The spheromak could be extended into the high beta regime by supporting the pressure on flux-conserving walls, allowing the plasma to be in a Taylor state with zero pressure gradient and thus stable to ideal and resistive MHD. The concept yields a potentially attractive, pulsed reactor which would require no external magnets. The flux conserver would be shaped to be stable to the tilt and shift instabilities. We envision a plasma which is ohmically ignited at low beta, with the kinetic pressure growing to beta > 1 by fueling from the edge. The flux conserver would be designed such that ...
continued below
Publisher Info:
Lawrence Livermore National Lab., CA (United States)
Place of Publication:
California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
The spheromak could be extended into the high beta regime by supporting the pressure on flux-conserving walls, allowing the plasma to be in a Taylor state with zero pressure gradient and thus stable to ideal and resistive MHD. The concept yields a potentially attractive, pulsed reactor which would require no external magnets. The flux conserver would be shaped to be stable to the tilt and shift instabilities. We envision a plasma which is ohmically ignited at low beta, with the kinetic pressure growing to beta > 1 by fueling from the edge. The flux conserver would be designed such that the magnetic decay time = the fusion burn time. The thermal capacity of the flux conserver and blanket would exceed the fusion yield per discharge, so that they can be cooled steadily. Ignition is estimated to require minimum technology: 30-100 MJ of pulsed power applied at a 0.5 GW rate generates an estimated bum yield > 1 GJ. The concept thus provides an alternate route to a fusion plasma that is MHD stable at high beta, yielding a reactor that is simple and cheap. The major confinement issue is transport due to grad(T), e.g. driven by high beta modes related to the ITG instability.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Fowler, T.K.; Hopper, E.B.; Moir, R.W. & Pearlstein, L.D.Wall-confined high beta spheromak,
article,
March 16, 1998;
California.
(digital.library.unt.edu/ark:/67531/metadc676147/:
accessed February 18, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.