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Memory beyond memory in heart beating, a sign of a healthy physiological condition
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We describe two types of memory and illustrate each using artificial and actual heartbeat data sets. The first
type of memory, yielding anomalous diffusion, implies the inverse power-law nature of the waiting time
distribution and the second the correlation among distinct times, and consequently also the occurrence of many
pseudoevents, namely, not genuinely random events. Using the method of diffusion entropy analysis, we
establish the scaling that would be determined by the real events alone. We prove that the heart beating of
healthy patients reveals the existence of many more pseudoevents than in the patients with congestive heart
failure.

DOI: 10.1103/PhysRevE.65.041926 PACS number~s!: 87.19.Hh, 05.45.Tp, 05.40.Fb
i
ig
is
b

is
.

or
ne

-
u
de

an
In
a
il

f a
rie

The
be
dis-

he
er

-
are
ely

DE

or-
.
is
el
for
as
ly

g

in

m

d

The analysis of time series of physiological significance
currently done by many research groups using the parad
of anomalous scaling@1#. This means that a time series
converted into a diffusion process described by the proba
ity distribution p(x,t) of the diffusing variablex, which is
expected to fit the scaling property

p~x,t !5
1

td
FS x

tdD ~1!

with the ‘‘degree of anomaly’’ being measured by the d
tance of the scaling parameterd from the standard value 0.5
It is straightforward to prove that the Shannon entropy

S~ t !52E
2`

`

p~x,t !ln@p~x,t !#dx ~2!

of a process fitting the scaling condition of Eq.~1! yields

S~ t !5A1d ln~ t !, ~3!

whereA is a constant, whose explicit form is not relevant f
the ensuing discussion. This result is immediately obtai
by plugging Eq.~1! into Eq. ~2!. We thus find a method to
evaluate the scaling parameterd, more efficient than the cal
culation of the second moment of the probability distrib
tion. Note that when the distribution density under study
parts from the ordinary Gaussian case and the functionF(y)
has slow tails with an inverse power-law nature@2,3# the
second moment is a divergent quantity. This diverging qu
tity is made finite by the unavoidable statistical limitation.
this case, the second moment analysis would yield misle
ing results, determined by the statisticaly inaccuracy, wh
the method based on Eq.~3! yields correct results@2,3#. This
method is denoted as diffusion entropy~DE! method.

The aim of this paper is to show that the entropy o
diffusion process generated by a physiological time se
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according to the prescriptions of Refs.@2,3# yields a scaling
exponent that depends only on genuinely random events.
time distancest ’s between nearest-neighbor events can
evaluated numerically and can be associated to a density
tribution c(t). In the case of physiological processes, t
waiting time distribution is expected to be an inverse pow
law, with indexm. According to the theory of Ref.@3# there
exists a simple relation betweend andm. Thus, the experi-
mental determination ofc(t) should yield the same infor
mation as the DE method. This is true when the events
genuinely random events. If the events are not genuin
random, and a memory, or time correlation exists, the
method and the direct evaluation ofc(t) do not yield
equivalent results, and the conflict betwen them is an imp
tant information on the physiological process under study

Prior to the physiological applications, we will show th
important property of the DE analysis with a dynamic mod
that generates genuinely random events. From now on
simplicity we shall denote the genuinely random events
events, while we shall refer to those that are not genuine
random aspseudoevents. The dynamic model, generatin
events, is given by

ẋ5F~x!.0, ~4!

wherex denotes the coordinate of a particle, moving with
the intervalI[@0,1#, from the left to the right, with times of
arrival atx51 determined by Eq.~4! and by the initial con-
dition. When the particle reaches the right border ofI, it is
injected back to a new initial condition selected with unifor
probability on I. Consequently, the times of arrival atx
51, t1 , . . . ,t i . . . , represent events. It is straightforwar
to prove that the choiceF(x)5kxz, with z.1 and k.0,
yields for the waiting timest i[t i2t i 21 the following distri-
bution density:
©2002 The American Physical Society26-1
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c~t!5~m21!
Tm21

~T1t!m
, ~5!

with m5z/(z21) and T5(m21)/k. Note that the mean
waiting time ^t& is determined byT through ^t&5T/(m
22).

Next, we convert the time series$t i% into a random walk.
We select a rule@3# that makes the random walker mov
always in the same direction and by a step of constant in
sity, only when an event occurs. This means that the
quence$t i% is converted into a sequence of 0’s and 1’s
follows. We take the integer part oft1, sayn1, and we fill the
first n121 sites of the sequence with 0’s. We assign
symbol 1 to then1th site and we move tot2, and so on. The
resulting sequence, formed by attaching patches togeth
the same order as the sequence oft i , has a number of sites
say N, given by the sum of the integer parts oft i ’s. Then,
this sequence is converted into many trajectories of a gi
length l. A window of sizel moves along the sequence a
for any window position, the portion of the whole sequen
spanned by the window is regarded as a single trajector
length l. Thus, we obtainN112 l trajectories that are as
sumed to start from the origin, and are used to create a
fusion distribution, at timel. If there is scaling, the DE
method detects it by means of Eq.~3! ~for more details see
Refs.@2,3#!.

In short, this mathematical description corresponds t
random-walk process where the random walker remains
state of rest, with a distribution of sojourn times given by E
~5!. At the end of any sojourn the random walker makes
abrupt jump ahead. This kind of random walker has be
studied in Ref.@3# by means of the continuous time rando
walk @4# and by means of the generalized central limit the
rem @5#. The resulting diffusion process is shown by bo
methods to be an asymmetric Le´vy distribution, fitting Eq.
~1! and yielding for the scaling parameterd, for 2,m,3,
the following value:

d5
1

m21
~d50.5 if m.3!. ~6!

This prediction is known@3,6# to be correct, only when an
ordinary form of memory exists@7#.

Let us discuss, first of all, what do we mean by ordina
memory. A Markov master equation, namely, a stocha
process without memory, is characterized by a waiting ti
distributionc(t) with an exponential form. This implies tha
a marked deviation from the exponential condition, and th
from d50.5, is a signature of the presence of memory@7#.
We refer to this memory as Type 1 memory. From an int
tive point of view we can say that this kind of memo
means that the occurrence of the symbol 0 at a given t
implies that at the next time, with a large probability, t
same symbol will appear again. In a sense the system at
times keeps memory of earlier times. The exponential de
of the functionc(t) would imply a fast process of memor
erasure, and the system would rapidly become memory
In the specific case where only Type 1 memory is pres
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the direct evaluation of the waiting functionc(t) and the DE
method provide equivalent results. In this case the timet i
are uncorrelated and the deviation from ordinary statiti
mechanics is only due to the inverse power-law nature of
waiting time distributionc(t).

What about Type 2 memory? This rests on the correlat
among the timest i , consequently implying that the se
quence$t i% is a mixture of events and pseudoevents. In fa
to illustrate Type 2 memory, we discuss a dynamic mo
generating both events and pseudoevents. For this pur
let us consider a two-variable model. The equation referr
to the first variable, is given by Eq.~4!, and the one concern
ing the variabley, is given by

ẏ5x~y!.0. ~7!

The variablesx and y are the coordinates of two particle
both moving in the intervalI, always from the left to the
right. The initial conditions of the variabley are always cho-
sen randomly, thereby corresponding to events. The in
conditions ofx, on the contrary, are not always chosen ra
domly, but they are only when the variabley reaches the
border at least once, during the sojourn ofx within the range
@0,1#. Let us consider the sojourn time interval@ t i ,t i 11#. If
in this time interval the variabley remains within the inter-
val, without touching the right border, then we setx(t i 11)
5x(t i). This means that the next waiting time is equal to t
preceding one, and consequently the timet i 12, which might
be predicted, represents a pseudoevent. Thus, the sequ
$t i% reflects a mixture of events and pseudoevents. Let
consider the case wherex(y)5k8yz8 with z8.1 andk8.0,
so as to produce the power indexm85z8/(z821), with m8
.2, a property of real events. Let us set the condition^t&x
!^t&y . In this case, it is possible to prove with intuitiv
arguments that the waiting time distribution ofx of Eq. ~5! is
changed into one much sharper than the original. The in
tive arguments run as follows. Let us consider the sojo
times of the particle with coordinatey. They will have a time
duration of the order of̂t&y . The unperturbed waiting time
of the particle with coordinatey have a much shorter time
duration. However, among these, those with a shorter len
will be repeated for a larger number of times than those o
larger length. Let us consider a sojourn time with leng
comparable tô t&y . In this case there is a significant prob
ability for the fast particle, with coordinatex, to reach the
border after the arrival of the slow particle, with coordina
y. In this case, the initial condition for the fast particle w
be selected randomly, and consequently the same soj
time will not be repeated, if not by a fortuitous result of me
randomness. The same property will certainly apply, w
much larger probability, to the sojourn times of length larg
than^t&y . It is thus evident that in the perturbed distributio
of waiting times for the particle of coordinatex, the statisti-
cal weight of the shorter times is increased, while the sta
tical weight of the larger times is decreased. As a result,
decay of the perturbed waiting time distribution will be mu
faster than the decay of the unperturbed distribution.

Let us consider the case where the unperturbed wai
time distributionc(t) is characterized bym.3 (m55, in
6-2



,
e
n
nd
a

o
ha
he
e

ts
n
u

n
nd
D
-
e
l
ea
-

e
s.
ith
n

t
a
is
th
th
.
th
in

oe
di
e

ere
ply

m

hat
es
r

r-

he
-
is,

2.
pa-
se

as
the
ce
ield
ere

w

e

f
the
e
els
l
rre-

ting
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the case of Fig. 1!. The perturbed waiting time distribution
to be identified with that experimentally observed, is ev
faster. This is so because of the earlier described enha
ment of the statistical weight of the short waiting times a
reduction of that of long waiting times. On the other hand,
we have earlier observed@see Eq.~6!# when there is no
memory, the distribution withm.3 falls in the Gauss basin
of attraction. Let us adopt now an experimental point
view. Let us look at the perturbed distribution pretending t
we do not know that it is affected by the hidden action of t
variable y. We perceive a waiting time distribution whos
decay is even faster than the unperturbed one, which si
the Gauss basin of attraction. We pretend that we do
know anything about the presence of Type 2 memory. Th
we make the prediction that Eq.~6! applies, thereby yielding
the scalingd50.5. If we make this plausible conjecture, the
we find that the experimental result of Fig. 1 is striking a
apparently incomprehensible. In fact, we see that the
now yieldsd51/(m821), quite different from the prescrip
tion of Eq.~6! that would produced50.5. This is so becaus
the experimentalc(t) is not simply a reflection of rea
events but is determined by pseudoevents as well. The br
down of Eq. ~6! is a manifestation of Type 2 memory, re
ferred to by us asmemory beyond memory. In fact, the exis-
tence of pseudoevents implies correlation among differ
times of the series$t i%, and thus a memory of earlier event
This result is so surprising that we need to support it w
compelling arguments. The Type 2 memory is a conseque
of correlation among the waiting times of the particlex. We
note that shuffling the sequence$t i% does not have any effec
on the shape of the waiting time distribution. Shuffling h
the effect of annihilating Type 2 memory. At the end of th
shuffling process, we can correctly state that, being in
Gauss basin of attraction, the system is forced to obey
prescription of Eq.~6!, thereby resulting in ordinary scaling
The inset of Fig. 1 shows that, as expected, shuffling
order of the corresponding patches has the effect of yield
d50.5, as the experimentalc(t) implies. The scaling de-
tected by the DE method does not depend on the pseud
ents, but only on the hidden events, and thus on a time
tribution, which cannot be experimentally detected, slow
thanc(t). This hidden waiting time distribution of waiting

FIG. 1. DE for two-variables model as a function of the windo
length l. The squares correspond tok850.018, z851.83, and to a
slope equal to 0.83, while the diamonds tok850.011, z851.71,
and to a slope equal to 0.71. For both curvesk50.4, z51.25. In
the inset: the same curves after shuffling, the straight line slop
0.5.
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times is responsible for the anomalous scaling,d.0.5, of the
two unshaffled curves of Fig. 1,

Let us show now that the heart beating is a process wh
the memory beyond memory effect is important. Let us ap
the earlier perspective to the real data taken from@8#. We
apply our technique to 33 long-time electrocardiogra
~ECG! records~about 20 hours each!, 18 healthy and 15 with
congestive heart failure~c.h.f.!. Following Ref.@8#, we refer
to all the ECG records of theMIT-BIH Normal Sinus Rhythm
Databaseand of theBIDMC Congestive Heart Failure Da-
tabase, the healthy and the c.h.f. patients, respectively.

The data under study are time series of the kind of t
illustrated in Fig. 2, where the length of the vertical lin
expressesT( i )5t i2t i 21 as a function of the integer numbe
i. The letteri denotes thei th heartbeating of an electroca
diogram, andt i is the time at which theR wave of this
heartbeat occurs.

We make these data suitable for the illustration of t
memory beyond memoryeffect as follows. We adopt a pro
cedure illustrated with the help of Fig. 2. The vertical ax
concerning the variableT( i ), is divided into many cells of a
given sizeDT. Thus the@T( i ),i # plane is divided into many
horizontal strips with a constant width equal toDT. This
coarse-graining prescription yields the thick line of Fig.
The curve corresponds to many horizontal intervals se
rated by vertical up and down jumps. The widths of the
horizontal intervals define a sequence of numberst i that is
the object of our statistical analysis. To make this analysis
efficient as possible we have to make a proper choice of
value ofDT, since an excessively small value would produ
too many pseudoevents and an excessively large would y
poor statistics. The results of our statistical analysis w
proven to be insensitive to changingDT over the relatively

is

FIG. 2. The interbeat timeT( i ) as a function of the number o
beats,i. The thick line denotes the trajectory corresponding to
coarse graining given byDT51/30 sec. The vertical lines denot
the height of the original data. The arrows and the integer lab
illustrates how the sequence oftk’s is generated. Inset: Surviva
probabilities. The circles denote the c.h.f. patients and the co
sponding fitting function isC(t)50.19 exp@2(t/3.1)0.6#. The dia-
monds denote the healthy patient and the corresponding fit
function isC(t)55.71/(0.931t)3.25.
6-3
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P. ALLEGRINI et al. PHYSICAL REVIEW E 65 041926
large range from 0.1 to 0.02 sec. We assign toDT an inter-
mediate value, namely,DT51/30 sec.

The events under study refer to the jumps from one s
to another. To assess whether these jumps are events or
doevents, we have to compare the waiting time distribut
c(t) to the scaling detected by means of the DE method.
the sake of statistical accuracy we decided to evaluate
probability of finding waiting times larger than a given valu
t. This is the functionC(t) defined byC(t)[* t

`dtc(t).
The results illustrated in the inset of Fig. 2 imply the Brow
ian scalingd50.5. In fact, the functionC(t) of the heart
failure subjects is a stretched exponential and the hea
subjects yield the power index 3.25 that corresponds to
waiting time distribution densityc(t) with m54.25. The
same Brownian condition applies to all the subjects. On
contrary, the DE method yields for the healthy subject
mean valued50.8260.04 and for the heart failure subjec
d50.7160.06. It is interesting to notice that Fig. 3 refers
the same subjects as those of the inset of Fig. 2, and yi
for the healthym852.17 and for the heart failure subjec
m852.4. If we shuffle the numbers of the sequencet i we
recover d50.5, a fact proving that thememory beyond
memoryeffect is a genuine property of heartbeat.

The additional memory is confirmed by the numeric
evaluation of the normalized correlation function of the va
ablet i2^t i&, denoted byCexp(t), where the symbolt is the
continuous approximation of the discrete patch labeli. The
two-variable model that we are using to explain thememory
beyond memoryeffect would yield

C~ t !}1/tb. ~8!

FIG. 3. ~a! The DE as a function of the window lengthl. The
inset illustrates the effect of shuffling, the two lines correspond
d50.5. ~b! The correlation functionCexp(t) as a function oft
~number of laminar regions! on a healthy and on a c.h.f. individua
04192
p
eu-
n
or
he

y
e

e
a

ds

l
-

The indexb in that case would be a complicated function
the four parameters involved by the two-variable model. T
means that the DE is a more efficient memory detector
much less ambiguous than the correlation function. The
selects the really random events from the distribution
times described by the arbitraryc(t), yielding a nonarbi-
trary distribution with a uniquem8. The correlation function
C(t), on the contrary, depends on the details of the mod
but does not afford an easy way to define them. For the m
purpose of this paper it is enough to point out that the fo
of the correlation functionCexp(t) is

Cexp~ t !5~12e2!W~ t !1e2C~ t !. ~9!

Here W(t) denotes a function dropping from 1 to 0 in on
time step, while the functionC(t), with the asymptotic form
of Eq. ~8!, is continuous fort→0. We account for the struc
ture of Eq.~9! as follows. The sequence$t i% is generated by
the joint use of two models.

The first is the model of Eq.~4! with no additional vari-
ables and nomemory beyond memoryproperty, the second is
the model with two variables. These two models gener
two independent sequences$t i%. To any indexi we assign,
with probability e, the value provided by the model wit
additional memory, and, with probability 12e, the value
provided by the model with only one variable. This model
reminiscent of one adopted to account for the statistical pr
erties of DNA sequences@9#. The functionCexp(t) in one
step drops from the valueCexp(0)51 to the valueCexp(1)
5e2C(1).e2, thereby allowing us to derivee from the ex-
perimental correlation function att51.

In conclusion, the meaning of the parametere is as fol-
lows. The valuee51 would imply that the heart beating i
described entirely by a model with two variables,x andy. In
other words, the largere the larger the weight of thememory
beyond memoryeffect. The parameterd is connected to the
time distance between two nearest-neighbor real event
this time distribution is exponential, there is no Type
memory, as earlier observed. Asm8 becomes closer tom8
52, this conventional memory becomes stronger. Thus
establish a more intuitive understanding of what happen
memory, regardless of whether it is Type 1 or Type 2, let
adopt the following perspective. The condition of highe
memory corresponds toe51 and d51. This would mean
that the heart beating depends only on thememory beyond
memorymodel, and, that, at the same time,m852. The op-
posite case, of complete absence of memory, impliese50
andm8→`. This would mean that the heart beating is ve
well modeled by the one-variable model of Eq.~4!, with an
exponential distribution of waiting times, in other word
without either type of memory. This leads us to express
distribution of patients in the (d, e2) plan of Fig. 4. We note
the surprising result that all the healthy subjects and all
heart-failure subjects are contained in the top-right reg
and in the bottom-left one, respectively. We also notice t
all the healthy subjects, except two, are localized within
small portion of the top-right region of the graph, not f
from the border with the heart-failure region. We have t
impression that this reflects the fact that the healthy funct

o

6-4
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of the heartbeating system depends on a proper balanc
memory and randomness that the analysis of this pa
makes apparent. The distribution of the heart-failure subje
within the bottom-left region is much broader. It would b
desirable to have at our disposal the patient survival pr

FIG. 4. Values of the scaling parameterd and of e2 for the
healthy and c.h.f. individuals of this analysis.
,

.
th

04192
of
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ability as, for example, in Ref.@10#, to assess whether
physiological reaction to the c.h.f. pathology, responsible
the bottom-left broadened distribution, plays a negative o
positive role. The advocates of the second possibility mi
argue that higher randomness and broader distribution re
an effort of the perturbed heartbeating system to explore
possible states to recover the lost function. An interest
issue to discuss would be the connection between these
sults and those of Refs.@11,12#. This is left as a subject for
future reseach work.

As a final conclusion, we want to recognize that the m
result of this paper does not have yet any importance fr
the diagnostic point of view. The paper does not yield
criterion to distinguish pathological from healthy conditio
of medical interest. Rather, it establishes that the main
ference between healthy and c.h.f. patients is that in the la
group of patients the extent of memory beyond memory
much reduced compared to the former group. Further
search work is necessary to establish the physiological
nificance of this result, and this, in turn, might help the d
agnostic purpose. The discovery of the memory beyo
effect is, on the other hand, by itself very intersting and ve
surprising.
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