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Memory beyond memory in heart beating, a sign of a healthy physiological condition
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We describe two types of memory and illustrate each using artificial and actual heartbeat data sets. The first
type of memory, yielding anomalous diffusion, implies the inverse power-law nature of the waiting time
distribution and the second the correlation among distinct times, and consequently also the occurrence of many
pseudoevents, namely, not genuinely random events. Using the method of diffusion entropy analysis, we
establish the scaling that would be determined by the real events alone. We prove that the heart beating of
healthy patients reveals the existence of many more pseudoevents than in the patients with congestive heart
failure.
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The analysis of time series of physiological significance isaccording to the prescriptions of Ref&,3] yields a scaling
currently done by many research groups using the paradigmxponent that depends only on genuinely random events. The
of anomalous scalingl]. This means that a time series is time distancesr’s between nearest-neighbor events can be
converted into a diffusion process described by the probabilevaluated numerically and can be associated to a density dis-
ity distribution p(x,t) of the diffusing variablex, which is tribution (7). In the case of physiological processes, the
expected to fit the scaling property waiting time distribution is expected to be an inverse power

law, with index w. According to the theory of Ref3] there
X exists a simple relation betweehand x. Thus, the experi-
p(x,t)= thF(th> (D mental determination of(7) should yield the same infor-
mation as the DE method. This is true when the events are

with the “degree of anomaly” being measured by the dis-9enuinely random events. If the events are not genuinely

tance of the scaling paramet@from the standard value 0.5, fandom, and a memory, or time correlation exists, the DE

It is straightforward to prove that the Shannon entropy ~ Method and the direct evaluation af(7) do not yield
equivalent results, and the conflict betwen them is an impor-

o tant information on the physiological process under study.
S(t)= —f p(x,t)In[p(x,t)]dx 2 Prior to the physiological applications, we will show this
o important property of the DE analysis with a dynamic model
that generates genuinely random events. From now on for
simplicity we shall denote the genuinely random events as
S(t)=A+8In(t), (3)  events while we shall refer to those that are not genuinely
random aspseudoeventsThe dynamic model, generating
whereA is a constant, whose explicit form is not relevant for events, is given by
the ensuing discussion. This result is immediately obtained
by plugging Eq.(1) into Eqg. (2). We thus find a method to )
evaluate the scaling paramei@&rmore efficient than the cal- x=®(x)>0, (4)
culation of the second moment of the probability distribu-
tion. Note that when the distribution density under study de-
parts from the ordinary Gaussian case and the fundigr)  wherex denotes the coordinate of a particle, moving within
has slow tails with an inverse power-law naty&3] the the intervall=[0,1], from the left to the right, with times of
second moment is a divergent quantity. This diverging quanarrival atx=1 determined by Eq4) and by the initial con-
tity is made finite by the unavoidable statistical limitation. In dition. When the particle reaches the right bordei,oft is
this case, the second moment analysis would yield misleadnjected back to a new initial condition selected with uniform
ing results, determined by the statisticaly inaccuracy, whileprobability on|. Consequently, the times of arrival at
the method based on E@) yields correct resultf2,3]. This =1, t;, ...t ..., represent events. It is straightforward
method is denoted as diffusion entrofyE) method. to prove that the choic®(x)=kx?, with z>1 andk>0,
The aim of this paper is to show that the entropy of ayields for the waiting times;=t;—t;_; the following distri-
diffusion process generated by a physiological time seriebution density:

of a process fitting the scaling condition of Hd) yields
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Tr-1 the direct evaluation of the waiting functiaf{ ) and the DE
p(r)=(u—1) , (5)  method provide equivalent results. In this case the times
(T+7)* are uncorrelated and the deviation from ordinary statitical

mechanics is only due to the inverse power-law nature of the
waiting time (7) is determined byT through (7)=T/(u What about Type 2 memory? This rests on the correlation
—-2). among the timesr;, consequently implying that the se-
Next, we convert the time seri¢s;} into a random walk.  quence{r;} is a mixture of events and pseudoevents. In fact,
We select a rulg3] that makes the random walker move, tg jjjustrate Type 2 memory, we discuss a dynamic model
always in the same direction and by a step of constant interyenerating both events and pseudoevents. For this purpose
sity, only when an event occurs. This means that the segt ys consider a two-variable model. The equation referring

quence{;} is converted into a sequence of 0's and 1's astg the first variable, is given by E¢4), and the one concern-
follows. We take the integer part ef, sayn;, and we fill the  jng the variabley, is given by

first n;—1 sites of the sequence with 0’s. We assign the
symbol 1 to then,th site and we move te,, and so on. The y=x(y)>0. (7)
resulting sequence, formed by attaching patches together in
the same order as the sequenceofhas a number of sites, The variablesx andy are the coordinates of two particles,
say N, given by the sum of the integer parts gfs. Then,  both moving in the interval, always from the left to the
this sequence is converted into many trajectories of a giveright. The initial conditions of the variablgare always cho-
lengthl. A window of sizel moves along the sequence and sen randomly, thereby corresponding to events. The initial
for any window position, the portion of the whole sequenceconditions ofx, on the contrary, are not always chosen ran-
spanned by the window is regarded as a single trajectory adomly, but they are only when the variabjereaches the
length I. Thus, we obtairN+1—1 trajectories that are as- border at least once, during the sojourrxafithin the range
sumed to start from the origin, and are used to create a dif-0,1]. Let us consider the sojourn time interyaj ,t; . 1]. If
fusion distribution, at timel. If there is scaling, the DE in this time interval the variablg remains within the inter-
method detects it by means of E®) (for more details see val, without touching the right border, then we sét;_ ;)
Refs.[2,3]). =X(t;). This means that the next waiting time is equal to the
In short, this mathematical description corresponds to @receding one, and consequently the time, which might
random-walk process where the random walker remains in be predicted, represents a pseudoevent. Thus, the sequence
state of rest, with a distribution of sojourn times given by Eq.{t;} reflects a mixture of events and pseudoevents. Let us
(5). At the end of any sojourn the random walker makes an.qnsider the case whene{y)=k’yz' with z/>1 andk’>0,
abru_pt jump ahead. This kind of randpm Walker has beerg a5 to produce the power indgx =2'/(z' —1), with u'
studied in Ref[3] by means of the continuous time ra_mdom >2, a property of real events. Let us set the conditjo,
walk [4] and by means of the generalized central limit theo-<<7_>y_ In this case, it is possible to prove with intuitive
rem [5]. The resulting diffusion process is shown by both 54 ments that the waiting time distributionsobf Eq. (5) is
methods to be an asymmetric\bedistribution, fitting EqQ.  changed into one much sharper than the original. The intui-
(1) and yielding for the scaling parametér for 2<u<3,  {ive arguments run as follows. Let us consider the sojourn
the following value: times of the particle with coordinate They will have a time
1 d?rﬁtion of_trlle or_dher o¢r)dy_. Thehunperturbedhwz';l]iting tir_nes
_ = _ - of the particle with coordinatg have a much shorter time
o -1 (6=05if p>3). © duration. However, among these, those with a shorter length
will be repeated for a larger number of times than those of a
This prediction is knowr{3,6] to be correct, only when an larger length. Let us consider a sojourn time with length
ordinary form of memory existf7]. comparable td7), . In this case there is a significant prob-
Let us discuss, first of all, what do we mean by ordinaryability for the fast particle, with coordinate to reach the
memory. A Markov master equation, namely, a stochastiborder after the arrival of the slow particle, with coordinate
process without memory, is characterized by a waiting timey. In this case, the initial condition for the fast particle will
distribution ¢(7) with an exponential form. This implies that be selected randomly, and consequently the same sojourn
a marked deviation from the exponential condition, and thusime will not be repeated, if not by a fortuitous result of mere
from §=0.5, is a signature of the presence of memjaty ~ randomness. The same property will certainly apply, with
We refer to this memory as Type 1 memory. From an intui-much larger probability, to the sojourn times of length larger
tive point of view we can say that this kind of memory than(r), . Itis thus evident that in the perturbed distribution
means that the occurrence of the symbol 0 at a given timef waiting times for the particle of coordinate the statisti-
implies that at the next time, with a large probability, the cal weight of the shorter times is increased, while the statis-
same symbol will appear again. In a sense the system at latécal weight of the larger times is decreased. As a result, the
times keeps memory of earlier times. The exponential decaglecay of the perturbed waiting time distribution will be much
of the functionys(7) would imply a fast process of memory faster than the decay of the unperturbed distribution.
erasure, and the system would rapidly become memoryless. Let us consider the case where the unperturbed waiting
In the specific case where only Type 1 memory is presentime distributiony(7) is characterized by>3 (u=5, in
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FIG. 1. DE for two-variables model as a function of the window &
lengthl. The squares correspond k6=0.018, z’=1.83, and to a :E 0.77 trrrrr
slope equal to 0.83, while the diamondskb=0.011, z' =1.71, = 0.70
and to a slope equal to 0.71. For both curkes0.4, z=1.25. In 42600 42610 42620 42630 42640 42650
the inset: the same curves after shuffling, the straight line slope is Ordinal number of heart beat i

0.5.
FIG. 2. The interbeat tim&(i) as a function of the number of

the case of Fig. )L The perturbed waiting time distribution, beats,i. The thick line denotes the trajectory corresponding to the
to be identified with that experimentally observed, is everncoarse graining given b T=1/30 sec. The vertical lines denote
faster. This is so because of the earlier described enhanct® height of the original data. The arrows and the integer labels
ment of the statistical weight of the short waiting times andillustrates how the sequence of's is generated. Inset: Survival
reduction of that of long waiting times. On the other hand, a§r0batl)|llt|e.s.. The C|r(.:les.denote the c.h.f. patleng?3 and thg corre-
we have earlier observefsee Eq.(6)] when there is no SPonding fitting function is¥(t) =0.19 exp—(/3.1)™. The dia-
memory, the distribution with.>3 falls in the Gauss basin fmuﬁggsn?:gfo(tg j&?%@ﬁ%ﬂgm and the corresponding fitting
of attraction. Let us adopt now an experimental point of ' ) :

view. Let us look at the perturbed distribution pretending that

we do not know that it is affected by the hidden action of thetimes is responsible for the anomalous scali®ig,0.5, of the
variabley. We perceive a waiting time distribution whose two unshaffled curves of Fig. 1,

decay is even faster than the unperturbed one, which sits in Let us show now that the heart beating is a process where
the Gauss basin of attraction. We pretend that we do nahe memory beyond memory effect is important. Let us apply
know anything about the presence of Type 2 memory. Thushe earlier perspective to the real data taken fi@h We

we make the prediction that EB) applies, thereby yielding apply our technique to 33 long-time electrocardiogram
the scalingé= 0.5. If we make this plausible conjecture, then (ECG) records(about 20 hours eag¢hl8 healthy and 15 with
we find that the experimental result of Fig. 1 is striking andcongestive heart failurée.h.f). Following Ref.[8], we refer
apparently incomprehensible. In fact, we see that the DEo all the ECG records of thelIT-BIH Normal Sinus Rhythm
now yieldsé=1/(n" — 1), quite different from the prescrip- Databaseand of theBIDMC Congestive Heart Failure Da-
tion of Eq.(6) that would produceS=0.5. This is so because tabase the healthy and the c.h.f. patients, respectively.

the experimentaly(7) is not simply a reflection of real The data under study are time series of the kind of that
events but is determined by pseudoevents as well. The breaktustrated in Fig. 2, where the length of the vertical lines
down of Eq.(6) is a manifestation of Type 2 memory, re- expressed(i)=t;—t;_, as a function of the integer number
ferred to by us asnemory beyond memorin fact, the exis- i. The letteri denotes theath heartbeating of an electrocar-
tence of pseudoevents implies correlation among differendiogram, andt; is the time at which theR wave of this
times of the serieér;}, and thus a memory of earlier events. heartbeat occurs.

This result is so surprising that we need to support it with  We make these data suitable for the illustration of the
compelling arguments. The Type 2 memory is a consequenaaemory beyond memosffect as follows. We adopt a pro-
of correlation among the waiting times of the partigleNe  cedure illustrated with the help of Fig. 2. The vertical axis,
note that shuffling the sequente} does not have any effect concerning the variabl&(i), is divided into many cells of a

on the shape of the waiting time distribution. Shuffling hasgiven sizeAT. Thus thg T(i),i] plane is divided into many
the effect of annihilating Type 2 memory. At the end of this horizontal strips with a constant width equal A9T. This
shuffling process, we can correctly state that, being in theoarse-graining prescription yields the thick line of Fig. 2.
Gauss basin of attraction, the system is forced to obey th&he curve corresponds to many horizontal intervals sepa-
prescription of Eq(6), thereby resulting in ordinary scaling. rated by vertical up and down jumps. The widths of these
The inset of Fig. 1 shows that, as expected, shuffling thdnorizontal intervals define a sequence of numhbershat is
order of the corresponding patches has the effect of yieldinghe object of our statistical analysis. To make this analysis as
6=0.5, as the experimentat(7) implies. The scaling de- efficient as possible we have to make a proper choice of the
tected by the DE method does not depend on the pseudoevalue of AT, since an excessively small value would produce
ents, but only on the hidden events, and thus on a time digoo many pseudoevents and an excessively large would yield
tribution, which cannot be experimentally detected, slowelpoor statistics. The results of our statistical analysis were
than ¢( 7). This hidden waiting time distribution of waiting proven to be insensitive to changidgr over the relatively

041926-3



P. ALLEGRINI et al. PHYSICAL REVIEW E 65 041926
a) The indexg in that case would be a complicated function of

the four parameters involved by the two-variable model. This
means that the DE is a more efficient memory detector and
much less ambiguous than the correlation function. The DE
selects the really random events from the distribution of
times described by the arbitrany(r), yielding a nonarbi-

trary distribution with a uniquex’. The correlation function

C(t), on the contrary, depends on the details of the model,
but does not afford an easy way to define them. For the main
purpose of this paper it is enough to point out that the form

o pathological
------- 5=0.81

— 8072 of the correlation functiorC,(t) is
10° 10° Cordt) = (1— 2)W(t)+ €2C(1). 9)
window length | exil
b) Here W(t) denotes a function dropping from 1 to O in one

0.15

time step, while the functio@(t), with the asymptotic form

0.10 healthy individual . of Eq. (8), is continuous fot—0. We account for the struc-
= patholpgical individual ture of Eq.(9) as follows. The sequende;} is generated by
e 005 % the joint use of two models.
© 000 MWMWWW*WM The first is the model of Eq4) with no additional vari-
ables and nanemory beyond memopyoperty, the second is
008 0 400 600 800 1000 the model with two variables. These two models generate
t (no. of laminar regions) two independent sequencgs}. To any indexi we assign,
with probability e, the value provided by the model with
FIG. 3. (a) The DE as a function of the window lengthThe  additional memory, and, with probability 4e, the value
inset illustrates the effect of shuffling, the two lines correspond toprovided by the model with only one variable. This model is
6=0.5. (b) The correlation functionCe,(t) as a function oft  reminiscent of one adopted to account for the statistical prop-
(number of laminar regionn a healthy and on a c.h.f. individual. grties of DNA sequenceg®]. The functionCexp(t) in one

step drops from the valu€.,(0)=1 to the valueCq,(1)
= €2C(1)= €, thereby allowing us to derive from the ex-

The events under study refer to the jumps from one strif?€fimental correlation function at=1. _
to another. To assess whether these jumps are events or pseu-" conclusmn,_the meaning of the parameteis as fol-
doevents, we have to compare the waiting time distributiorfoWs- The valuee=1 would imply that the heart beating is

(1) to the scaling detected by means of the DE method. Fofl€scribed entirely by a model with two variablesandy. In

the sake of statistical accuracy we decided to evaluate th@ther words, the larger the larger the weight of thmemory
probability of finding waiting times larger than a given value P€yond memorgffect. The paramete is connected to the

t. This is the function¥ (t) defined byW (t)=J dry(r) time distance between two nearest-neighbor real events. If
. =/, .

The results illustrated in the inset of Fig. 2 imply the Brown- this time distriblgtionbis ex%onentite)ll, there iSI no Ty;?e 1
ian scalingd=0.5. In fact, the function¥(t) of the heart memory, as earlier observed. 46 becomes closer tp

failure subjects is a stretched exponential and the healthy 2 tr_us conventl_ona_l_memory beCO'.“eS stronger. Thus, to
subjects yield the power index 3.25 that corresponds to th stablish a more intuitive under_stgndlng of what happens to
memory, regardless of whether it is Type 1 or Type 2, let us

éadopt the following perspective. The condition of highest

contrary, the DE method yields for the healthy subjects ﬁe:nt(r)]ry r(]:orr(:sbpor;_ds tg=1 a(ljnd 5=|1' TT:]S Wouldbmear:j
mean value5=0.82+0.04 and for the heart failure subjects at the heart bealing depends only on temory beyon

6=0.71+0.06. It is interesting to notice that Fig. 3 refers to memorymodel, and, that, at the same time,=2. The op-

the same subjects as those of the inset of Fig. 2, and yielo%ozite, case,T(r)]f_ compll((jate abserr:ce r?f rr:lemotr)y, ir_npd'rg@
for the healthyu’=2.17 and for the heart failure subjects "d# —. This would mean that the heart beating is very

w'=2.4. If we shuffle the numbers of the sequencewe well modeled by the one-variable model of Ed), with an
recover 5=0.5, a fact proving that thenemory beyond exponential distribution of waiting times, in other words,
memoryeffec.t i,s a genuine property of heartbeat. vv_ithc_)ut _either typ_e of memory. Tzhis leads us to express the
The additional memory is confirmed by the numericald'smbu“qn. of patients in thed, ) plan of F'g' 4. We note
evaluation of the normalized correlation function of the vari—the surprising result that all the .healthy subjects _and all .the
able 7;—(7,), denoted byCeyt), where the symbal is the hearF-fallure subjects are contame'd in the top—rlght_ region
continuous approximation of the discrete patch labdlhe and in the bottom-lgft one, respectively. We also notu;e .that
two-variable model that we are using to explain themory all the healthy subjects, except two, are localized within a

: small portion of the top-right region of the graph, not far
beyond memorgffect would yield from the border with the heart-failure region. We have the

C(t)x1hP. (8)  impression that this reflects the fact that the healthy function

large range from 0.1 to 0.02 sec. We assigrA{D an inter-
mediate value, namelAT=1/30 sec.
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ability as, for example, in Ref[10], to assess whether a
physiological reaction to the c.h.f. pathology, responsible for
the bottom-left broadened distribution, plays a negative or a
positive role. The advocates of the second possibility might
argue that higher randomness and broader distribution reflect
an effort of the perturbed heartbeating system to explore all
possible states to recover the lost function. An interesting
issue to discuss would be the connection between these re-
sults and those of Reff11,12. This is left as a subject for
future reseach work.

As a final conclusion, we want to recognize that the main
result of this paper does not have yet any importance from
the diagnostic point of view. The paper does not yield a
criterion to distinguish pathological from healthy condition
of medical interest. Rather, it establishes that the main dif-
ference between healthy and c.h.f. patients is that in the latter
group of patients the extent of memory beyond memory is
much reduced compared to the former group. Further re-

of the heartbeating system depends on a proper balance séarch work is necessary to establish the physiological sig-
memory and randomness that the analysis of this papaiificance of this result, and this, in turn, might help the di-

makes apparent. The distribution of the heart-failure subjectagnostic purpose. The discovery of the memory beyond
within the bottom-left region is much broader. It would be effect is, on the other hand, by itself very intersting and very
desirable to have at our disposal the patient survival probsurprising.
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