ĉ~u!F̂~u!

12ĉ~u!2
xD ,

05Ĉ`~u!F̂~u!y1ĉ`~u!Ĉ~u!S F̂~u!

12ĉ~u!2
z1

u

12ĉ~u!2

1
ĉ~u!F̂~u!

12ĉ~u!2
yD ,

05Ĉ`~u!F̂~u!y1ĉ`~u!Ĉ~u!S F̂~u!

12ĉ~u!2
x1

u

12ĉ~u!2

1
ĉ~u!F̂~u!

12ĉ~u!2
yD ,

15Ĉ`~u!@u1F̂~u!z#1ĉ`~u!Ĉ~u!S F̂~u!

12ĉ~u!2
y

1
ĉ~u!u

12ĉ~u!2
1

ĉ~u!F̂~u!

12ĉ~u!2
zD .

The solution of this set of equations is given byx5z,y5
2x and

x5
u@12ĉ~u!#

F̂~u!@221u^t&1~21u^t&!ĉ~u!#
. ~58!

So, the GME and the stationary CTRW are compatible iK
has the same form as that of Eq.~8! and

F̂~u!5
u~12ĉ~u!!

@221u^t&1~21u^t&!ĉ~u!#
. ~59!

Using the Onsager’s principle in the form of Eq.~12! and
consequently the time convoluted equation of Eq.~13!, we
obtain

F̂j~u!5
1

u12F̂~u!
. ~60!

Finally, using forF̂(u) the expression of Eq.~59! and for

F̂j(u) the expression afforded by the renewal theory, we
an identity in ĉ(u) ~the Laplace transform of the waiting
time distribution density!. This means that the aged CTRW
totally equivalent to the GME with the memory kernel give
by Eq. ~59!.
05612
t

VI. CONCLUDING REMARKS

This paper affords a significant contribution to unde
standing the role of aging in systems departing from Pois
statistics. The Onsager regression principle rests on the
ond principle of thermodynamics, and it applies to aged s
tems. However, non-Poisson statistics might imply a v
slow regression to equilibrium, so as to create conditio
correctly depicted by the Montroll-Weiss CTRW, but incom
patible with the Onsager regression postulate. This migh
a condition different from the out of equilibrium thermody
namics, and represents instead a state of matter interme
between the dynamic and the thermodynamic condition. T
new condition has been recently proposed to explain
emergency of life on earth and has been denoted with
appealing term ofliving state of matter@24#.

The master equation of Sec. V corresponds to the a
systems where the Onsager principle holds true. T
Montroll-Weiss CTRW and the corresponding master eq
tion refer to the dynamics of a young system. From a te
nical point of view one might wonder if it is possible t
produce a master equation, or a CTRW, reflecting corre
the process of aging. The young and the old sequence re
two different initial conditions of the system. The young co
dition and the slow process of regression to equilibrium
incompatible with the existence of a stationary correlat
function.

Eventually, the system will settle at equilibrium. How
ever, to establish, at least ideally, the validity of the Onsa
regression principle, we have to set some suitable ou
equilibrium initial conditions. If we do select initial condi
tions that do not fit the stationary prescription@25,26#, the
correlation functionFj(t) cannot be defined, and cons
quently we are forced to determine the memory kernel of
GME of Eq. ~1! using the nonstationary prescription of E
~9!. Nevertheless, this equation will produce an exact ti
evolution. Let p(0) evolve in time till it reaches the new
condition p(T). If we adopt this as a new initial condition
namely we set the new origin of time att5T, and we apply
again Eq.~1! to predict the ensuing time evolution, we get
wrong prediction. In fact, the GME equivalent to the CTR
of Montroll and Weiss is not abona fidemaster equation
@14#. We should build up a new GME equation with th
distribution of the first jumps given byc ta52T(t). If, on the
contrary, we select an initial out of equilibrium condition,
done in Sec. III, which is compatible with the bath being
equilibrium, then the Onsager principle is fulfilled, the GM
with the kernel of Eq.~59! is abona fidemaster equation and
can be used with any kind of initial conditions concerningp.

To derive the results here illustrated, we significantly be
efitted from the important work of Refs.@13,18#. However,
we want to point out that the material derivative of Ref.@13#,
although more advantageous than the GME to study the
fluence of an external force field, is equivalent to the GM
of Ref. @7#, with the condition of Eq.~6! rather than the
stationary condition of Eq.~59!, and, consequently, as prove
in this paper, it violates the Onsager principle. As to the wo
of Barkai on aging@18#, we would like to note that it is
confined to the casem,2, a condition incompatible with the
3-9
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stationary master equation found in this paper, namely
master equation with the memory kernel of Eq.~59!. Barkai
reaches the conclusion that the aging effect form.2 is
‘‘confined to a certain time window.’’ We think that this pa
per has the effect of suggesting the plausible conjecture
actually this time window is of infinite size. Let us see wh
We notice that in a sense the memory kernel of Eq.~59!
affords a way to measure the aging process. In fact, if
waiting-time distribution densityc(t) is exponential, the
memory kernel is equivalent to that produced by a bath
would regress to equilibrium instantaneously, with no ag
effect. In the case ofm,` we have a memory lasting for
ever. This is evident whenm,3, since in this case the adop
tion of Eq. ~59! proves that the Laplace transform of th

memory kernel,F̂(u), tends to vanish foru→0.
Apparently, the conditionm.3 seems to be compatibl

with the Markov approximation, given the fact that in th

case,F̂(u) tends to a finite value foru tending to 0. We note
that, while the analytical expression ofF(t) is at the mo-
ment not yet known to us, the analytical form ofFj(t) is
under our total control, and it is an inverse power law w
index b5m22. The free diffusion process resulting fro
the fluctuations ofj(t) is known. The pioneering work o
Ref. @17# proves that even in the casem.3 the Gaussian
condition is not exactly realized. The central part of the d
fusion probability density function is the ordinary Gaussi
diffusion, but at large distances slow tails with an inver
power law appear. These tails become weaker and we
upon increase ofm and might be annihilated by even wea
external fluctuations, with the ensuing annihilation of agin
However, there are deep physical motivations to fully und
stand the theoretical issues generated by the aging proce
relevant example of this theoretical request is given by
physics of glassy systems, which are characterized by a
and consequently by a violation of the ordinary fluctuatio
dissipation condition, which is intimately related to the v
lidity of the Onsager principle@28#. In other words, we have
to do further research work to understand how robust
non-Poisson nature ofc(t) is, and to establish the intensit
of environmental fluctuations that are expected to produc
truncation of the inverse power law nature ofc(t). This can
be done along the lines of Ref.@29#. This research work can
be carried at a much deeper level, as a consequence o
fundamental result of Eq.~59!. In fact, this equation define
the memory kernelF(t) of the GME, in terms of the waiting
function c(t). We assume that the functionc(t) can be de-
rived from the experimental observation as in the case of
blinking quantum dots of Ref.@27#. Thus, with the help of
Eq. ~59! we can draw from the experimental functionc(t)
information on the bath responsible for the intermittent ch
acter of the process under study. This information will he
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the foundation of a dynamic model, and consequently w
make it possible to discuss the robustness against nois
the intermittent process under study, from a perspective m
realistic than in the earlier work of Ref.@29#.

Let us summarize the main results of this paper. The fu
tions F(t) and c(t) are the main mathematical propertie
behind the GME and CTRW, respectively, the former affo
ing indications of the complex dynamics of the irreleva
variables and the latter illustrating the nature of the interm
tent process that can be observed as a result of a sp
experimental detection@27#. The deviation ofc(t) from the
exponential condition is equivalent to forcingF(t) to depart
dramatically from the white noise condition. The no
Poisson nature ofc(t) generates memory infinitely extende
in time, and aging with no finite time scale as well, no mat
how big the scaling parameterm, provided thatm,`. In
fact, if a finite time scale for both aging and memory existe
at a much larger time scale, the functionF(t) would be
equivalent to ad of Dirac, the bath fluctuations would b
white noise, the bath would be at equilibrium, and, of cour
c(t) would be exponential. This is equivalent to proving th
the nonexponential nature ofc(t) yields aging effects tha
are not limited to the nonstationary casem,2, even if in this
case these aging effects seem to be more natural. The co
tion m.2 is compatible with the stationary condition. How
ever, a bath generating this condition, through the key re
of Eq. ~59!, is characterized by dynamic properties wi
memory infinitely extended in time. From a formal point
view, the main result of this paper is illustrated by the co
parison between Eqs.~9! and ~59! and by the comparison
between Eqs.~59! and ~60!. Equation~9!, which is the rela-
tion between GME and the CTRW established by the auth
of Ref. @7#, refers to a nonstationary condition. Equatio
~59!, the most important result of this paper, relates
memory kernel of the GME to the stationary CTRW. Th
comparison between Eqs.~59! and ~60! affords another way
of illustrating the same key result. In fact, these two eq
tions are made equivalent by the wise choice of the stat
ary version of CTRW, which is compatible with the existen
of the stationary correlation functionFj(t) and with Eq.
~15!, namely, with the relation between correlation functi
and waiting-time distribution density. This is the physic
condition making the Onsager postulate correct, and, thro
it, ensuring the possibility itself of establishing a comple
equivalence between CTRW and GME.
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