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Generalized master equation via aging continuous-time random walks
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We discuss the problem of the equivalence between continuous-time randorfGV&K/) and generalized
master equatioflGME). The walker, making instantaneous jumps from one site of the lattice to another, resides
in each site for extended times. The sojourn times have a distribution def{sjtythat is assumed to be an
inverse power law with the power indgx We assume that the Onsager principle is fulfilled, and we use this
assumption to establish a complete equivalence between GME and the Montroll-Weiss CTRW. We prove that
this equivalence is confined to the case whei¢) is an exponential. We argue that is so because the
Montroll-Weiss CTRW, as recently proved by BarKa&. Barkai, Phys. Rev. Let90, 104101(2003], is
nonstationary, thereby implying aging, while the Onsager principle is valid only in the case of fully aged
systems. The case of a Poisson distribution of sojourn times is the only one with no aging associated to it, and
consequently with no need to establish special initial conditions to fulfill the Onsager principle. We consider
the case of a dichotomous fluctuation, and we prove that the Onsager principle is fulfilled for any form of
regression to equilibrium provided that the stationary condition holds true. We set the stationary condition on
both the CTRW and the GME, thereby creating a condition of total equivalence, regardless of the nature of the
waiting-time distribution. As a consequence of this procedure we create a GME thdtoisaafidemaster
equation, in spite of being non-Markov. We note that the memory kernel of the GME affords information on
the interaction between system of interest and its bath. The Poisson case yields a bath with infinitely fast
fluctuations. We argue that departing from the Poisson form has the effect of creating a condition of infinite
memory and that these results might be useful to shed light on the problem of how to unravel non-Markov
guantum master equations.
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[. INTRODUCTION fact, in the specific case where the bath is responsible for
fluctuations that can be assumed to be white, the regression
The Onsager principl¢l] is one of the basic tenets of to equilibrium of the bath is instantaneous.
statistical mechanics insofar as it establishes a connection The Onsager principle refers to a variable of interest
between a property of equilibrium, the correlation functionwhose dynamics are made stochastic by the interaction with
of a given variableA, and the regression to equilibrium of a a bath. Thus, when we discuss the process of regression to
macroscopic signal. For this reason, we judge the Onsagequilibrium, we have to specify if we are referring to the
principle to be a fundamental step for the connection besystem of interest or to its bath. As earlier said, if we adopt
tween dynamics and thermodynamics. It is important tathe white noise approximation to describe the fluctuations
stress, as clearly stated by Onsager himddlfthat this prin-  that are responsible for the erratic motion of the variable of
ciple holds true for aged systems, namely, systems in contaatterest, the regression to equilibrium of the reservoir is vir-
with heat reservoirs that are supposed to be in a condition dfially instantaneous, thereby ensuring the validity of the On-
thermal equilibrium. A heat reservoir is a Hamiltonian sys-sager principle with no need of adopting special initial con-
tem with infinitely many degrees of freedom. In the ordinaryditions. The variable of interest is characterized by a
treatments this means a system equivalent to an ideal thermstationary correlation functiond® A(t;,t5)=(A(t1)A(t,)),
source. Here we do not specify the nature of this system, anathich only depends oft; —t,|. The stochastic behavior of
we try to imagine its properties on the basis of the effectghe variable of interest is caused by the interaction between
produced on the system of interest under study. These progystem of interest and bath, and this kind of process is often
erties suggest that this system is the source of fluctuationstudied by means of the master equation method. A popular
with unusually extended time correlation. Nevertheless, fomethod to derive the master equation is the projection
simplicity, we shall keep imagining it as a heat reservoir andmethod by Zwanzid2]. However, this method is easy and
for the sake of concision, we shall refer to it laath convenient to use, when special initial conditions can be
If the regression to equilibrium of the system of interest isadopted, with the total distribution expressed as the product
very fast, it is not so important to ensure the equilibriumof the relevant, or reduced distribution, and of the bath dis-
condition of the bath, at the moment when we begin measurtribution [3].
ing the regression to equilibrium of the system of interest. In  These special initial conditions have the beneficial effect

1063-651X/2003/66)/05612311)/$20.00 68 056123-1 ©2003 The American Physical Society



ALLEGRINI et al. PHYSICAL REVIEW E 68, 056123 (2003

of annihilating the inhomogeneous term that makes the resigned. We address a problem that is closely related to that
duced equation of motion explicitly dependent on the initialrecently discussed by Sokolov and MetZl&8], the connec-
condition[3]. If no initial condition of this kind is adopted, tion between the CTRW and a two-state non-Markov master
we have to consider also the inhomogeneous term and weguation. The focus of the present paper is on making the
have to wait a time comparable to the bath relaxation timéSME compatible with the stationary condition, and we do
for this term to disappear. This suggests that a non-Marko{ot deal yet with the interesting issue of Rgf3], of the
master equation with the same structure as the Zwanzig magonnection with fractional calculus. . _
ter equation, with no inhomogeneous term, does not neces- | "€ Onsager principle is a property that makes it possible
sarily refer to a stationary condition. We hope that the result£0r Us to derive the correlation function from the GME. If we
of this paper might afford useful suggestions on how to mak&€t @ condition of total equivalence between the GME and
a master equation, with no inhomogeneous term compatib/’®¢ CTRW, we find the apparently disconcerting result that
with the stationary condition. only Fhe Poisson statistics is _compat_lbl_e Wl.th the equivalence
In the past few years there has been a growing interest fgrondition. The reason for this restriction is (_jug to the fact
the formalism of continuous-time random waRTRW) [4], that the departyre from the Poisson s_tatlstlcs 'genergtes
because of its close connection with the adoption of fracmemory properties that make the GME incompatible with
tional operators that, in turn, are revealing a powerful tool toth€ Markov approximation. This means that the structure of
describe cooperative processes in condensed ni&ite®n the _GME is dlctated_by the |n|_t|al condmon: If this is not
the other hand, the connection between the master equatiGt@tionary, the resulting GME is not teona fidetransport
formalism and the CTRW walk has been discussed over thgduation[14]. On the other hand, if the waiting-time distri-
years, beginning with the pioneering work of RE8). Ac- bution ¢(t) is not exponential, there are aging gffects. This
cording to the CTRW, the walker traveling through a one-means that we have to leave the s.ysfcem age till it reaches .the
dimensional path alternates quiescent states to abrupt af@ndition where the Onsager principle holds true. In this
instantaneous jumps from one site to another of this patHEondition itis possible to establishtmna fideGME. We do
The distribution density of sojourn times, assumed to be init: @nd in doing so we establish a complete equivalence be-
dependent of the walker position, is denoted by the functiofween CTRW and GME. At the same time, we prove that the
#(t). The pioneering work of Ref6] proves that the Mar- transition from the Poisson to the non-Poisson statistics has

kov master equation is compatible with the CTRW(t) is the effect of creatin.g a memory con(_jitior) in_compatible with
a Poisson distribution. the Markov approximation, at least in principle. In fact, the

The results of the pioneering work of Ré6] raise the ~Markov approximation, as we shall see, means that the bath
important issue of the connection between CTRW, with nonIS infinitely fast, and this condition, in turn, is proven to force
Poissony(t), and a non-Markov master equation. Appar- the waiting-time dlstr|but|onz//(_t_) to bg exponen'ual. _Th|s
ently, this important problem is solved by adopting the non-Means that the Markov condition is incompatible with the
Markov master equation proposed by the authors of Faf. non-Poisson nature of the waiting-time distribution.

We consider this theoretical tool to be very important, and
we denote with the term generalized master equdtZviE) Il. THE POISSON CASE AND THE ONSAGER PRINCIPLE

all transport equations with the same structure. Recently the : : :
. ; In this section we address the problem of the equivalence
GME has been discussed by MetZI8 who argued that this between the Montroll and Weiss CTRW and the GME. We

theuarlglc;rt]etén'f'r%%I]anc'[(')c;nﬁlecglcgil\lljasleanncde %Esvvg'ex\/%&dgrgﬁéo beyond the results of the work of R¢T] insofar as we
P q et also the condition of extending the equivalence so that

CTRW. both theoretical tools yields the same stationary correlation

We want to stress that another reason .Of Interest of th nction. Let us express the GME under the following con-
GME of Kenkre, Montroll, and Shlesinger is that it is for- fcise form:

mally identical to the master equation that the authors of Ref.

[9] derived from a quantum mechanical tight-binding model, d t

with an erratic distribution of energy sites. The calculation ap(t)= —f O (t—t")Kp(t")dt’, (1)

was done along the lines established by Zwaf2igusing a 0

projection operator similar to that used by Kenkre in an ear—Wherep is them-dimensional population vector of sites,K

lier work [10]. This means that in principle understanding the - . ) ’

connection between a master equation and CTRW migrﬁ transition matrlx_bgtween the sites, aﬁdt) the memory
. e A ernel. The prescription of the CTRW] yields

contribute to shedding light on the intriguing issue of unrav-

elling quantum mechanical master equations. This problem o

becomes challenging in the case of non-Markov processes. p(t)=> f dt’ ¢, (1) ¥ (t—t")M"p(0). 2)

For some very recent references on this issue, we refer the n=0 Jo

reader to Refs[11,12. The purpose of this paper is not so ) - )

ambitious as to afford direct contributions to the settlemenfNote thaty;,(t) is the probability than jumps occurred and

of this problem. However, we focus our attention on the caséhat the last took place at tinte=t’. This means that

of a two-site system that seems to be closer to the problem of .

d_epoherence of q_—blt than to the random walk over an in- lﬁn(t):J I 1(t—t ) gy (1At 3

finite path for which the CTRW theory was originally de- 0
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with T(r=1)

YO =(u—1) ,
do(t) = 5(1). ) SR TRV

(10

The symbolM denotes the transition matrix. Thus, the vectorW'th p>1. T_he P0|sson_ case _cor_responds to the I_|m|t|ng
case ofu tending to=. This function is properly normalized.

Mp denotes the population vector immediately after the oc-H | hat its f d d ish
currence of a jump event. The functitin(t) is the probabil- owever, let us note that its first and second moments vanis

ity that no jump occurs in the time intervalnamely, for u<2 andu<3, r_espectively. Th_is assigns_ to the values
m=2 and u=3 an important physical meaning. When
w >2, and consequently, the first momentyg(t) is finite, the
\If(t)zf Y (t')dt’. (5)  stationary condition is possiblgl5,16. In the stationary
t condition the correlation function of the fluctuatig(t), de-

) . ) ) noted with the symboflb .(t), exists and its asymptotic form
It is evident that the time convolution structure of both Egs.ig

(1) and (2) makes it straightforward to derive in both cases
the Laplace transform gi(t). Furthermore, Eq43) and(5)
make it possible to express the Laplace transformp(of, in D () (=1~ —. (11
the second case, in terms of the functigf(t) only. This e
function is the earlier mentioned waiting-time distribution,
and from now on it will be denoted with the symba(t).

By comparing the Laplace transform of the GME to the
Laplace transform of the CTRW we get

Thus the transition fromu<2 to u>2 corresponds to the
transition from a condition incompatible with the stationary
condition, and with the existence itself of the correlation
function @ (t), to a condition compatible with the existence
- of both of them. The transition from <3 to x> 3 is usually
- ug(u) M-I - .
d(u)= A , (6) regarded as the transition from the regime of anomalou_s to
1-4(u) K that of ordinary statistical mechanics. We shall see that this is
not quite true, since the departure from the Poisson condi-
wherel is the unity operator. We limit our discussion in this tion, namelyu <, is enough to generate infinite memory.

paper to the two-state case, where However, the physical effects of this condition become espe-
cially evident in the casg <3, thereby making.= 3 to be,
0 1 in practice, the border between normal and anomalous statis-
M=/ 0) (7)  tical mechanics.
It is now the right time to use the Onsager principle. We

set the Onsager principle in the form

and

B (1) = p1(t) —pa(t)

1 -1 P1(0)—p2(0)”
K=l -1 1/ (8) -
wherep,(t) and p,(t) are the probabilities for the random
walker to be, at time, in the first and second state, respec-
thereby turning Eq(6) into tively. In his original work Onsager referred himself to the
case of a macroscopic fluctuation that is supposed to regress
5 to the vanishing equilibrium value through a phenomenologi-
uyg(u) . . . X .
=7 9) cal equation of motion. We realize this macroscopic fluctua-
1—y(u) tion selecting a large numbéf of walkers, divided into two
groups, withN; and N, walkers belonging to the first and
We note that the two-state master equation studied in thisecond state, respectively. Then we relate this choice to the
paper has to be related to the two-site CTRW. If we assigmprobabilitiesp;(t) and p,(t), by settingp;=N;/N andp,
the valueW to the right, and the value-W to the left site, =N,/N. The regression to equilibrium of this macroscopic
and we adopt a discrete time representation, the motion dfuctuation does not fit any phenomenological law. For this
the random walker corresponds to a symbolic seteason, we can refer ourselves to EtR) as a generalized
quence {&}, with the form {WWWWWWWWW-W  version of the Onsager principle. We plan to derive the math-
-W-WWWWWWWW-W-W-W-W-W-W...} ematical expression of the law of regression to equilibrium
which shows a significant time persistence of both statedfrom the use of this generalized version of the Onsager’s

(12

d(u)

The waiting-time distributiony(t) is the distribution of the regression principle, which, as shown in Sec. lll, is exact in
patches filled with eithe?W’s or —W's. We assume a sym- the dichotomous case. Due to its nature, the GME affords
metric condition. information only onp,(t) andp,(t). There is no direct in-

For the sake of clarity, it is convenient to make the readeformation on the correlation functio®(t), and the only
know that in this paper we shall deal with waiting-time dis- possible way to get this information is through the Onsager’s
tribution densities with the following form: principle, which, as shown by E¢L2), implies that an initial
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Zumofen and Klafte{17] explained with clear physical

Then, the regression to equilibrium is expected to take placarguments the connection betweéiit) and *(t). They
in such a way as to establish a connection with the correlaprove that their Laplace transforms are related to one another

tion function in the form of Eq(12). This assumption, ap-
plied to Eq.(1), yields

d t ! ! !
a<1>§(t)=—2joo|t D (t—t)D(L). (13)

This equation is the non-Markov counterpart of the phenomygtveen the Laplace transform df

enological regression to equilibrium of the original work of
Onsager[1]. Using the time convoluted expression of Eq.
(13) and the central result of E¢9), we establish a connec-
tion between the correlation functish(t) and the waiting-
time distribution density4(t), through their Laplace trans-
forms, as follows:

®(u)

o
oo 25
[1—(u)]

(14

by

2,\

1+ g(u) 0
Using Egs.(16) and (17) we derive a further connection
«(t) and the Laplace
transform ofy(t). In fact, by Laplace transforming E¢L6)
and using Eq.(17), we derive a new expression for the
Laplace transform ofb(t). By equating this new expres-
sion to that of Eq.(14), we find, after some algebra, the
following form for the Laplace transform af(t):

On the other hand, the correlation function is connected taJsing Eq.(15) we prove that
(1) through properties established by the renewal theory

[15]. To properly establish this connection, we have to no-

tice, with Zumofen and Klaftef17], that it is convenient to

introduce another type of waiting-time distribution density

that we cally* (t). What is the connection betweeift) and
J* (1) ? The waiting-time distribution density(t) is the ex-

perimental waiting-time distribution. It could be evaluated

experimentally observing the sequend@, and recording
the time length of the laminar regions occupied onlyWdyr

by —W. However, we can imagine that a theoretical waiting-

time distribution density exists, denoted B (t), and that
the sequencé(t) is obtained as follows. We select randomly
a numbert; from the waiting-time distribution density

J* (1). We toss a coin, and assign to the first laminar region,

of lengtht,, the symbolW or —W, according to the coin-

tossing prescription. At the end of this laminar region, first

1
o
p(u)= (18)
u-+ 64'5(1)%(0)
o 1
¢ .(0)=— o (19

This equation allows us to write E¢L8) under the form

N 1 1
l//(U)Zm—-

o+ 505

This means tha#/(t) is exponential and the explicit forms of
(1) and D (t) are given by
Y
_ zt)

(20)

p(t)= %exp( (21)

we select, again from the waiting-time distribution densityand

¢* (1), a numbett,. This is the length of the second laminar

P (1) =exp(— 1), (22

region. We toss the coin again to decide the sign of it. It is

evident that there is 50% probability of getting the same sign .
. . X . spectively.

as the earlier laminar region. We proceed in the same Wag/e This is the first result of this paper. It is to some extent

with the length and the sign of third laminar region, and so paper.

: disconcerting since it seems to restrict the complete equiva-
on. We adopt this rule to create thg seque{ﬁe)}. Thus, lence between GME and CTRW to the exponential case, with
from the renewal theorf/15] we obtain the following impor-

. the effect of making the GME useless, since in the exponen-
tant result: , . )
tial case, it turns out to be an ordinary, memory less, master
equation. We want to notice that Sokolov and MetZIE3]
have recently discussed the derivation of a fractional trans-
port equation totally equivalent to the CTRW. However, they
did not discuss the intimately related problem of the equiva-

where(t) is the mean waiting time of thg™ (t)-distribution lence between CTRW and GME, which is the main goal of
density. It is interesting to notice that this equation meang, present paper '

that the second derivative of the correlation function is pro- The second result of this paper is even more important

portional toy* (1), than the first. This is the discovery of a GME that is equiva-
lent to the CTRW, with no restriction to the Poisson case.
This second important result will be illustrated in Sec. V. To
derive this important result we have to mention a fact re-

1 ” ! * ! !
‘Dé*“)szt (t'—Oy* (t")dt’, (19

d? P* (1)

E@g(t)zw. (16)
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cently observed by Barkail8]: the Montroll-Weiss CTRW define two distinct averages for the two groups, denoted by
refers to a nonstationary condition. This means that Onsag- ). and(-)_, respectively. Of course, we have that

er's regression principle is invalidated. Therefore, we shall

conclude that the disconcerting result of this section is due to (=P ) +P_()-, (24)

the fact that the case of Poisson statistics is the only one
where aging does not exist. At this stage, this is only a conWit
jecture. We can notice, however, that this is a plausible con-
jecture. In fact, the exponential condition of EQ1) when

applied to Eq.(9) makes®(u) independent ol, thereby Although it is not essential for the main goal of this paper,
implying that the memory kerneb(t) has a vanishing life- we make our discussion as general as possible. Thus, we do
time. This means that the fluctuations of the variaplake  not assume the two probabilities to be equal. We do not rule
place while its bath is always at equilibrium. out that a bias might exist, given by

P.+P =1 (25)

P,—P_=c. (26)
IIl. ONSAGER’S REGRESSION FOR DICHOTOMOUS
SIGNALS Thus both kinds of ensembles yield the same mean value of
Hwe variable&(t), which is denoted by us with the symbol

the waiting-time distribution density/(t), to ensure the (€), this value being &) =c. In the ergodic, and stationary,

equivalence between the master equation and the CTRW, hfgndition_that we are as_symingl, the stationary autocorrela-

been based on the assumption that the Onsager principle 19N function exists, and it is defined as

valid. The fact that the equivalence between CTRW and

GME is restricted only to the Poisson case, and so to the case D (t)= ((€(0) = (N EM —(£))) _ <§(O)§(t))—c2.

of ordinary master equation, might generate the false impres- (£2)—(&)? 1-c?

sion that the Onsager principle is valid only in the Poisson (27

case. It is not so. It is already knovh9] that in the case of

Gaussian statistics the Onsager’s regression hypothesis is exxpressing the total average in terms of the averages over the

act, and it holds true for initial excitation of any intensity. In two groups, according to the prescription of H@4), we

this section, having in mind the two-state master equationiake Eq.(27) become

we focus our attention on the case of dichotomous statistics.

In the dichotomous case, we show that the Onsager’s regres- . (D&Y +((—DEt)) - —c?

sion hypothesis turns out to be exact again, for initial depar- d)= 1—¢2

tures from equilibrium of whatsoever intensity, and with any

type of relaxation process, with an exponential form, and (E(1)) ;. —(E(1))y_—c?

with an inverse power law form as well, provided that the = > .

system is ergodic. In short, in this section we prove that in 1-c

the dichotomous case the Onsager regression principle hol _

true provided that the system is ergodic. ﬁ}fﬁ:?er:hi f% Tlotvk\]/g' same token the prope(t)=c can be
The ergodic property implies that we can create a Gibbs ’

ensemble in two diﬁgrent, bu; equivalent, ways. The firs.t PL(&).+P_(&)_=c. (29)

refers to the original idea of Gibbs, that the same system is

repeated infinitely many times. This means that we have t\e also note that

generate infinitely many sequences using the same physical

We note that the constraint posed in the earlier section o

(28)

prescription. The second way is based on the adoption of c+1

only one sequence, denoted &), which is supposed to be Pi=——- (30
infinitely long. Then we define a generic trajecta#{?(t)

with the following prescription: Using Egs.(29) and(30) we express the correlation function

of Eq. (28) as follows:
() =¢(t+s). (23)
2P+<§>+_C_C2_ (&)4(c+1)—c(c+l)
In the practical case of a numerical treatment, time is dis- 1—c? 1—c? '
crete, time unity being, for instanceés=1. In this case the (3D
superscripss is an integer number.

We denote byP, andP_ the probability that the variable Finally, by dividing both numerator and denominator of the
¢ gets the valuesV and — W, respectively. These probabili- ratio corresponding to the last term of E§1) by 1+c, we
ties are frequencies that can be evaluated using either the firgptain
or the second ensemble of sequences. We divide our en-
semble of sequences into two groups, characterized by the D (1)= (&) —c
initial condition £(0)=1, and&(0)=—1, respectively. We ¢ l1-c °

q)g(t):

(32
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Equation(32) can be interpreted as follows. The group of bution density depends dg. The naive conviction that the
trajectories corresponding to the conditi§(0)=1 can be waiting-time distribution density is given hy(t), actually is
thought of as a way of creating an out of equilibrium condi-based on the assumption thigt= 0. This means, in fact, that
tion (&), . This out of equilibrium condition undergoes a we are considering a set of random walkers and that at time
process of regression to equilibrium that is proportional tot=0 all of them begin their sojourn in the laminar region.
the equilibrium correlation function. Using ER9), we can  This leads immediately tahy_—o(t) =e4(t). It is straightfor-
express the correlation function in terms @), and we  ward to evaluate also the distribution density of sojourn
reach the same conclusion. It is evident that the same CoRimes corresponding th,= — . We denote this distribution
clusion would be reached using an arbitrary mixturg £f, density with the symboly..(t).
and(¢)_, departing from the vanishing equilibrium value.  Thjs is the stationary case, corresponding to the following
In conclusion, the Onsager’s regression principle is fulfilled.procedure. In the stationary condition, the probability of se-
We notice that the waiting-time distribution densities thatjecting a laminar zone of length, by a random choice, is
we are cpnsidering in t.his paper hgve an inyerse power |aV(’T/(T))¢(T)dT, where(7) is the mean length of a laminar
nature with the power index. If this power index fits the  zone. The probability density of observing the first change of
condition u>2 the ergodic condition is ensured. We shall aminar phase after a time being in a laminar zone of
focus our attention on this condition, and we shall prove thajengthT, is @ (T—t)(1/T). Consequently, for the probability
we can make the CTRW compatible with the GME if we setdensity of having the first change of laminar phase at time
the constraint that the system is aged enough as to make thes 4 ()], we have, integrating over all possible
Onsager principle valid. As we shall see, this means the
adoption of a form of CTRW different from that of Montroll 1 (= 1 1 (=
and Weiss[4], which corresponds to a condition very far ~ ¥-=(t)= mfo dT Ty(T) $O(T-t)= mft dT¢(T).
from the stationary state. It is evident that the ergodic con- (33)
dition might become hard to fulfill in practice, with relax-

ation processes described by inverse power laws. This is in Note that due to the renewal theory, the distribution den-

fact the case where aging becomes important. sity ..(t) concerns only the time that we have to wait to
detect the first event. After the first event we have a total
IV. AGING IN RENEWAL PROCESSES rejuvenation. In fact, measuring the time at the moment of

the first jump is equivalent to beginning the measurement
In Sec. Il we found that the GME and the CTRW are process at the precise moment when the walker enters the
equivalent only in the Poisson case. Since the use of theaminar region. As a result of these arguments, the Laplace
Onsager’s regression assumption is the key ingredient usahnsform ofp(t) is given by
to establish this equivalence, we might be tempted to con-

clude that the Onsager principle does not hold true in the R . f/rw(u)\if(u)M
non-Poisson case. In Sec. lll, we found that it is not so, and p(u)y={ ¥ (uwl+ = p(0). (34
that the Onsager principle is valid, provided that 2. Here 1-y(u)M

we shall prove that also in the cage-2 there are significant This result is derived from Ed2) as follows. First of all, we

aging effects, in spite of the fact that the conditiep-2 is .
compatible with the stationary state. If the CTRW used doe§ valuate the Laplace transform of H@). We obtain

not refer to the stationarjaged condition, it cannot be com- N - - R - o

patible with the Onsager regression principle. The problem P(W=[¥(u)+¥(u)g(u)M+¥(u)§“M=+ - --]p(0)

of aging within the context of intermittent processes has been o \if(u)

discussed recently in a very attractive paper by Bark&]. _q VI _

The work of Barkai focuses on the conditipn<2, where \P(u)go (¥M)"p(0) 1—J(u)M P(0).

no invariant measure exists, and consequently, it is impos-

sible to realize conditions compatible with the Onsager reThen, we replace the probability of occurrence, or of non-
gression principle. In Sec. IV A, using the renewal theoryoccurrence, of the first event, calleqt) and ¥ (t), respec-
[16], we shall study the case>2, and we shall discuss two tively, with the corresponding aged quantities. These are
limiting conditions, corresponding to the birth and the deathcalled ..(t) andW¥(t), respectively. The functiog,(t) is

of the system, respectively. It is interesting to remark thaigiven by Eq.(33) and the function¥ . (t) is given by

death, meaning an ordinary thermodynamical condition,

takes place eventually at the end of an infinitely long aging T N ey
process. V. ()= t Uo(1)dt’. (35)

All this yields Eq.(34).

) . ) We expect that the inverse Laplace transform of €G§)
First of all, we should define, as Barkai ddds,20,21, s a function oft that asymptotically will become equivalent
the waiting-time distribution density, (t). This means that o the asymptotic value of the inverse Laplace transform of

we establish non-stationary conditions at titge0, and we  Eq. (34). What about the Onsager prescription of E)? If
begin our observation at time=0. The waiting-time distri- we adopt the GME corresponding to the young condition, the

A. Young and aged systems
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adoption of Eq(12) would be equivalent, as far as the left- done in Ref[22], we discuss the equation of motion for the
hand side of this equation is concerned, to adopting the norprobability densityp(x,t). This is given by

stationary condition. We have to remark, in fact, that the

GME corresponding to the Montroll-Weiss CTRW is not a 5 5

bona fidemaster equation. The importance ofbana fide 9 R

transport equation has been pointed out in a remarkable pa- atp(x’t)_ ax[)\x POGO]H+C(). (41)
per by Fox[14]. A master equation is &ona fidemaster

equation when it can be used with any initial condititike ) ) S o

the bona fideFokker-Planck equation of RdfL4]). The mas- '_I'he time evolutlo_n of the distribution function is de-
ter equation of Sec. Ill, on the contrary, implies the choice ofScribed by the following formula:

only one initial condition.

t
B. A theory for systems of any age p(X,t)zf C(7+ty) dr 42)

_ _ a1+«
The purpose of this section is to shed further light into the ta[ 1+ Ler(t=7)x7]

aging problem, and into the ensuing conflict with the On-

sager postulate. At the same time we shall derive an exprégyhere we have used the following new parameter:
sion for the distribution density of the first exit times valid

for any age, and not only fot,=0 andt,=—«, which

denote observation taking place at the moment of birth and 1

death of the dynamic process under study, respectively. This a= m

discussion is based on the following dynamic model. A vari-

able x moves in the interval =[0,1] according to the fol-

lowing prescription We have assumed that the flat initial distribution is as-
signed at time=—t,. We have neglected the contribution
[1+ La(t+1t)YD]~(+a) " necessary to recover at=
—t,, the flat initial distribution. On the basis of the approach
that we shall detail hereby to derive the distribution density
When it reaches the point=1 it is injected back with uni-  of the first exit times, it is straightforward to check that this
form distribution, thereby producing another laminar region.term yields negligible contributions. Using the property

We assign alternated signs to the sequel of laminar regions.

The sojourn in a laminar region with a given sign is equiva-

lent to sojourn in one of the two states discussed in Sec. II. p(X,t=0)dx= ¢ (1)dt, (44)
The resulting waiting-time distribution density coincides

with the one earlier called(t). The explicit expression for

(1) is obtained by expressing the exit tirhas a function of ~Where p(x,t=0) is given by Eq.(42), with t=0, we can

(43

dx_ ,
a—)\x(t) . (36)

the initial conditionx,. Then we have to assume evaluate the distribution density of the first exit times in
general, and not only far,=0 andt,= —. It is interesting
p(Xg)dxg= i(t)dt. (37)  to remark that the infinitely old distribution density.(t) of

. ) o ~ Sec. IVA s easily obtained by noticing that
The choice of a uniform of back injection process implies

p(xg)=1. This is the condition behind the CTRW of Mon-
troll and Weiss. All this results into p(x,0)=(2—2)/x*" 1. (45

T(e—1)

o (39 Using Eqs(45) and(44), after some algebra, we rederive the
(T+10) distribution of Eq.(33).
We can also establish a connection with the case dis-

p()=(pn—1)

with cussed by Barkdil8], namely, the case>2. In the case of
7 z>2=a<1, the long time behavior of the functidd(t) is
1= (39
sin(am
and C(t)= n(a ) (46)
a- T
T= ! 40
CNz—1)° (40

We now use the prescription of EGi4). A close inspection

We propose for the aging process a calculation procedur@f Eds.(42) and(46) reveals that it is not possible to give a
different from that adopted by Barkfl8]. As we shall see, close formula for the functiom (t). Then, we must study
this procedure yields the same results as those of Barkai. Abe two cases$,>t andt,<t separately.
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Q) t>t:

0 (74t 17
X,t=0 ~f T
4 : ~to[1— Larxette

0 (1+y)
o (1+y) 0y
71[1/ta_y/axlla]1+a

_rlJ'l (1-y)~(7e
o[1fty+ylaxteptte

dy

t‘lfl ! d
@ Jo [t +ylaxtei+e y
t;(l—ﬂ)

Jl -
:ta d ~
a 0 [1+y/ataxl/a]l+a y Xl/a

(47)

In Eq. (47), we have carried out the operation ngm,

while keepingx# 0 fixed. The next step is based on the use

of Eg. (44), of x=(1+t/a)™® and of |dx/dt|=(1
+t/a) (“*1). This allows us to obtain

t;(l_ﬂ’)

‘/’ta(t)lta>t~ (48)

ta
(2) ty<t:

(T4t 79

r
ta 1— 1 Txl/“] 1ta

p(X,t=0)~Jf

0
~f (7'+ta)_(1_“)d7'
=tg. (49
Thus, in this condition we have

a

ta
lﬂta(t)|ta<t~ tl_”‘ (50)

Let us note that Eq948) and (50) correctly reproduce the
behavior predicted by Refl18] in the corresponding limits

by means of the formula

sinfam)  tg
T t(t+t,)

Y (D~ (51)
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V. THE STATIONARY MASTER EQUATION

In this section we prove that the GME can be made
equivalent to the CTRW, with no restriction to the Poisson
statistics, if we set the stationary condition in both of them.
The deep difference between stationary and nonstationary
condition has been discussed years ago by Zumofen and
Klafter in two pioneering papeff5,26]. This means that we
have to compare the GME of Ef) to the stationary CTRW,
which yields

Po(U) W (UM

m p(0), (52

p(u)= ( V. ()l +
where, according to the stationary prescripti@i],

t)= 1jmdt’ t’ 53
=5 | avu), (53

as also explained in Sec. IVA, ang) is used again to
denote the mean waiting time of the distribution density
#(t). For M we make the same choice as in Ed@). For
calculation convenience, we adopt f&rthe more general
symmetric form

Xy
K= ( y z) . (54)
From Eq.(1) we get
- 1
p(u)= ———=——p(0). (55
ul+®d(u)K

By equating Eqs(55) and (52) we derive

=P_.(u)l +1}m(u)\if(u)mn§=jo B(U)"M"
(56)

ul+®(u)K

By multiplying both sides byul+(i>(u)K and using the
propertiesM?"=] andM?"*1=M, we obtain

=W (u)[ul+®(u)K]
Ci)(u)
1—g(u)?

+ {bm(u)\if(u)( 1_;(u)2|v| +

where @=1/(z—1). In conclusion, our way of proceeding
fits the conclusions of Bark#il8]. As earlier pointed out, in
the conditionu <2 the Onsager principle is always violated.
This is expected, since it is knoy&3] that the nonstationary
condition <2 is incompatible with the existence of the With some algebra we extract from E&-) the following set
stationary correlation functiod® (t). of equations fox, y, andz

My W) K)_ -

1-g(w?  1-9(u)?
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(iJ(u) VI. CONCLUDING REMARKS
1=\Ifm(u)[u+d>(u)x]+fpx(u)\lf(u)(—

1—4(u)? This paper affords a significant contribution to under-
standing the role of aging in systems departing from Poisson
statistics. The Onsager regression principle rests on the sec-
ond principle of thermodynamics, and it applies to aged sys-
tems. However, non-Poisson statistics might imply a very

. slow regression to equilibrium, so as to create conditions,
d(u) u correctly depicted by the Montroll-Weiss CTRW, but incom-
1— [b(u)22+1— I(u)2 patible_vyith the Onsager regression post_qla;e. This might be

a condition different from the out of equilibrium thermody-

P(u)u +z/f(U)<I>(U)
1-(u)?  1-§(u)?

=~ifm<u>ci><u>y+&w<u>~if<u>(

(,//(u)CID(u) namics, and represents instead a state of matter intermediate
— between the dynamic and the thermodynamic condition. This
1 ¢(U)2 new condition has been recently proposed to explain the
emergency of life on earth and has been denoted with the
A A A CiD(u) u appealing term oﬁving state of mattef24].

0=V_(u)d(u)y+ ,:/,w(u)\p(u)( h X+ —— The master equation of Sec. V corresponds to the aged
—(w)? 1—y(u)? systems where the Onsager principle holds true. The

Montroll-Weiss CTRW and the corresponding master equa-

w(u)db(u) tion refer to the dynamics of a young system. From a tech-

my nical point of view one might wonder if it is possible to

produce a master equation, or a CTRW, reflecting correctly
the process of aging. The young and the old sequence reflect

. - . - ®(u) two different initial conditions of the system. The young con-
=W (U)[u+P(U)z]+ ¢.(u)¥(u) ﬁy dition and the slow process of regression to equilibrium are
Y(u) incompatible with the existence of a stationary correlation
function.

J(uu w<u><1>(u>

_ Eventually, the system will settle at equilibrium. How-
g - pw?

ever, to establish, at least ideally, the validity of the Onsager
regression principle, we have to set some suitable out of
The solution of this set of equations is given Ry z,y= equilibrium initial conditions. If we do select initial condi-
—x and tions that do not fit the stationary prescriptifi®5,26], the
correlation function®,(t) cannot be defined, and conse-
U1 ()] quently we are forced to determine the memory kernel of the
X= — - ) (58 GME of Eq. (1) using the nonstationary prescription of Eq.
D[ =2+ u(7)+(2+u(r)) ¢(u)] (9). Nevertheless, this equation will produce an exact time
evolution. Letp(0) evolve in time till it reaches the new

So, the GME and the stationary CTRW are compatiblk if conditionp(T). If we adopt this as a new initial condition,
has the same form as that of E) and namely we set the new origin of time &t T, and we apply
again Eq.(1) to predict the ensuing time evolution, we get a
A u(1— () wrong prediction. In fact, the GME equivalent to the CTRW
d(u)= _ _ (59) of Montroll and Weiss is not d&ona fidemaster equation
[—2+u(r)+(2+u{7))(u)] [14]. We should build up a new GME equation with the
distribution of the first jumps given by, __+(t). If, on the
Using the Onsager’s principle in the form of EL2) and  contrary, we select an initial out of equilibrium condition, as
consequently the time convoluted equation of E), we  done in Sec. lll, which is compatible with the bath being at
obtain equilibrium, then the Onsager principle is fulfilled, the GME
with the kernel of Eq(59) is abona fidemaster equation and
1 can be used with any kind of initial conditions concernjng
D (u)=—F. (60) To derive the results here illustrated, we significantly ben-
u+2d(u) efitted from the important work of Ref$13,18. However,
we want to point out that the material derivative of Héf3],

: : = - although more advantageous than the GME to study the in-
Finally, using ford(u) the expression of E459) and for fluence of an external force field, is equivalent to the GME
§(U) the expression afforded by the renewal theory, we gepf Ref. [7], with the condition of Eq.(6) rather than the
an identity in(u) (the Laplace transform of the waiting- stationary condition of Eq59), and, consequently, as proved
time distribution density This means that the aged CTRW is in this paper, it violates the Onsager principle. As to the work
totally equivalent to the GME with the memory kernel given of Barkai on aging[18], we would like to note that it is
by Eq. (59). confined to the case< 2, a condition incompatible with the
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stationary master equation found in this paper, namely théhe foundation of a dynamic model, and consequently will
master equation with the memory kernel of E§9). Barkai  make it possible to discuss the robustness against noise of
reaches the conclusion that the aging effect for2 is  the intermittent process under study, from a perspective more
“confined to a certain time window.” We think that this pa- realistic than in the earlier work of Rdf29].

per has the effect of suggesting the plausible conjecture that Let us summarize the main results of this paper. The func-
actually this time window is of infinite size. Let us see why. tions ®(t) and ¢(t) are the main mathematical properties
We notice that in a sense the memory kernel of E59)  behind the GME and CTRW, respectively, the former afford-
affords a way to measure the aging process. In fact, if théng indications of the complex dynamics of the irrelevant
waiting-time distribution densityy(t) is exponential, the variables and the latter illustrating the nature of the intermit-
memory kernel is equivalent to that produced by a bath thatent process that can be observed as a result of a special
would regress to equilibrium instantaneously, with no agingexperimental detectiof27]. The deviation ofi(t) from the
effect. In the case oft<<> we have a memory lasting for- exponential condition is equivalent to forcidg(t) to depart
ever. This is evident whep <3, since in this case the adop- dramatically from the white noise condition. The non-
tion of Eq. (59) proves that the Laplace transform of the Poisson nature af(t) generates memory infinitely extended
memory kerneI,CiD(u), tends to vanish fou—0. in time, and aging with no finite time scale as well, no matter

Apparently, the conditionu™>3 seems to be compatible how big the scaling parametgr, provided thatu<ce. In
with the Markov approximation, given the fact that in that fact, if a finite time s_cale for both aging and memory existed,
cased(u) tends to a finite value fan tending to 0. We note at a much larger t|mg scale, the func'udn(j[) would be
that, while the analytical expression df(t) is at the mo- eqt_nvalept to a3 of Dirac, the bath ﬂgctpaﬂons would be
mer;t not yet known to us, the analytical form @f/(t) is white noise, the bath would be at equilibrium, and, of course,
under our total control ana it is an inverse powe? law with Y(t) would be exponentlal. This is _equwale_nt to proving that
index B=u—2. The fr’ee diffusion process resulting from the nonexponentlal nature qf(t) yields aging eff_egts that
the fluctuations ofé(t) is known. The pioneering work of are notI|m|ted.to the nonstationary cgse 2, even if in this _
Ref. [17] proves that even in tHe cage>3 the Gaussian case these aging effects seem to be more natural. The condi-
condition is not exactly realized. The central part of the dif-tIon p=>2 is compatible with the stationary condition. How-

fusion probability density function is the ordinary Gaussian®, <" @ bath generating this condition, through the key resuit

diffusion, but at large distances slow tails with an invers;eOf Eq. (5.9)’. IS charactenze_d t_>y dynamic properties with
memory infinitely extended in time. From a formal point of

power law appear. These tails become weaker and weaker

upon increase of, and might be annihilated by even weak View, the main result of this paper is illustrated by the com-
P ! mg . dby .~ parison between Eqg9) and (59 and by the comparison
external fluctuations, with the ensuing annihilation of aging.

However, there are deep physical motivations to fully under_between Egst59) and (60). Equation(9), which is the rela-

stand the theoretical issues generated by the agin rocesstig\n between GME and the CTRW established by the authors
9 y ging p of Ref. [7], refers to a nonstationary condition. Equation

relevant example of this theoretical request is given by th 9 th : it of thi | h
hysics of glassy systems, which are characterized by agir%? ), the most important result of IS paper, re ates the
P ' emory kernel of the GME to the stationary CTRW. The

e S e . o COmpafzo Between Ei5 and (&) o anter vy
P ’ y of illustrating the same key result. In fact, these two equa-

lidity of the Onsager principl¢28]. In other words, we have tions are made equivalent by the wise choice of the station-

to do further research work to understand how robust the - L ) . .
non-Poisson nature af(t) is, and to establish the intensity ary version of CTRW, which is compatible with the existence

of environmental fluctuations that are expected to produce gf the stationary correlation functio(t) and with Eq.
. . P P ?15), namely, with the relation between correlation function
truncation of the inverse power law naturefft). This can

: ) and waiting-time distribution density. This is the physical
be done along the lines of R¢R9). This research work can ondition making the Onsager postulate correct, and, through

be carried at a much deeper level, as a consequence of tﬁe . - e
Lo ; : , ensuring the possibility itself of establishing a complete
fundamental result of Eq59). In fact, this equation defines equivalence between CTRW and GME.

the memory kerneb (t) of the GME, in terms of the waiting
function ¢(t). We assume that the functioi(t) can be de-
rived from the experimental observation as in the case of the

blinking quantum dots of Ref27]. Thus, with the help of We thank Professor Bill Schieve for his remark that we
Eqg. (59) we can draw from the experimental functigr{t) are using a generalized form of Onsager’s principle. We
information on the bath responsible for the intermittent char-gratefully acknowledge the financial support of ARO through
acter of the process under study. This information will helpGrant No. DAAD19-2-0037.
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