Experimental ion exchange studies are being conducted by the Pacific Northwest national Laboratory (PNNL) under the Efficient Separations and Processing (ESP) Crosscutting Program to evaluate newly emerging materials and technologies for removing cesium, strontium, technetium, and transuranic elements from simulated and actual wastes at Hanford. Previous work focused on applications to treat high-level alkaline tank wastes, but many of the technologies can also be applied in process and ground-water remediation. Ultimately, each process must be evaluated in terms of life-cycle costs, removal efficiency, process chemical consumption and recycle, stability of materials exposed to chemicals and radiation, compatibility with other process ...
continued below
Publisher Info:
Pacific Northwest National Lab., Richland, WA (United States)
Place of Publication:
Richland, Washington
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
Experimental ion exchange studies are being conducted by the Pacific Northwest national Laboratory (PNNL) under the Efficient Separations and Processing (ESP) Crosscutting Program to evaluate newly emerging materials and technologies for removing cesium, strontium, technetium, and transuranic elements from simulated and actual wastes at Hanford. Previous work focused on applications to treat high-level alkaline tank wastes, but many of the technologies can also be applied in process and ground-water remediation. Ultimately, each process must be evaluated in terms of life-cycle costs, removal efficiency, process chemical consumption and recycle, stability of materials exposed to chemicals and radiation, compatibility with other process streams, secondary waste generation, process and maintenance costs, and final material disposal. This report assesses the performance of the 3M-designed Process Absorber Development Unit (PADU) and the AlliedSignal-produced sodium nonatitanate (NaTi) material in trace quantities of strontium from simulated and actual Hanford N-Springs ground water. The experimental objective was to determine the strontium-loading breakthrough profile of a proprietary 3M-engineered material in either disk or cartridge forms.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kafka, T.M. & White, L.R.Ion exchange removal of strontium from simulated and actual N-Springs well water at the Hanford 100-N Area,
report,
June 1, 1996;
Richland, Washington.
(digital.library.unt.edu/ark:/67531/metadc676132/:
accessed April 20, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.