Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Quarterly project status report, October 1--December 31, 1998

PDF Version Also Available for Download.

Description

The first series of experiments at the CMI-Tech Center was successfully conducted on October 14 and 15 with the participation of the University of Michigan team. The preliminary experimental results indicate that the die surface temperatures (or near the surface) have a close correlation with the metal pressure profiles. Considering the difference in timing of the peak die temperatures, the high melt temperature and hotter die temperature for Inter 54 might cause a longer solidification time, and the pressure would decrease more slowly than for Inter 12. The slopes of the metal pressure profiles at the low pressure setting are ... continued below

Physical Description

21 p.

Creation Information

Pehlke, R.D. & Hao, S.W. December 31, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The first series of experiments at the CMI-Tech Center was successfully conducted on October 14 and 15 with the participation of the University of Michigan team. The preliminary experimental results indicate that the die surface temperatures (or near the surface) have a close correlation with the metal pressure profiles. Considering the difference in timing of the peak die temperatures, the high melt temperature and hotter die temperature for Inter 54 might cause a longer solidification time, and the pressure would decrease more slowly than for Inter 12. The slopes of the metal pressure profiles at the low pressure setting are almost linear. This may mean that the low metal pressure couldn`t effectively keep a pressure channel opened. In other words, as temperature decreased, the solid fraction increased and the solidified shell strengthened, and the pressure, which couldn`t overcome the resistance, would drop linearly. However, at the high pressure, there are inflection points in the pressure profiles. The inflection points are at about 8,500 psi for both the low and the high melt temperature settings. This suggests that the metal pressure was sufficient enough to overcome the resistance of the solidified shell before the inflection point was reached. A preliminary microstructure analysis shows that the dendrite arms at the location near the gate are much coarser than that at the top of the casting. The influence of intensification pressure on microstructure needs further verification and study.

Physical Description

21 p.

Notes

OSTI as DE99001672

Source

  • Other Information: PBD: 31 Dec 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001672
  • Report No.: DOE/ID/13559--02(12/98)
  • Grant Number: FC07-97ID13559
  • DOI: 10.2172/307961 | External Link
  • Office of Scientific & Technical Information Report Number: 307961
  • Archival Resource Key: ark:/67531/metadc676140

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 17, 2015, 1:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pehlke, R.D. & Hao, S.W. Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Quarterly project status report, October 1--December 31, 1998, report, December 31, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc676140/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.