Evolution of 2D deuterium and impurity radiation profiles during transitions from attached to detached divertor operation in DIII-D

PDF Version Also Available for Download.

Description

This paper presents the detailed evolution of conditions along both the inner and outer divertor legs during the transition from attached ELMing H-mode to partially detached divertor (PDD) operation in DIII-D. Visible emission profiles in a poloidal plane show that in ELMing H-mode prior to deuterium gas injection, CIII emission peaks in the inner SOL near the X-point and deuterium emission (from ionization and recombination) peaks at the inner target plate near the inner strike point (ISP). The spatial profiles of the recombination and ionization zones, determined by forming images of the ratio of intensities from simultaneous images of D{sub ... continued below

Physical Description

18 p.

Creation Information

Fenstermacher, M.E.; Allen, S.L. & Hill, D.N. August 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents the detailed evolution of conditions along both the inner and outer divertor legs during the transition from attached ELMing H-mode to partially detached divertor (PDD) operation in DIII-D. Visible emission profiles in a poloidal plane show that in ELMing H-mode prior to deuterium gas injection, CIII emission peaks in the inner SOL near the X-point and deuterium emission (from ionization and recombination) peaks at the inner target plate near the inner strike point (ISP). The spatial profiles of the recombination and ionization zones, determined by forming images of the ratio of intensities from simultaneous images of D{sub {alpha}} and D{sub {gamma}} emission, show that recombination dominates the inner leg emission near the target; ionization dominates in a poloidally narrow zone upstream in the inner leg. After deuterium injection, when the PDD transition begins, the profiles of carbon visible emission show first an increase in the inner SOL near the X-point, followed by increases in emission in the lower regions of the outer leg. Deuterium emission at the transition onset decreases at th4e ISP and increases across the private flux region below the X-point. As the transition to PDD conditions proceeds the deuterium emission increases in the private flux region; recombination dominates near the floor and ionization higher near the X-point. Carbon emission appears along both divertor legs and at the X-point. In the final quasi-steady PDD state, the recombination emission in the outer leg is near the separatrix and along the target plate; emission from collisional excitation dominates in the upper part of the outer leg just below the X-point, and carbon emission is localized at the X-point. These results suggest that transport of neutral deuterium between the inner and outer divertor legs through the private flux region plays an important role in the initiation of outer leg detachment in DIII-D.

Physical Description

18 p.

Notes

INIS; OSTI as DE99000496

Source

  • 13. international conference on plasma surface interactions, San Diego, CA (United States), 18-22 May 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99000496
  • Report No.: GA-A--22861
  • Report No.: CONF-980560--
  • Grant Number: AC03-89ER51114;W-7405-ENG-48;AC05-96OR22464;FG03-95ER54294
  • Office of Scientific & Technical Information Report Number: 291093
  • Archival Resource Key: ark:/67531/metadc676015

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Aug. 3, 2016, 1:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fenstermacher, M.E.; Allen, S.L. & Hill, D.N. Evolution of 2D deuterium and impurity radiation profiles during transitions from attached to detached divertor operation in DIII-D, article, August 1, 1998; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc676015/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.