Physics of the {sup 252}Cf-source-driven noise analysis measurement

PDF Version Also Available for Download.

Description

The {sup 252}Cf-source-driven noise analysis method is a versatile measurements tool that has been applied to measurements for initial loading of reactors, quality assurance of reactor fuel elements, fuel processing facilities, fuel reprocessing facilities, fuel storage facilities, zero-power testing of reactors, verification of calculational methods, process monitoring, characterization of storage vaults, and nuclear weapons identification. This method`s broad range of application is due to the wide variety of time- and frequency domain signatures, each with unique properties, obtained from the measurement. The following parameters are obtained from this measurement: average detector count rates, detector multiplicities, detector autocorrelations, cross-correlation between detectors, ... continued below

Physical Description

6 p.

Creation Information

Valentine, T.E.; Mihalczo, J.T.; Perez, R.B. & Mattingly, J.K. February 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The {sup 252}Cf-source-driven noise analysis method is a versatile measurements tool that has been applied to measurements for initial loading of reactors, quality assurance of reactor fuel elements, fuel processing facilities, fuel reprocessing facilities, fuel storage facilities, zero-power testing of reactors, verification of calculational methods, process monitoring, characterization of storage vaults, and nuclear weapons identification. This method`s broad range of application is due to the wide variety of time- and frequency domain signatures, each with unique properties, obtained from the measurement. The following parameters are obtained from this measurement: average detector count rates, detector multiplicities, detector autocorrelations, cross-correlation between detectors, detector autopower spectral densities, cross-power spectral densities between detectors, coherences, and ratios of spectral densities. All of these measured parameters can also be calculated using the MCNP-DSP Monte Carlo code. This paper presents a review of the time-domain signatures obtained from this measurement.

Physical Description

6 p.

Notes

INIS; OSTI as DE97002985

Source

  • ARS `97: American Nuclear Society (ANS) international meeting on advanced reactors safety, Orlando, FL (United States), 1-5 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97002985
  • Report No.: CONF-970607--3
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 486154
  • Archival Resource Key: ark:/67531/metadc676178

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Jan. 20, 2016, 11:54 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Valentine, T.E.; Mihalczo, J.T.; Perez, R.B. & Mattingly, J.K. Physics of the {sup 252}Cf-source-driven noise analysis measurement, article, February 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc676178/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.