AN INVESTIGATION OF PENETRANT TECHNIQUES FOR DETECTION OF MACHINING-INDUCED SURFACE-BREAKING CRACKS ON MONOLITHIC CERAMICS

G. A. Forster and W. A. Ellingson

Date Published: February 1996

Prepared by
Argonne National Laboratory
Energy Technology Division
9700 Cass Avenue
Argonne, Illinois 60439

Funded by
Propulsion System Materials Program
Office of Transportation Technologies
the Assistant Secretary for Energy Efficiency and Renewable Energy
U.S. Department of Energy
EE 51 05 00 00

for
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-96OR22464

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Purpose</td>
<td>2</td>
</tr>
<tr>
<td>3. Approach</td>
<td>2</td>
</tr>
<tr>
<td>4. Results</td>
<td>2</td>
</tr>
<tr>
<td>a. Literature Review</td>
<td>2</td>
</tr>
<tr>
<td>b. Experimental Results</td>
<td>3</td>
</tr>
<tr>
<td>Part 1: Gaseous diffusion, Charged Particle, and Visible Dye</td>
<td>3</td>
</tr>
<tr>
<td>Part 2: Fluorescent Penetrants</td>
<td>7</td>
</tr>
<tr>
<td>5. Recommendations</td>
<td>18</td>
</tr>
<tr>
<td>6. References</td>
<td>18</td>
</tr>
<tr>
<td>Appendix A. Product Sheets</td>
<td>21</td>
</tr>
<tr>
<td>A.1 Magnaflux</td>
<td>23</td>
</tr>
<tr>
<td>A.2 Sherwin</td>
<td>39</td>
</tr>
<tr>
<td>Appendix B. List of Dye Penetrant Suppliers</td>
<td>43</td>
</tr>
</tbody>
</table>
Abstract

The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable.

Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the "statiflux" method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests.

The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. Advantages of this method were low after-test residuals and low environmental impact, while disadvantages included poor resolution power and poor-shape adaptability of the paper detector. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si3N4 and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent detectability.

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion Systems Materials Program, under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation.
An Investigation of Penetrant Techniques for Detection of Machining Induced Surface-Breaking Cracks on Monolithic Ceramics

by

G. A. Forster and W. A. Ellingson

1. Introduction

Detection of surface breaking cracks by low-cost penetrant methods has been an accepted nondestructive evaluation method for use on metal for many years and has been shown to be especially useful for defect detection on castings and weldments. Application of penetrants to ceramic components is relatively new. The American Society for Testing Materials (ASTM) developed a penetrant standard, E165-91 covering generalized penetrant test methods. This is supplemented by other standards that cover specific penetrants and methods. These standards have also been adopted by the American Society of Mechanical Engineers (ASME). However, standard E165-91 specifically does not address environmental or other safety problems related to the use of any materials or solvents, leaving that responsibility to the user. There are many penetrant methodologies available, but there are two basic penetrant types, visible and fluorescent. However, recent work (1,2) has suggested that fluorescent penetrants are best for ceramics.

The visible penetrant method usually is augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under stimulation by ultraviolet light. Flourescent penetrant is used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable.

Although fluorescent penetrants had been recommended in the literature, we briefly assessed visible penetrants as well as two unconventional crack detection “penetrant” methods. The two unconventional methods were: (a) "Statiflux", a method using a statically charged powder which adheres to cracks where there is a disruption of dielectric field and (b) a gaseous diffusion method under development in Russia wherein a gas (ammonia) diffuses into cracks and a detector utilizing treated paper is laid over the surface and changes color in
response to the gas coming from the cracks leaving a mirror image of any crack pattern.

2. Purpose

The purpose of this project was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining.

3. Approach

The approach used in this project was to first review the available literature and contact domestic ceramics suppliers to obtain the current status of penetrant application from their point of view. We also contacted manufacturers of dye penetrants and related materials. The second step was to conduct laboratory investigations to assess current approaches and to perhaps provide a direction for continued study should the results show promise.

4. Results

a. Literature Review

A review of the literature showed that there had been only limited publication on use of penetrants for ceramics materials. The most applicable and promising was the work of Horton (1), who demonstrated that use of fluorescent penetrants on highly polished ceramic ball bearings could detect critical cracks for rolling contact fatigue applications. What this work suggested was the apparent need for optical magnification when examining ceramics using fluorescent penetrants. All work here was on highly polished surfaces with surface finishes of Ra < .5 μm. Kölker, et al. (2), suggested that fluorescent penetrants could detect cracks with less than 0.1 μm opening and further, that these applications could be made on "green" bodies although "green" conditions were not specified. In 1993, Maling et al. (3), published an article which illuminated the concerns about environmental issues related to disposal of penetrants. Fluorescent penetrants use halocarbons (e.g., trichloroethylene) and the renewal of the Clean Air Act, the Clean Water Act and the Resources Conservation and Recovery Act
caused focus on the environmental "unfriendliness" of these halocarbons. Table 1 shows the environmental concerns as a function of the steps in the penetrant process and what is currently under study.

We also conducted a limited telephone survey. In this survey, ceramic component manufacturers indicated that they use fluorescent penetrant inspection (FPI) of their products on a routine basis. The materials and procedures used were considered proprietary. They also said they were addressing problem chemicals such as trichlorethylene in their procedures.

b. Experimental Results

Part 1: Gaseous diffusion, Charged Particle, and Visible Dye

Our exploratory effort to evaluate penetrant technologies included two non-standard techniques. These non-standard techniques were: (a) a capillary gaseous diffusion method (4) being developed at the Institute of Chemical Physics in Moscow, Russia, and (b) a charged particle method which involves use of electrically charged particles. This is a product produced by Stresscoat, Inc., of Upland, California.

Capillary Gaseous Diffusion

Very tight surface-breaking cracks in ceramics may be detectable by use of an appropriate gas instead of a liquid. Recently, a capillary gaseous diffusion method based on ammonia has been described by Marotta Scientific (4). In this method, a part under study is placed in a chamber with an environment containing gaseous ammonia. The overpressure is low, ≈0.1 atm. The "soak" time is dependent upon the part. The detector currently is a special impregnated paper similar in many respects to litmus paper. The rigidity of the paper detector limits the usefulness as complex contours cannot be followed by the "felt-like" paper detector. This method was studied at Argonne and the Russian scientists developing this technology visited Argonne and spent 2 days running tests. The obvious advantages are: a) low after-test residuals and b) low environmental impact. The current disadvantages are: a) the
<table>
<thead>
<tr>
<th>FPT Process Station</th>
<th>Environmental Issues in Conventional Implementations</th>
<th>Environmental Improvement Approaches</th>
<th>Residual Environmental Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 1: Part Cleaning</td>
<td>• Degreaser solvent wastes (organic or halocarbon solvents); health, safety, and environmental aspects of solvent vapor escape. • Sludge, grease, coating debris removed from part (dispersed in degreaser solvent).</td>
<td>Convert to non-solvent based cleaning and degreasing process such as steam cleaning or supercritical fluid cleaning (eliminates issues with solvent waste and solvent vapor escape).</td>
<td>Will still produce some form of aqueous-based oil or grease waste stream for treatment even if wash liquids (e.g., water for steam) are treated/recycled.</td>
</tr>
<tr>
<td>Station 2: Dye Applications</td>
<td>• Waste organic solvent from dye solution; health, safety, and environmental aspects of solvent vapor escape. • Toxic (possibly carcinogenic) dye compound (concentrated form and in solvent).</td>
<td>For high sensitivitv, probably cannot eliminate organic solvents. However, system can be changed to more benign solvents and equipment design can be adjusted to minimize vapor escape. Recycling solvent can limit waste output.</td>
<td>Dye will eventually degrade to point where it must be removed; with solvent recycling, volume can be minimized.</td>
</tr>
<tr>
<td>Station 3: Dye Rinsing</td>
<td>• Rinse water contaminated with organic solvent. • Rinse water contaminated with toxic (possibly carcinogenic) dye compound.</td>
<td>Equipment design can be optimized to minimize the volume of rinse water required; rinse water can be treated/recycled to minimize volume fluid requiring disposal.</td>
<td>Some amount of organic contaminated waste water will require disposal even with treatment or recycling.</td>
</tr>
<tr>
<td>Station 4: Emulsifier Application</td>
<td>• Used/aged emulsifier solution/penetrant in water • Wash water contaminated with emulsion of dye, dye solvent.</td>
<td>Switch completely to aqueous systems to eliminate solvents and minimize organics in rinse output; treat/recycle wash water to minimize volume requiring disposal.</td>
<td>Some amount of organic contaminated waste water will require disposal even with treatment or recycling.</td>
</tr>
<tr>
<td>Station 5: Developer Application</td>
<td>• Used/aged developer solution/penetrant (possibly made of an organic solvent) • Biocides in developer solution/penetration.</td>
<td>Switch to water-based developer dispersions (or to dry developers); convert to biocides that degrade or can be removed during waste treatment.</td>
<td>Some amount of organic contaminated waste water will require disposal even with treatment or recycling.</td>
</tr>
<tr>
<td>Station 6: Flaw Detection</td>
<td>• (Health and safety issues but no effluent environmental issues).</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Station 7: Part Cleaning</td>
<td>• Possibly organic or halocarbon wash solvent for removing developer and dye. • Rinse water contaminated with developer and dye/dye solvent. • Possible health, safety, environmental issues of cleaning solution vapors.</td>
<td>Convert to non-solvent based cleaning and degreasing process such as steam cleaning or supercritical fluid cleaning (eliminates issues with solvent waste and solvent vapor escape).</td>
<td>Will still produce some form of aqueous-based oil or grease waste stream for treatment even if wash liquids (e.g., water for steam) are treated/recycled.</td>
</tr>
</tbody>
</table>
poor resolving power of the detector as the up-take of ammonia in the
detector spreads giving a false crack width and b) the poor shape
adaptability of the paper detector.

Charged Particle

A method previously explored several years ago by one of the
investigators (G. Forster) for application to glass insulators, is a method
called "Statiflux." In this method, electrostatically charged power is
deposited on a non-conducting specimen and the charged particles tend
to cluster at crack lines on the surfaces. This method was tested but
soon eliminated because of poor detection on simulated crack specimens.
The particle sizes were too large for the crack sizes under study.

Visible Dye

Just to check the reported poor detection of visible dye technology,
an exploratory test was conducted. Indeed visible dye penetrants offer no
detection sensitivity for tight surface breaking cracks in ceramics.

Test Specimens

The comparison of these test methods was done using a set of four
25 mm diameter, 18 mm wide SiAlON ring specimens which had been
subjected to different thermal shock cycles: 0, 1, 2, 3 thermal shocks
with the tests being done at 600°C using water as the quench.

The results of comparing crack detection of these three methods is
shown in Fig. 1 where the same segment of the surface of one specimen
is shown. From these results, statiflux was shown to have the superior
detection based on visual observation. However, application of
fluorescent penetrant on the same specimen gives the results shown in
Fig. 2 which clearly provides sharper and better spatial definition.
Fig. 1. Comparison of dye penetrant methods. (a) visible dye penetrant, (b) gaseous diffusion and (c) statiflux, on the same piece of SiAlON 25 mm dia x 18 mm long.
Fig. 2. Same sample as in Fig. 1 but treated with fluorescent penetrant.

Part 2: Fluorescent Penetrants

The statiflux method, although promising on specimens with a network of cracks soon was shown to be ineffective when used on specimens with limited cracks. SiALON specimens were indented using a microhardness Vicker's indentor to produce specimens with few cracks. Figure 3 shows an optical photo micrograph of a crack emanating from one corner of the indent. The statiflux method did not detect this crack at all whereas fluorescent penetrant easily detected cracks of this size (see Fig. 5).
After the fluorescent penetrant method was verified for superior surface-breaking crack detection, a systematic study was conducted to evaluate two representative high sensitivity fluorescent penetrants; 1) RC-88 from Sherwin, Inc. and 2) ZL-37 from Magnaflux.a)

These manufacturers produce a general line of dye penetrant inspection materials. Both companies produce a highly penetrating fluorescent dye and a water based emulsifier. We tested materials from both as representative of all suppliers.

Material Safety Data Sheets for the materials indicate that they are non-toxic, slightly irritating to skin and eyes, and are safe when handled in a controlled environment (see Appendix A).

The basic procedures for fluorescent penetrant crack detection is as follows:

a)Other suppliers of dye penetrants are listed in Appendix B.
1. Clean the specimen.

2. Apply penetrant to the surface.

3. Allow penetrant to soak for a specified time (e.g., 10 minutes min.).

4. Remove excess penetrant from the surface with a suitable cleaner.

5. Apply ultraviolet (UV) light.

6. Visually scan surface for flaws with UV illumination using visual aids as appropriate.

Successful application of a procedure depends to a great extent on the skill of the user. For example, in Step 4, the removal technique must remove excess residual surface penetrant, but not remove penetrant from cracks. During inspection, the user must use judgment guided by experience as to what constitutes acceptable and unacceptable flaws.

As part of this study, we set up a penetrant laboratory (see Fig. 4) with venthood for venting the gases. We also modified an existing Nikon Optiphot Microscope (25-400X) with two additions: a) a special Hg-arc lamp and optical filter combination to allow UV illumination and b) a 512 x 480 x 8 bit CCD camera coupled to a computer with frame-grabber digitizer board. This allowed high magnification imaging and subsequent digital image archiving as well as digital image processing.

Test Specimens

Samples for microcrack studies using the two penetrants are listed in Table 2. The samples were identified by Roman numeral serial numbers because these could be scribed on the edges of the samples using a diamond marker.
Fig. 4. Photographs of the dye penetrant laboratory.
Procedures

The samples were first all ultrasonically cleaned with a biodegradable detergent (ALCONOX) in water and air dried by an air blower. Intentional cracks were then formed by indenting with a Vicker’s microhardness indentor. The first indents were made at 20 kg on SiAlON. Indents made on silicon carbide (SiC) or silicon nitride (Si₃N₄) at 20 kg showed crushing at the edges of the indent. This made measurement of crack lengths difficult. The indent load was reduced to 5 kg and indent edges still were crushed. We compromised and set the load at 10 kg for reasonable crack lengths and the cracks were measured from tip to tip across the indent.

Table 2. Test Samples

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Material</th>
<th>Sample Size</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>-- Silicon Carbide --</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>NT 230</td>
<td>3 x 4 x 27 mm</td>
<td>Norton Advanced Ceramics</td>
</tr>
<tr>
<td>II</td>
<td>“</td>
<td>3 x 4 x 30</td>
<td>“</td>
</tr>
<tr>
<td>III</td>
<td>Hexaloy SA</td>
<td>3 x 4 x 50</td>
<td>Carborundum</td>
</tr>
<tr>
<td>IV</td>
<td>“</td>
<td>3 x 4 x 50</td>
<td>“</td>
</tr>
<tr>
<td>-- Silicon Nitride --</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>SN 253</td>
<td>3 x 4 x 26</td>
<td>Kyocera</td>
</tr>
<tr>
<td>VI</td>
<td>“</td>
<td>3 x 4 x 22</td>
<td>“</td>
</tr>
<tr>
<td>VII</td>
<td>GN 10</td>
<td>3 x 4 x 25</td>
<td>Allied Signal Ceramic Components</td>
</tr>
<tr>
<td>VIII</td>
<td>“</td>
<td>3 x 4 x 25</td>
<td>“</td>
</tr>
<tr>
<td>IX</td>
<td>NT 164</td>
<td>3 x 4 x 50</td>
<td>Norton Advanced Ceramics</td>
</tr>
<tr>
<td>X</td>
<td>“</td>
<td>3 x 4 x 50</td>
<td>“</td>
</tr>
<tr>
<td>XI</td>
<td>SN 88</td>
<td>4 x 6 x 45</td>
<td>NGK</td>
</tr>
</tbody>
</table>

The procedure for penetrant application with both penetrants was identical. After indenting, no cleaning was necessary because the cracks had been made on a clean surface and had not been exposed to contaminants. The specific procedure we followed was:
1. Brush or dip on penetrant and allow to stand for at least ten minutes.

2. Rinse in running tap water for one minute.

3. Dip in emulsifier solution and slowly agitate for one minute.

4. Rinse in running tap water, one minute.

5. Air dry surface at about 100°F with clean air until surface appears dry.

6. Inspect under microscope with UV light within 1 to 2 hrs as the fluorescence decays with time.

In Steps 2 and 4 the one minute is approximate and may be reduced for simple shapes. In step 3 the timing is more critical and is dependent on the strength of the remover solution. The one minute time is recommended by both suppliers when using their emulsifier at recommended strength. Too short a time in the emulsifier will leave a film of penetrant on surfaces. A glow from this film during inspection will be an indication to either increase the time or to check the concentration of the emulsifier. Too long a time in the emulsifier will begin to remove penetrant from cracks and reduce the detection sensitivity.

Figure 5 show the results of following this procedure on an indent on sample XI.

Since the purpose of this work was to detect cracks on machined specimens, each specimen was measured for surface roughness using a Rank-Taylor-Hobson Talysurf equipped with a wedge stylus. The surface data are given in Table 3.
Fig. 5. Typical image results obtained: (a) visible light and (b) UV after treatment with fluorescent penetrant. Corner to corner across the indent is \(\sim 100 \mu m \).
Table 3. Surface Roughness for Penetrant Studies

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Ra, μm</th>
<th>Rq, μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>.056</td>
<td>.070</td>
</tr>
<tr>
<td>II</td>
<td>.054</td>
<td>.071</td>
</tr>
<tr>
<td>III</td>
<td>.089</td>
<td>.109</td>
</tr>
<tr>
<td>IV</td>
<td>.099</td>
<td>.126</td>
</tr>
<tr>
<td>V</td>
<td>.069</td>
<td>.109</td>
</tr>
<tr>
<td>VI</td>
<td>.186</td>
<td>.281</td>
</tr>
<tr>
<td>VII</td>
<td>.161</td>
<td>.201</td>
</tr>
<tr>
<td>VIII</td>
<td>.170</td>
<td>.214</td>
</tr>
<tr>
<td>IX</td>
<td>.122</td>
<td>.153</td>
</tr>
<tr>
<td>X</td>
<td>.124</td>
<td>.159</td>
</tr>
<tr>
<td>XI</td>
<td>.046</td>
<td>.060</td>
</tr>
</tbody>
</table>

Penetrant Comparison

With the limited number of samples, a comparison between the two penetrants was made by dividing the samples into two groups. Each sample was given three indents of 10 kg. Since the crack length was determined by measuring from tip to tip across a diagonal, this yields two cracks per indent or six cracks per sample. The first group, samples 2, 4, 6, 8, 10, were treated with ZL-37 and the second group, samples 3, 5, 7, 9, 11, were treated with RC-88 penetrant. The tip to tip crack length as seen using the penetrant were then measured, using the microscope.

To remove the penetrant the samples were then cleaned in an ultrasonic bath of distilled water and detergent (ALCONOX) followed by an ultrasonic bath in plain water and drying at ~160°F. After this cleaning procedure none of the cracks were visible under UV light.
However, some of the crushed areas around the indents were faintly visible.

The samples were then reinspected but with the other penetrant. That is samples 2, 4, 6, 8, 10 were treated with RC-88, and samples 3, 5, 7, 9, 11, treated with ZL-37. The crack lengths were again measured. The results are given in Table 4. Several observations can be made: First, the crack lengths for the same sample measure the same within one standard deviation for the two penetrants; second, crack lengths for samples of the same materials matched closer than the crack lengths of different materials and third, crack lengths for silicon carbide averaged 372 μm while for silicon nitride the average was 283 μm.

One possible reason for the wide scatter in crack lengths even for the same indent on the same sample is the subjective nature of picking the end points of a crack.

Figure 6 illustrates an observation we saw frequently. Surrounding each indent is a “cloud” of fluorescence. Under visible light this surface appears undisturbed. After exposure to the penetrant, the image shows areas of fluorescence, that are not removed by the detergent action of the remover. The fluorescence must remain under the surface where the remover is not effective. The stress of the indent must open a network of micro-micro cracks through the material that allows penetration of the penetrant. The surface away from the indent is undisturbed.

This same phenomenon shows up on other areas than around indents. It appears randomly over the surface, many times around a pit or inclusion. Figure 7 shows the effect around a pit. Perhaps this is an indication of surface damage caused by heavy grinding, the damage being accentuated by the discontinuity. This phenomenon deserves further study.

Importance of Optical Magnification

After a limited study, we have concluded that 100X magnification provides excellent detectability. However, 50X may be sufficient for many applications. This is significant as the speed of inspection would be greatly reduced if 100X is needed.
Table 4. Optically Measured Crack Lengths Using Fluorescent Penetrant

Indenter Load: 10Kg
Optical Magnification: 100X

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Crack Length (\mu \text{m})</th>
<th>Penetrant</th>
<th>Material Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>407 ± 24</td>
<td>ZL-37</td>
<td>NT 230 SiC</td>
</tr>
<tr>
<td>IV</td>
<td>372 ± 26</td>
<td>ZL-37</td>
<td>Hexaloy S.A. SiC</td>
</tr>
<tr>
<td>VI</td>
<td>275 ± 14</td>
<td>ZL-37</td>
<td>SN 253 Si(_3)N(_4)</td>
</tr>
<tr>
<td>VIII</td>
<td>291 ± 24</td>
<td>ZL-37</td>
<td>GN 10 Si(_3)N(_4)</td>
</tr>
<tr>
<td>X</td>
<td>262 ± 16</td>
<td>ZL-37</td>
<td>NT 164 Si(_3)N(_4)</td>
</tr>
<tr>
<td>III</td>
<td>341 ± 32</td>
<td>RC-88</td>
<td>Hexaloy SA SiC</td>
</tr>
<tr>
<td>V</td>
<td>303 ± 48</td>
<td>RC-88</td>
<td>SN 253 Si(_3)N(_4)</td>
</tr>
<tr>
<td>VII</td>
<td>277 ± 9</td>
<td>RC-88</td>
<td>GN 10 Si(_3)N(_4)</td>
</tr>
<tr>
<td>IX</td>
<td>269 ± 10</td>
<td>RC-88</td>
<td>NT 164 Si(_3)N(_4)</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>379 ± 36</td>
<td>RC-88</td>
<td>NT 230 SiC</td>
</tr>
<tr>
<td>IV</td>
<td>384 ± 10</td>
<td>RC-88</td>
<td>Hexaloy S.A. SiC</td>
</tr>
<tr>
<td>VI</td>
<td>282 ± 14</td>
<td>RC-88</td>
<td>SN 253 Si(_3)N(_4)</td>
</tr>
<tr>
<td>VIII</td>
<td>278 ± 14</td>
<td>RC-88</td>
<td>GN 10 Si(_3)N(_4)</td>
</tr>
<tr>
<td>X</td>
<td>264 ± 20</td>
<td>RC-88</td>
<td>NT 164 Si(_3)N(_4)</td>
</tr>
<tr>
<td>III</td>
<td>346 ± 36</td>
<td>ZL-37</td>
<td>Hexaloy S.A. SiC</td>
</tr>
<tr>
<td>V</td>
<td>325 ± 18</td>
<td>ZL-37</td>
<td>SN 253 Si(_3)N(_4)</td>
</tr>
<tr>
<td>VII</td>
<td>288 ± 27</td>
<td>ZL-37</td>
<td>GN 10 Si(_3)N(_4)</td>
</tr>
<tr>
<td>IX</td>
<td>283 ± 10</td>
<td>ZL-37</td>
<td>NT 164 Si(_3)N(_4)</td>
</tr>
</tbody>
</table>
Fig. 6. An indent in Sample I surrounded by a cloud of fluorescence (100X).

Fig. 7. Disturbed material on Sample I surrounding a void (400X). The void is ~7 μm dia.
5. **Recommendations**

Based on the results of this limited study, we recommend the following:

1. Use only fluorescent penetrants for detection of surface-breaking cracks generated by machining.

2. The protocol to be followed should utilize high (>25X) optical magnification with UV light delivered to the test piece.

3. Verification of crack detection sensitivity should be established through a limited 1-year follow-on study whereby the Vicker’s indent is polished away and crack length measured using fluorescent penetrant.

4. Automation of detection should be assessed as part of a limited one-year follow-on using the digital image data acquisition and new advanced digital image processing methods.

6. **References**

Appendix A: Product Sheets

A.1 ZL-37/ZR-10B

A.2 RC-88/ER-83A
General Description

ZL-37 is a post emulsifiable fluorescent penetrant, used reliably for a wide range of ultrahigh sensitivity, critical applications.

ZL-37 is ideally suited for titanium turbine components, investment castings, and other high-stress critical components where detection of fine, tight, and broad open shallow discontinuities is a must.

ZL-37 is formulated to be impervious to water to assure against being overwashed from defects. ZL-37 requires the application of a lipophilic emulsifier or a hydrophilic emulsifier to render it washable with water, and the resultant mixture is biodegradable.

ZL-37 is formulated for rapid separation from water, for efficient effluent clean-up by coalescer, separation settling pond or charcoal filtration.

ZL-37 fluoresces a bright greenish-yellow color under ultraviolet radiation. Use blacklight sources with peak wavelength of 365 nanometers such as MAGNAFLUX® ZB-100. ZL-37 is formulated to produce heat stable fluorescent indications under normal drying conditions (140°F/60°C).

ZL-37 meets OSHA requirements for Class III B liquids due to its high flash point and can be used in open dip tanks.

Composition

ZL-37 is composed of alkyl aryl phosphate, high boiling petroleum oils, and fluorescent dyes.

Safety

ZL-37 is intended for industrial use by qualified personnel only.

Do not smoke or eat while using ZL-37. Wash hands thoroughly after use. To protect hands from staining and drying out, protective hand wear is recommended.

Store ZL-37 in closed containers away from open flame or heat.

Department of Labor Material Safety data sheets available.

02/18/92
ZYGLO Post Emulsifiable Penetrant
(ZL-37)

Product Data Sheet
ZY-PE-11a

Typical Properties (Not a Specification)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity @100°F</td>
<td>13.4 cs</td>
</tr>
<tr>
<td>Flash Point</td>
<td>Greater than 200°F (P.M.C.C.) (93.3°C)</td>
</tr>
<tr>
<td>Density</td>
<td>8.1 lbs./gal. (959 gms./L)</td>
</tr>
<tr>
<td>Sulfur</td>
<td>Less than 1000 ppm</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Less than 1000 ppm</td>
</tr>
<tr>
<td>Sodium</td>
<td>Less than 100 ppm</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Less than 50 ppm</td>
</tr>
</tbody>
</table>

Noncorrosive per MIL-I-25135
Compatible with titanium and high nickel alloys

Like all MAGNAFLUX® materials, ZL-37 is closely controlled to provide unique batch to batch consistency and uniformity to assure optimum process control and inspection reliability. Batch certification available upon request.

Method of Application

Test parts must be clean, free of all oil, grease or other foreign contaminating substances, and dry, before penetrant is applied. ZL-37 can be applied by immersion dip, brush or flow on, conventional or electrostatic spray. Area to be inspected must be completely covered with penetrant.

Penetration Time and Temperature

The generally accepted minimum penetration time is 2 to 5 minutes. Some specifications may require longer dwell times. ZL-37 is generally used between 50°F to 125°F

Penetrant Removal

ZL-37 requires the use of a Zygo lipophilic emulsifier or hydrophilic emulsifier to render it water washable.

When using ZL-37 with hydrophilic emulsifier it is advantageous to prerinse the ZL-37 covered part with plain water spray (50°F - 100°F) (20 - 40 psig) before the emulsifier application. The prerinse removes the bulk of the surface penetrant but leaves a thin film, sufficient for quality inspection. The purpose of the prerinse is to lower the amount of penetrant entering the emulsifier tank (dip application), contaminating it and lowering its activity. The prerinse effluent can be treated to separate the penetrant and water to the extent that the water can be reused in the prerinsing operation.

Recommended emulsifiers for use with ZL-37 are:

ZE-3 ZE-4B ZR-10B

02/18/92
Penetrant Removal (Continued)

For inspection of small areas the solvent wipe technique is commonly employed, using SKC-NF or SKC-S Cleaner/Remover. Moisten a clean wiping media with SKC-NF or SKC-S and wipe inspection area free of surface penetrant. Do not flood surface with cleaner/remover as sensitivity may be impaired.

Developer Application

Zyglo developers should be used to maximize the sensitivity of ZL-37. Aqueous developers are applied prior to drying; dry powder and nonaqueous developers after drying (140°F/60°C).

Recommended developers for use with ZL-37 are:

- ZP-4B
- ZP-5B
- ZP-9E
- ZP-9F
- ZP-13A
- ZP-14
- SKD-NF
- SKD-S
- SKD-S2

MIL-I-25135 Classification

"E" Revision - Type I, Method B, Level 4 Penetrant with ZE-3 or ZE-4B emulsifier.
"E" Revision - Type I, Method D, Level 4 Penetrant with ZR-10B emulsifier (20%).

Specification Compliance

- MIL-I-25135
- MIL-I-6866
- MIL-STD-271
- Boeing BAC 5423 PSD 6-46 or 8-4
- Garrett EMS 52309E
- Pratt & Whitney
- PMC 4354-2
- ASTM E-165
- ASME B & PV Code, Sec. V
- AMS-3157
- McDonnell Douglas PS-21202
- AECL
- MIL-STD-2132

How Supplied

- 1 gallon can
- 5 gallon pail
- 20 gallon drum
- 55 gallon drum

Coverage

- 1 gallon approximately 900 square feet

Warning:

Penetrants attack and even dissolve many kinds of plastic pipe. Polyvinyl chloride (PVC) pipe is especially vulnerable, and can crumble after only a few days of exposure. Even diluted penetrant rinsings attack it rapidly. ABS plastic pipe is nearly as sensitive. When installing plumbing to handle penetrant rinsings, use metal pipe.

02/18/92
MAGNAFLUX\textregistered MATERIAL SAFETY DATA SHEET

ZYGLO\textregistered PENETRANT ZL-37

1. IDENTIFICATION
Company: MAGNAFLUX\textregistered
Address: 7301 West Ainslie Avenue, Harwood Hts., Illinois 60656
Telephone No.: (708) 867-8000 (Off-Hour Emergency Number - CHEMTREC - 1-800-424-9300).
Product Use: Fluorescent inspection penetrant
Packages: 1 gallon cans, 5 gallon pails, 20 gallon and 55 gallon drums
NFPA Rating: Health 1, Flammability 1, Reactivity 0
PIN: None
Revision Date: June 4, 1993

2. HAZARDOUS INGREDIENTS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Wt./Wt. %</th>
<th>CAS #</th>
<th>TLV</th>
<th>PEL</th>
<th>LD(_{50})</th>
<th>LC(_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severely hydrocracked heavy naphthenic distillates (petroleum)</td>
<td>30-60</td>
<td>64742-52-5</td>
<td>not avail.</td>
<td>not avail.</td>
<td>not avail.</td>
<td>not avail.</td>
</tr>
<tr>
<td>Isodecyl diphenyl phosphate</td>
<td>15-40</td>
<td>29761-21-5</td>
<td>not avail.</td>
<td>not avail.</td>
<td>15.9 g/kg (oral/rat)</td>
<td>2.2 mg/l [6 hr/(rat/24 h)]</td>
</tr>
<tr>
<td>Poly(oxy-1,2-ethanediyl), - (monylophenyl)-2-hydroxy</td>
<td>3-7</td>
<td>9016-45-9</td>
<td>not avail.</td>
<td>not avail.</td>
<td>2g/kg (oral/rat)</td>
<td>not avail.</td>
</tr>
</tbody>
</table>

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW
Bland, oily liquid which may irritate the skin and eyes. Difficult to ignite, but will burn vigorously, if engulfed in fire.

POTENTIAL HEALTH EFFECTS
Skin Contact: Can irritate by removing natural skin oils on long or repeated exposures.

Eyes: May cause irritation.

Inhalation: Not significant at room temperatures. When heated or sprayed, ZL-37 vapors may cause dizziness and nausea.

Ingestion: Not significant in small (mouthful) amounts.

Medical conditions known to be aggravated by exposure to product: None

4. FIRST AID
Skin Contact: Wash off with soap and water. Use soothing lotion.

Eyes: Rinse carefully under upper and lower eyelids using plenty of water.

Inhalation: Remove to fresh air if dizzy or nauseated.

Ingestion: Do not induce vomiting. Accidental ingestion of a small mouthful is not expected to cause significant harm.

NOTE: In all severe cases, contact physician immediately. Local telephone operators can furnish number of regional poison control center.

5. FIRE HAZARD
Conditions of flammability: Heating above 200°F (93°C) in presence of ignition sources.

Flash point: Min. 200°F (93°C) (Pensky-Martens closed cup)

Flammable limits in air: 1% to 6%

Extinguishing media: Carbon dioxide, foam

Special fire fighting procedures: Keep containers cool with water spray. Do not spray water directly on burning ZL-37. It may float and spread the fire.

Hazardous combustion products: Smoke, soot, oxides of carbon and nitrogen.

Unusual fire hazards: None

6. ACCIDENTAL RELEASE MEASURES
Mop up or sweep up with absorbent. (For disposal, see Section 13.)

7. HANDLING AND STORAGE
Avoid breathing spray mist.

Avoid eye contact.

Avoid repeated or prolonged skin contact.

Store away from heat source.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Controls: None, unless applied as spray. Use where ventilation will carry spray mist away from occupied areas.

Personal protection: Wear safety glasses to protect eyes. Wear nitrile rubber gloves if hand exposure is unavoidable.

Respirator with filter if sprayed in enclosed, unventilated space.

Page 1 of 2 (ZL-37)

A Division of Illinois Tool Works Inc.
7301 West Ainslie Avenue Harwood Heights, IL 60656 Telephone: 708 867-8000 Fax: 708 867-6833
9. **PHYSICAL PROPERTIES**

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial boiling point (bulk)</td>
<td>Min. 455°F (235°C) (ASTM D-86)</td>
<td>Vapor pressure</td>
<td>< 0.10mm @ 70°F (21°C)</td>
</tr>
<tr>
<td>Percent volatile</td>
<td>None</td>
<td>Vapor density</td>
<td>Heavier than air</td>
</tr>
<tr>
<td>Density/sp. gravity</td>
<td>0.96</td>
<td>Evaporation rate</td>
<td>Negligible</td>
</tr>
<tr>
<td>Water solubility</td>
<td>0%</td>
<td>Appearance</td>
<td>Green oily liquid</td>
</tr>
<tr>
<td>pH</td>
<td>Neutral</td>
<td>Odor</td>
<td>Mild odor</td>
</tr>
</tbody>
</table>

10. **STABILITY AND REACTIVITY**

<table>
<thead>
<tr>
<th>Stability</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incompatibility</td>
<td>None</td>
</tr>
<tr>
<td>Hazardous decomposition products</td>
<td>Soot, oxides of carbon if heated to combustion temperatures.</td>
</tr>
<tr>
<td>Reactivity</td>
<td>None</td>
</tr>
</tbody>
</table>

11. **TOXICOLOGICAL INFORMATION**

<table>
<thead>
<tr>
<th>Carcinogenicity</th>
<th>Contains no known or suspected carcinogens listed with OSHA, IARC, NTP, or ACGIH.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold limit value</td>
<td>5 mg/m^3 for oily mist</td>
</tr>
<tr>
<td>WHMIS information (Canada):</td>
<td>According to available information, the ingredients have not been found to show reproductive toxicity, teratogenicity, mutagenicity, skin sensitization, or synergistic toxic effects with other materials.</td>
</tr>
</tbody>
</table>

12. **ECOLOGICAL INFORMATION**

No data is available on ZL-37. It floats on water and can be skimmed off. Its low vapor pressure may exempt it from VOC restrictions.

13. **DISPOSAL**

As a non-hazardous oily waste, incinerate or send to waste handler who can blend it into secondary fuels.

RCRA: Not a hazardous waste

U.S. EPA Waste Number: None

14. **TRANSPORTATION**

<table>
<thead>
<tr>
<th>Proper shipping name</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard class or division</td>
<td>None</td>
</tr>
<tr>
<td>Identification No.</td>
<td>None</td>
</tr>
<tr>
<td>Packing Group</td>
<td>None</td>
</tr>
</tbody>
</table>

15. **REGULATORY INFORMATION**

<table>
<thead>
<tr>
<th>TSCA:</th>
<th>All ingredients are listed in TSCA inventory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERCLA:</td>
<td>Not reportable</td>
</tr>
<tr>
<td>SARA TITLE III, Section 313:</td>
<td>No reportable ingredients</td>
</tr>
<tr>
<td>California Proposition 65:</td>
<td>Contains nothing on this list</td>
</tr>
<tr>
<td>WHMIS Class (Canada):</td>
<td>D-2B</td>
</tr>
</tbody>
</table>

Note: This MSDS has been prepared to meet WHMIS (Canada) requirements with the exception of using 16 headings.

16. **OTHER INFORMATION**

Revision Statement: The MSDS format has been altered to conform to WHMIS (Canada) requirements in Sections 1, 2, 5, 9, 11, 13, 15, 16

Supersedes: MSDS dated 1/20/83

Signed by: Bruce C. Graham, Chief Chemist
General Description

ZR-10B is a biodegradable, pinkish, slightly viscous liquid. ZR-10B is a 100% active concentrate which is diluted in water when used as an emulsifier for Zyglo PE penetrants. ZR-10B is very low in sulfur, halogens and sodium content.

Utilization of ZR-10B Hydrophilic Emulsifier affords such advantages as: minimization of fluorescent background on rough surfaces, minimization of bleedout from hollow parts, reduced consumption of expendable materials, ease of use in close loop systems and reduced effluent pollutants. ZR-10B Hydrophilic Emulsifier yields the most reliable and reproducible test results due to its controlled Zyglo PE penetrant removal.

Composition

ZR-10B is composed of polyols and surface active agents.

Safety

ZR-10B is intended for industrial use by qualified personnel only.

Do not smoke or eat while using NDT materials. Wash hands thoroughly after use. Protective hand wear is recommended to prevent drying of skin. If ZR-10B solution is sprayed, avoid breathing mist, either by using adequate ventilation or by wearing respirator with mist filter.

Department of Labor Material Safety data sheets available upon written request.

Typical Properties (Not a Specification)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Pinkish Red</td>
</tr>
<tr>
<td>Viscosity @ 100°F</td>
<td>Greater than 200°F</td>
</tr>
<tr>
<td>Flash Point</td>
<td>Greater than 200°F</td>
</tr>
<tr>
<td>Density @ 60°F</td>
<td>Greater than 200°F</td>
</tr>
<tr>
<td>Water Tolerance</td>
<td>Greater than 200°F</td>
</tr>
<tr>
<td>Corrosion</td>
<td>Non-corrosive</td>
</tr>
<tr>
<td>Sulfur</td>
<td>Less than 1000 ppm</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Less than 1000 ppm</td>
</tr>
<tr>
<td>Sodium</td>
<td>Less than 100 ppm</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Less than 50 ppm</td>
</tr>
</tbody>
</table>

Like all Magnaflux Corporation materials ZR-10B is closely controlled to provide unique batch to batch consistency and uniformity to assure optimum process control and inspection reliability. Batch certification available upon request.
Pre-Rinse

The pre-rinse step is recommended before the application of a hydrophilic emulsifier like ZR-10B. Pre-rinse is a water spray employed to mechanically reduce the film of PE penetrant on a part before entering the emulsifier bath. This process step prolongs the emulsifier bath life by lowering the amount of penetrant contaminating the bath. The pre-rinse and hydrophilic emulsifier process are ideally suited for closed loop low pollution systems.

Application and Emulsification

ZR-10B concentrate is diluted in water before it is used as an emulsifier/remover. The hydrophilic emulsifier is generally employed as a spray or an immersion dip. The concentration used will determine the amount of contact time required to remove the surface penetrant.

Spray Method

If the spray method of emulsifier application is used, an injector or metering pump is used to control the concentration. The general spray concentration range is 0.1% to 0.5% remover. Higher concentrations up to 5% may be used but care is required to avoid over removal. Spray removal should be employed under blacklight illumination to control removal of penetrant from the surface. A clean water rinse is recommended to eliminate emulsifier/penetrant residues.

Immersion Method

If the immersion dip method is employed the general concentration range is 5% to 33% remover to water. The recommended concentration range is 20% to 33% which optimizes remover activity, bath life, economics and process rate. The penetrated part is immersed in the bath, which is gently agitated by mechanical or air means. The length of time the part is in the bath will vary with the concentration of the bath, the type penetrant being used, specification requirements and the desired results. At 20% concentration the immersion contact time generally ranges between 30 - 180 seconds.

The immersion dip is followed by a clean water spray to remove any penetrant/emulsifier residues.

The use of foam, created by heavy agitation of the emulsifier bath, as a remover method is possible. The foam will act as a remover, however it is not as effective overall for maximum performance. The foam does not enter hollow parts as readily as the liquid immersion and will therefore be less effective.
Concentration Control

The concentration of hydrophilic remover baths can be monitored using a refractometer and the charts provided (Figures 1 and 2). The water content of the bath can also be determined using the procedure described in ASTM D-95.

Specification Compliance

<table>
<thead>
<tr>
<th>Specification</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-I-25135</td>
<td>McDonnell Douglas P 21202</td>
</tr>
<tr>
<td>MIL-STD-6866</td>
<td>Garrett EMS 52309</td>
</tr>
<tr>
<td>MIL-STD-271</td>
<td>Boeing BAC 5423 PSD 6-46 or 8-4</td>
</tr>
<tr>
<td>ASME B & PV code, Sec. V</td>
<td>RDT F3-8T</td>
</tr>
<tr>
<td>ASTM E-165</td>
<td>AECL</td>
</tr>
<tr>
<td>Stone & Webster QAD 9.24</td>
<td>Pratt & Whitney PMC 4355-2</td>
</tr>
</tbody>
</table>

How Supplied

- 1 gallon can
- 5 gallon pail
- 20 gallon drum
- 55 gallon drum

References: Zyglo Process Data Sheets ZY-4, ZY-5

For price information, refer to Price Page.
Figure I. Remover Concentration Chart
Using a Portable Hand-Held Refractometer (MAGNAFLUX P/N 513829)
Figure 2. Remover Concentration Chart
Using a Laboratory Precision Refractometer
MAGNAFLUX® MATERIAL SAFETY DATA SHEET
ZYGLO® EMULSIFIER ZR-106

1. IDENTIFICATION
Company: MAGNAFLUX®
Address: 7301 West Ainslie Avenue, Harwood Hts., Illinois 60656
Telephone No.: (708) 867-8000 (Off-Hour Emergency Number - CHEMTREC - 1-800-424-9300).
Product Use: Penetrant remover
Packages: 1 gallon can, 5 gallon pail, 20 gallon and 55 gallon drums
NFPA Rating: Health 1, Flammability 1, Reactivity 0
PIN: None
Revision Date: November 24, 1993

2. HAZARDOUS INGREDIENTS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>W/ Wt. %</th>
<th>CAS #</th>
<th>TLV</th>
<th>PEL</th>
<th>LD50</th>
<th>LC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly (oxy-1,2-ethanediyl, oxynaphthylene-1,4-hydroxy)</td>
<td>60-100</td>
<td>9015-45-9</td>
<td>not avail.</td>
<td>not avail.</td>
<td>2 g/kg (oral/rat)</td>
<td>not avail.</td>
</tr>
<tr>
<td>2-methyl-2,4-pentanediol</td>
<td>30-60</td>
<td>10741-5</td>
<td>25 ppm (ceiling)</td>
<td>25 ppm (ceiling)</td>
<td>2.8 g/kg (oral/dog)</td>
<td>not avail.</td>
</tr>
</tbody>
</table>

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW
Bland, oily liquid which may irritate the skin and eyes.
Difficult to ignite, but will burn vigorously if engulfed in fire.

POTENTIAL HEALTH EFFECTS
Skin Contact: Can irritate by removing natural skin oils on long or repeated exposures.
Eyes: Irritating.
Inhalation: Not significant at room temperatures. When heated or sprayed, ZR-10B vapors may cause dizziness and nausea.
Ingestion: Not significant in small (mouthful) amounts.

Medical conditions known to be aggravated by exposure to product: None

4. FIRST AID
Skin Contact: Wash off with soap and water. Use soothing lotion.
Eyes: Rinse carefully under upper & lower eyelids using plenty of water.
Inhalation: Remove to fresh air.
Ingestion: Do not induce vomiting. Accidental ingestion of a small mouthful is not expected to cause significant harm.

NOTE: In all severe cases, contact physician immediately. Local telephone operators can furnish number of regional poison control center.

5. FIRE HAZARD
Conditions of flammability: Heating above 200°C (93°C) in presence of ignition sources.
Flash point: Min. 200°F (93°C) (Pensky-Martens closed cup)
Flammable limits in air: 1% to 6%
Extinguishing media: Carbon dioxide, foam
Special fire fighting procedures: Keep containers cool with water spray. In use, ZR-10B is dissolved into water, nearly eliminating its ability to burn.
Hazardous combustion products: Smoke, soot, oxides of carbon
Unusual fire hazards: None

6. ACCIDENTAL RELEASE MEASURES
Mop up or sweep up with absorbent. (For disposal, see Section 13.)

7. HANDLING AND STORAGE
Avoid breathing spray mist.
Avoid eye contact.
Avoid repeated or prolonged skin contact.

EXPOSURE CONTROLS/PERSONAL PROTECTION

Controls: None, unless applied as spray. Use where ventilation will carry spray mist away from occupied areas.
Personal protection: Wear safety glasses to protect eyes. Wear nitrile rubber gloves if hand exposure is unavoidable. Respirator with filter if sprayed in enclosed, unventilated space.
PHYSICAL PROPERTIES
Initial boiling point (bulk):
Min. 385°F (196°C) (ASTM D-86)
Percent volatile:
None
Density/sp. gravity:
0.9
Water solubility:
100%
pH:
Neutral
Vapor pressure:
< 0.10mm @ 70°F (21°C)
Vapor density:
Heavier than air
Evaporation rate:
Negligible
Appearance:
Pink viscous liquid
Odor:
Mild odor

STABILITY AND REACTIVITY
Stability:
Stable
Incompatibility:
None
Hazardous decomposition products:
Soot, oxides of carbon if heated to combustion temperatures.
Reactivity:
None

TOXICOLOGICAL INFORMATION
Carcinogenicity:
Contains no known or suspected carcinogens listed with OSHA, IARC, NTP, or ACGIH.
Threshold limit value:
5 mg/m³ for oily mist
WHMIS information (Canada):
According to available information, the ingredients have not been found to show reproductive toxicity, teratogenicity, mutagenicity, skin sensitization, or synergistic toxic effects with other materials.

ECOLOGICAL INFORMATION
No data is available on ZR-105. It dissolves into water and is biodegradable. Its low vapor pressure may exempt it from VOC restrictions.

DISPOSAL
As a non-hazardous oily waste, incinerate or send to waste handler who can blend it into secondary fuels.

TRANSPORTATION
Proper shipping name: Bulk
Hazard class or division: None, not restricted
Identification No.: None
Packing Group: None

REGULATORY INFORMATION
TSCA:
All ingredients are listed in TSCA inventory.
CERCLA:
Not reportable
SARA TITLE III, Section 313:
No reportable ingredients
California Proposition 65:
Contains nothing on this list
WHMIS Class (Canada):
D-2B

Note: This MSDS has been prepared to meet WHMIS (Canada) requirements with the exception of using 16 headings.

OTHER INFORMATION
Revision Statement: Section 2 - TLV and PEL values were corrected.
Supersedes: MSDS dated 6/1/93
Signed by:
Bruce C. Graham, Chief Chemist
RC-88 FLUORESCENT PENETRANT

Approved Type I, Methods B C & D, Level 4, MIL-I-25135 Rev. D & E

Description: RC-88 is a nonwater-washable, ultra-high sensitivity (Level 4), fluorescent penetrant, formulated for super critical inspections. It is a grade above Sherwin RC-77 fluorescent penetrant. It is an OSHA Class IIIb material. Flash point over 200°F. Complies with low-sulfur and low-halogen requirements. Excellent heat and UV stability.

Special Features: RC-88 can be considered a special purpose material; formulated with a single objective:

To find the dangerous microscopic flaw, which other penetrant systems overlook!

To do this, RC-88 is charged with a near maximum quantity of heat stable dyes. As a result, the visibility of dangerous microscopic crack indications is at a high level. Flaws, barely observable, or not visible at all, with other Level 4 penetrants are fully apparent with RC-88.

RC-88 was invented primarily for evaluating the critical components of turbine engines—discs, compressor blades, fan blades. It gives added assurance that flaws conducive to catastrophic failures will be detected, *not overlooked*.

Additionally, RC-88 provides a higher degree of heat and UV stability, which are especially important when detecting microscopic flaws, giving further assurance that extremely microscopic flaw indications will not be lost in the drying oven, but will remain visible for detection.

Considering the cost of one overlooked catastrophic failure causing crack, RC-88 is not just cost effective, it is indispensable. In some areas, there is no excuse for not using the best material and process available.

While RC-88 is approved for use with both hydrophilic (Method D) and lipophilic (Method B) emulsifiers, only Method D (hydrophilic emulsifier) is recommended for highly critical inspections.

Companion Materials:

- **Developers** - Sherwin D-90G Dry Powder (form a)
 Sherwin D-100 Nonaqueous (form d)
 Sherwin D-100NF Nonaqueous (form d)
 Sherwin D-110A.1 Nonaqueous (form c)
 Sherwin D-113G.1 Water Soluble (form b)
 equivalent QPL-25135-listed developers

- **Emulsifiers** - Sherwin ER-83A Hydrophilic Emulsifier (method D)
 Sherwin ER-85 Lipophilic Emulsifier (method B)

- **Removers** - Sherwin DR-61 (Class 1)
 Sherwin DR-60 (Class 2)
 equivalent QPL-25135-listed removers

Container Sizes:

- one-gallon cans
- case of 4 one-gallon cans
- five-gallon pail
- 55-gallon drum

Basic Instructions: (These instructions describe the basic process, but they may be amended by the user to comply with applicable specifications and/or inspection criteria provided by the contracting agency.)

1. **Application:** Apply RC-88 only to clean, dry surfaces by spraying, flowing, brushing or dipping.

2. **Dwell-Time:** A 10 minute minimum dwell time is suggested. When particularly tight cracks are suspected, or the part is especially critical, the dwell time may be extended to 30 minutes, or longer.

revised 14 April 1993
Do not soak the part. To increase sensitivity, as well as conserve material, allow the penetrant to drain from the part surface back into the penetrant tank.

3. Removal
 A. Hydrophilic Dip Method
 a. pre-wash: following dwell, use a plain water rinse to remove 90-99% of the undrained penetrant from surface. Use a coarse spray at 20-50 psi; use ambient temperature—not heated—water. Do not over wash.
 b. immersion: immerse and agitate the part in 20-30% hydrophilic emulsifier solution. Immersion time and agitation will vary with part geometry and surface condition.
 c. rinse: remove part from tank; clean with coarse, plain water spray
 B. Hydrophilic Spray Method
 a. wash: inject a 0.1-5.0% emulsifier solution into pressurized rinse water; spray the part. Use a coarse spray at 20-50 psi; use ambient temperature—not heated—water. Use very dilute emulsifier solutions since spraying "scrubs" the penetrant from part. Wash time and solution concentrations vary with part geometry and surface conditions.
 b. rinse: use coarse plain water spray to remove all traces of emulsified penetrant.
 C. Lipophilic Method
 a. emulsification: dip part into undiluted lipophilic emulsifier, remove part, and allow excess emulsifier to drain back into tank. During drain time, the emulsifier will mix with surface penetrant. Parts with rough surfaces require longer drain times.
 b. rinse: use coarse, plain water spray to remove all traces of emulsified penetrant.

4. Drying: A recirculating oven no higher than 160°F (71°C) is suggested. Leave part in oven just long enough to evaporate surface moisture. Drying is improved by using pressurized air to disperse and remove excess water before placing part in oven.

5 Developing: RC-88 is self-developing and flaw marks are usually apparent almost immediately after the part is dry. However, since RC-88 is used on critical components to find microscopic and incipient cracks, using a developer is mandatory. Sherwin D-90G or D-99A, both dry powders, are recommended for production inspection. Sherwin D-100 or D-100NF, both nonaqueous, are suggested for small areas. (Always apply nonaqueous developers in a light coat.)

Applicable Specifications:

- MIL-I-25135 Rev's. D & E
- ASME Code NDT, Sec. V
- Navships 250-1500
- Lockheed
- BAC 5423
- RDT-F3-6T
- ASTM-E-165

<table>
<thead>
<tr>
<th></th>
<th>Northrup</th>
<th>AECL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-STD-271 E</td>
<td>AMS-3155</td>
<td>MIL-STD 6866</td>
</tr>
<tr>
<td>GE-DFO</td>
<td>General Dynamics</td>
<td>AMs-2647</td>
</tr>
<tr>
<td>Sikorsky Aircraft</td>
<td>AMS-3157</td>
<td>Garrett EMS 52309</td>
</tr>
<tr>
<td>MIL-STD-2132</td>
<td>AMS-3157</td>
<td>MIL-STD 2132</td>
</tr>
</tbody>
</table>

RC-88 lends itself to heat assisted penetrant methods, and is especially conducive to inspecting in-service parts, e.g., turbine engine parts. Write for heat assisted method particulars.

PRECAUTIONARY INFORMATION

RC-88 is a combustible liquid. Use with adequate ventilation and away from sparks, fire or open flame. Avoid prolonged or repeated contact with skin. Do not take internally. Avoid prolonged or repeated breathing of vapors. Read the label on the container for additional precautionary information.
Material Safety Data Sheet

May be used to comply with OSHA's Hazard Communication Standard, 29 CFR 1910.1200. Standard must be consulted for specific requirements.

IDENTITY (As Used on Label and List)
DUBL-CHEK PENETRAFE RUG

U.S. Department of Labor
Occupational Safety and Health Administration
(formerly Non-Mandatory Form)
Form Approved
OMB No. 1218-0072

Note: Blank spaces are not permitted. If any item is not applicable, or no information is available, the space must be marked to indicate that.

Transportation Emergency: CHEMTREC 800/424-9300

Section I

Manufacturer's Name
Sherwin Incorporated

Address (Number, Street, City, State, and ZIP Code)
5530 Borwick Ave.
South Gate, CA 90230

Section II — Hazardous Ingredients/Identity Information

Hazardous Components (Specific Chemical Identity; Common Name(s))
Mixture esters, phosphate/phthalate plasticizing agents.

OSHA PEL
Unlisted

ACGIH TLV
Unlisted

Recommended Other Limits % (optional)
While exposure limits are not established, a general guideline for products of this type is 5 mg/m3 (8-hour time-weighted average)

Section III — Physical/Chemical Characteristics

Boiling Point
440°F

Specific Gravity (H2O = 1)
0.9050

Vapor Pressure (mm Hg)
N/A

Melting Point
N/A

Vapor Density (AIR = 1)
N/A

Evaporation Rate (Butyl Acetate = 1)
N/A

Solubility in Water
Not soluble, slightly miscible

Appearance and Odor
Yellow, green liquid. Petroleum Odor

Section IV — Fire and Explosion Hazard Data

Flash Point (Method Used)
200°F ASTM D 93

Flammable Limits
unknown

LEL N/A UEL N/A

Extinguishing Media
CO2 Foam Dry Chemical

Special Fire Fighting Procedures
Do not use direct stream of water; it spreads the fire. Product may float and reignite on surface of water.

Unusual Fire and Explosion Hazards
On burning, this product can release toxic fumes and vapors. Firefighters should wear self-contained breathing apparatus and full protective clothing.

(Reproduce locally)
Section V — Reactivity Data

<table>
<thead>
<tr>
<th>Stability</th>
<th>Conditions to Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable</td>
<td>Open flames</td>
</tr>
<tr>
<td>Stable</td>
<td>with petrole</td>
</tr>
</tbody>
</table>

Incompatibility (Materials to Avoid)
- Oxidizing materials.

Hazardous Decomposition or By-products
Carbon monoxide and other unidentified organic compounds may be found upon combustion.

Hazardous Polymerization
- May Occur
- Will Not Occur

Section VI — Health Hazard Data

Route(s) of Entry:
- Inhalation
- Skin
- Ingestion

Primary routes of entry skin and eye contact.

Health Hazards (Acute and Chronic)
- Not known

Signs and Symptoms of Exposure
- Eyes - severe irritation.
- Skin - Irritation.
- Inhalation - light headiness.

Medical Conditions
- Generally Aggravated by Exposure
- Unknown

Emergency and First Aid Procedures
- Eyes—Flush with water. Skin—Wash, remove contaminated clothing. Inhalation—Fresh Air
- Ingestion—Do not induce vomiting. Eyes & Ingestion — Medical Attention Essential.

Section VII — Precautions to Safe Handling and Use

Steps to Be Taken If Material Is Released or Spilled
- Extinguish all flames. Make dike.

Waste Disposal Method
- Take up with an absorbent material and dispose of in compliance with all local, state and federal regulations.

Precautions to Be Taken in Handling and Storing
- Handling — do not splash or create mists or vapors.
- Storage — Store away from high temperatures and open flames. Keep containers closed.
- Empty container retains vapor and product residues. Do not cut or weld on or near this container.

Section VIII — Control Measures

Respiratory Protection (Specify Type)
- Use NIOSH-approved respirator if vapors or mists are generated.

Ventilation
- Local Exhaust — Advisable.
- Mechanical (General) — Usually not necessary.

Protective Gloves
- Chemical resistant

Eye Protection
- Chemical Safety when possibility of splashes.

Other Protective Clothing or Equipment

Work/Hygienic Practices
- Wash before eating. Do not smoke.
ER-83A HYDROPHILIC EMULSIFIER

Approved Method D, Type I, MIL-I-25135 Rev. D
Approved Group V & VI, MIL-I-25135 Rev. C

Description: ER-83A is a concentrated "detergent" used diluted with water to emulsify Sherwin's fluorescent penetrants, such as the company's "RC-" designated products. ER-83A removes surface, non-water-washable penetrants by spray or immersion following a pre-wash step. The product meets low-sulfur, low-halogen, and low-sodium requirements, has a flash point over 200°F, and is an OSHA Class IIIB material.

Special Features: ER-83A is low in solvent properties and relies primarily on surfactants (surface active agents) for its removal action. This minimizes the risk of "over-emulsification," or dissolving of flaw-entrapped penetrant, due to extended emulsifier dwell times, or to over concentration arising from water evaporation.

ER-83A works well on smooth or rough surfaces as well as on machined or coated surfaces.

Companion Materials:

- **Penetrants** - Sherwin RC-29
 - Sherwin RC-50
 - Sherwin RC-65
 - Sherwin RC-77

- **Developers** - Sherwin D-90G Dry Powder (form a)
 - Sherwin D-100 Nonaqueous (form d)
 - Sherwin D-100NF Nonaqueous (form d)
 - Sherwin D-113G Water Soluble (form b)
 - equivalent QPL-25135 developers

Container Sizes:
- one-gallon cans
- case of 4 one-gallon cans
- five-gallon pail
- 55-gallon drum

Basic Instructions: (These instructions describe the basic process. They may need to be amended by the user to comply with applicable specifications and/or inspection criteria provided by the contracting agency.)

There are two ways to apply ER-83A: by direct spraying or by immersing the part in a diluted emulsifier solution. Either method is employed after the part has been drained of as much penetrant as possible and has undergone a pre-wash step. Pre-washing removes most excess, undrained penetrant, thereby permitting lower strength solutions and shorter dwell times as well as reducing penetrant carry-over to the emulsifier tank.

Pre-wash Step: Once the penetrant dwell and drain step is complete, and prior to applying the ER-83A solution, spray the part at an angle with plain, ambient temperature water to mechanically remove ninety to ninety-nine percent of the remaining surface penetrant. Do not use hot water. A course spray of 20-40 p.s.i. is preferred. Perform this operation under black light to insure that only a microscopic film of penetrant continues to adhere to the part surface before spraying or immersing the part in the emulsifier solution. Do not over wash.

Spray Application: Use very dilute solutions when spraying ER-83A Emulsifier, since spraying in itself helps remove the penetrant. The solution strength, which may vary from as low as 0.1% to as high as 5.0% is regulated by several factors: (1) pre-wash thoroughness, (2) surface texture, (3) force of the spray, and (4) solution contact time during and following spray application. A solution strength less than 0.2% (i.e., 1 part emulsifier to 500 parts water) may suffice for parts having smooth surfaces, even when using a brief spray cycle.

revised 14 March 1991
Maintaining the strength of ER-83A spray solution is not as critical as with competitive hydrophilic emulsifiers which rely on solvent action; nevertheless, in order to minimize over-emulsifying, an upper concentration limit should be established and the solution checked regularly with a refractometer. Excess foaming indicates increased solution concentration.

For economy as well as maximum sensitivity, use the lowest strength solution that is consistent with reasonably brief application time. Excessive background fluorescence or the need for prolonged spraying indicate the need to increase the solution strength.

Prolonged water scrubbing, with or without emulsifier, can erode penetrant from wide flaws. If possible, the emulsifier should be rinsed under black light to insure against over-washing.

Immersion Application: The immersion technique for applying ER-83A requires a stronger solution — 20% to 30% — than the spray technique. On particularly difficult parts, accelerate the solution’s action with mild agitation by moving the parts up and down in the solution or by using devices such as mixers or air stirrers.

A thorough, clear-water rinse follows the immersion. An inadequate final rinse will interfere with developer action; emulsifier solution should not be allowed to dry on the surface.

Use a refractometer to monitor the ER-83A solution for evaporative water loss, which can occur rapidly in hot, dry conditions. Water loss leads to an over-active emulsifier solution. Restore proper solution strength by simply adding water.

The ER-83A solution must also be monitored for penetrant contamination. While the pre-wash step minimizes carrying penetrant to the solution tank, eventually penetrant contamination will require recharging the solution tank.

Applicable Specifications:

<table>
<thead>
<tr>
<th>MIL-I-25135 Rev’s. C & D</th>
<th>Allison Gas Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navships 250-1500</td>
<td>AMS-2647</td>
</tr>
<tr>
<td>Lockheed</td>
<td>AMS-3157</td>
</tr>
<tr>
<td>BAC 5423</td>
<td>General Dynamics</td>
</tr>
<tr>
<td>MIL-STD-2132</td>
<td>ASTM-E-165</td>
</tr>
<tr>
<td>MTU</td>
<td>Rolls Royce</td>
</tr>
<tr>
<td>Sncema</td>
<td>Sikorsky</td>
</tr>
<tr>
<td></td>
<td>AECL</td>
</tr>
<tr>
<td></td>
<td>MIL-STD 6866</td>
</tr>
<tr>
<td></td>
<td>RDT-F3-6T</td>
</tr>
<tr>
<td></td>
<td>Garrett EMS 52309</td>
</tr>
<tr>
<td></td>
<td>Northrup</td>
</tr>
<tr>
<td></td>
<td>General Dynamics</td>
</tr>
<tr>
<td></td>
<td>P & W FPM</td>
</tr>
</tbody>
</table>

PRECAUTIONARY INFORMATION

ER-83A is a combustible liquid as supplied. Use with adequate ventilation and away from sparks, fire or open flame. Avoid prolonged or repeated contact with skin. Do not take internally. Avoid prolonged or repeated breathing of vapors. Highly Detergent. **DANGER!** Causes eye burns. **First Aid:** flush eyes with water; call a physician. Read the label on the container for additional precautionary information.
Material Safety Data Sheet
May be used to comply with OSHA’s Hazard Communication Standard, 29 CFR 1910.1200. Standard must be consulted for specific requirements.

IDENTITY (As Used on Label and List)
Sherwin Dubl-Chek Emulsifier ER33A

Section I
Manufacturer’s Name
Sherwin Incorporated

Address (Number, Street, City, State, and ZIP Code)
5530 Borwick Ave.
South Gate, CA 90280

Emergency Telephone Number
(310) 861-6324

Telephone Number for Information
(310) 861-6324

Date Prepared
9 March 1992

Signature of Preparer (optional)

Section II — Hazardous Ingredients/Identity Information

Hazardous Components (Specific Chemical Identity; Common Name(s)) OSHA PEL ACGIH TLV Other Limits Recommended % (optional)

Hexylene Glycol CAS No. 107-41-5 25 ppm 25 ppm

(ceiling limit) (ceiling limit)

ACGIH states: "In order to prevent eye irritation it is recommended that the ceiling limit of 25 ppm be adopted."

Section III — Physical/Chemical Characteristics

Boiling Point 390°F Specific Gravity (H₂O = 1) 0.98

Vapor Pressure (mm Hg) not volatile < 0.1 Melting Point N/A

Vapor Density (AIR = 1) 4 Evaporation Rate (Butyl Acetate = 1) not volatile N/A

Solubility in Water completely soluble

Appearance and Odor pink liquid, detergent odor

Section IV — Fire and Explosion Hazard Data

Flash Point (Method Used) > 2000°F ASTM D 93 Flammable Limits unknown LEL UEL N/A N/A

Extinguishing Media CO₂ Foam Dry Chemical

Special Fire Fighting Procedures Do not use direct stream of water. It spreads the fire.

Firefighters should wear self-contained breathing apparatus and full protective clothing.

Unusual Fire and Explosion Hazards On burning, this product can release toxic fumes and vapors.
Section V — Reactivity Data

<table>
<thead>
<tr>
<th>Stability</th>
<th>Unstable</th>
<th>Conditions to Avoid</th>
<th>Stable</th>
<th>X</th>
</tr>
</thead>
</table>

Open flames and hazards normally incompatible with petroleum oils.

Incompatibility (Materials to Avoid)

Oxidizing materials.

Hazardous Decomposition or Byproducts

Carbon monoxide and other unidentified organic compounds may be found upon combustion.

Hazardous Polymerization

May Occur	Conditions to Avoid	Will Not Occur	X

Section VI — Health Hazard Data

Route(s) of Entry: Inhalation?	Skin?	Ingestion?

Primary routes of entry skin and eye contact.

Health Hazards (Acute and Chronic) Not known

Carcinogenicity: NTP? | No | IARC Monographs? | No | OSHA Regulated? | No |

Signs and Symptoms of Exposure

Eyes — severe irritation. Skin — irritation. Inhalation — light headiness.

Medical Conditions

Generally Aggravated by Exposure Unknown

Emergency and First Aid Procedures

Eyes — flush with water. Skin — wash, remove contaminated clothing. Inhalation — fresh air.

Ingestion — do not induce vomiting. Eyes & Ingestion — medical attention essential.

Section VII — Precautions for Safe Handling and Use

Steps to Be Taken in Case Material Is Released or Spilled Extinguish all flames. Make dike.

Waste Disposal Method

Take up with an absorbent material and dispose of in compliance with all local, state and federal regulations.

Precautions to Be Taken in Handling and Storing

Handling — do not splash or create mists or vapors.

Storage — store away from high temperatures and open flames. Keep containers closed.

Other Precautions

Emptied container retains vapor and product residues. Do not cut or weld on or near this container.

Section VIII — Control Measures

Respiratory Protection (Specify Type)

Use NIOSH-approved respirator if vapors or mists are generated.

Ventilation

Local Exhaust

Advisable.

Mechanical (General)

Usually not necessary.

Protective Gloves

Chemical resistant

Eye Protection

Chemical safety when possibility of splashing

Other Protective Clothing or Equipment

Wash before eating. Do not smoke.

Page 2
Appendix B: List of Dye Penetrant Suppliers

The following is a list of manufacturers of fluorescent penetrant materials as listed on the U.S. Miletory QPL-25135-17, Feb. 1995.

1. American Gas and Chemical Co. Ltd.
 220 Pegasus Ave., Northvale, NJ 07647

2. Ardrox Inc.
 16961 Knott Ave., Lamiranda, CA 90638

3. Chem-Trend Inc.
 1445 W. McPherson Park Drive, Howell, MI 48844-0860

4. Magneflux Division of Illinois Tool Works
 7301 W. Ainslie Ave., Harwood Heights, IL 60656

5. Met-L-Chek
 1639 Euclid St., Santa Monica, CA 90404

6. Sherwin Inc.
 5530 Borwick Ave., South Gate, CA 90280-7402

7. Turco Products Inc.
 PO Box 272, Avon, NJ 07717
INTERNAL DISTRIBUTION

Central Research Library (2)
Document Reference Section
Laboratory Records Department (2)
Laboratory Records, ORNL RC
ORNL Patent Section
M&C Records Office (3)
L. F. Allard, Jr.
L. D. Armstrong
P. F. Becher
R. F. Bernal
T. M. Besmann
P. J. Blau
R. A. Bradley
K. Breder
C. R. Brinkman
V. R. Bullington
G. M. Caton
S. J. Chang
A. Choudhury
D. D. Conger
R. H. Cooper, Jr.
S. A. David
J. L. Ding
M. K. Ferber
R. L. Graves
D. L. Greene
H. W. Hayden, Jr.
E. E. Hoffman
C. R. Hubbard
M. A. Janney
D. R. Johnson (5)
D. Joslin
R. R. Judkins
M. A. Karnitz
B. L. Keyes
H. D. Kimrey, Jr.
W. Y. Lee
K. C. Liu
E. L. Long, Jr.
W. D. Manly
R. W. McClung
D. J. McGuire
T. A. Nolan
A. E. Pasto
K. P. Plucknett
M. H. Rawlins
M. L. Santella
A. C. Schaffhauser
E. J. Soderstrom
D. P. Stinton
R. W. Swindeman
T. N. Tiegs
B. H. West
S. G. Winslow
J. M. Wyrick
EXTERNAL DISTRIBUTION

Pioneering Research Info. Ctr.
E.I. Dupont de Nemours & Co.
Experimental Station
P.O. Box 80302
Wilmington DE 19880-0302

Jeffrey Abboud
U.S. Advanced Ceramics Assoc.
1600 Wilson Blvd., Suite 1008
Arlington VA 22209

James H. Adair
University of Florida
Materials Science & Engineering
317 MAE Bldg.
Gainesville FL 32611-2066

Donald F. Adams
University of Wyoming
Mechanical Engineering Dept.
P.O. Box 3295
Laramie WY 82071

Andrzej Aeamski
Materials Conversion Group
236-B Egidi Drive
Wheeling IL 60090

Jalees Ahmad
AdTech Systems Research Inc.
Solid Mechanics
1342 N. Fairfield Road
Dayton OH 45432-2698

Yoshio Akimune
NISSAN Motor Co., Ltd.
Materials Research Laboratory
1 Natsushima-Cho
Yokosuka 237
JAPAN

Mufit Akinc
Iowa State University
322 Spedding Hall
Ames IA 50011

Ilhan A. Aksay
Princeton University
A313 Engineering Quadrangle
Princeton NJ 08544-5263

Charles Aldridge
Heany Industries, Inc.
249 Briarwood Lane
Scottsville NY 14546

Joseph E. Amaral
Instron Corporation
Corporate Engineering Office
100 Royale Street
Canton MA 02021

Edward M. Anderson
Aluminum Company of America
N. American Industrial Chemical
P.O. Box 300
Bauxite AR 72011

Norman C. Anderson
Ceradyne, Inc.
Ceramic-to-Metal Division
3169 Redhill Avenue
Costa Mesa CA 92626

Don Anson
BCL
Thermal Power Systems
505 King Avenue
Columbus OH 43201-2693

Thomas Arbanas
G.B.C. Materials Corporation
580 Monastery Drive
Latrobe PA 15650-2698

Frank Armatis
3M Company
Building 60-1N-01
St. Paul MN 55144-1000
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everett B. Arnold</td>
<td>Detroit Diesel Corporation</td>
<td>13400 Outer Drive West</td>
<td>Detroit MI 48239-4001</td>
</tr>
<tr>
<td>Bertil Aronsson</td>
<td>Sandvik AB</td>
<td>Stockholm Lerkrogsvagen 19</td>
<td>SWEDEN</td>
</tr>
<tr>
<td>Dennis Assanis</td>
<td>University of Michigan</td>
<td>Dept. of Mechanical Engineering</td>
<td>Ann Arbor MI 48109</td>
</tr>
<tr>
<td>V. S. Avva</td>
<td>North Carolina A&T State Univ.</td>
<td>Dept. of Mechanical Engineering</td>
<td>Greensboro NC 27411</td>
</tr>
<tr>
<td>Patrick Badgley</td>
<td>Sky Technologies, Inc.</td>
<td>2815 Franklin Drive</td>
<td>Columbus IN 47201</td>
</tr>
<tr>
<td>Sunggi Baik</td>
<td>Pohang Institute Sci. & Tech.</td>
<td>P.O. Box 125</td>
<td>Pohang 790-600 KOREA</td>
</tr>
<tr>
<td>John M. Bailey</td>
<td>Consultant</td>
<td>Caterpillar, Inc.</td>
<td>P.O. Box 1875 Peoria IL 61656-1875</td>
</tr>
<tr>
<td>Bob Baker</td>
<td>Ceradyne, Inc.</td>
<td>3169 Redhill Avenue</td>
<td>Costa Mesa CA 92626</td>
</tr>
<tr>
<td>Frank Baker</td>
<td>Aluminum Company of America</td>
<td>Alcoa Technical Center</td>
<td>Alcoa Center PA 15069</td>
</tr>
<tr>
<td>Clifford P. Ballard</td>
<td>AlliedSignal Aerospace Company</td>
<td>Ceramics Program</td>
<td>Peoria Box 1021 Morristown NJ 07962-1021</td>
</tr>
<tr>
<td>B. P. Bandyopadhyay</td>
<td>ELID Team</td>
<td>Wako Campus</td>
<td>2-1 Hirosawa Wako-shi Saitama 351-01 JAPAN</td>
</tr>
<tr>
<td>P. M. Barnard</td>
<td>Ruston Gas Turbines Limited</td>
<td>P.O. Box 1</td>
<td>Lincoln LN2 5DJ ENGLAND</td>
</tr>
<tr>
<td>Harold N. Barr</td>
<td>Hittman Corporation</td>
<td>9190 Red Branch Road</td>
<td>Columbia MD 21045</td>
</tr>
<tr>
<td>Renald D. Bartoe</td>
<td>Vesuvius McDanel</td>
<td>510 Ninth Avenue</td>
<td>Box 560 Beaver Falls PA 15010-0560</td>
</tr>
<tr>
<td>David L. Baty</td>
<td>Babcock & Wilcox - LRC</td>
<td>P.O. Box 11165</td>
<td>Lynchburg VA 24506-1165</td>
</tr>
<tr>
<td>Donald F. Baxter, Jr.</td>
<td>ASM International</td>
<td>Advanced Materials & Processes</td>
<td>Materials Park OH 44073-0002</td>
</tr>
<tr>
<td>M. Brad Beardsley</td>
<td>Caterpillar Inc.</td>
<td>Technical Center Bldg. E</td>
<td>P.O. Box 1875 Peoria IL 61656-1875</td>
</tr>
</tbody>
</table>
John C. Bell
Shell Research Limited
Thornton Research Centre
P.O. Box 1
Chester CH1 3SH
ENGLAND

Larry D. Bentsen
BFGoodrich Company
R&D Center
9921 Brecksville Road
Brecksville OH 44141

Tom Bernecki
Northwestern University
1801 Maple Avenue
Evanston IL 60201-3135

Charles F. Bersch
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria VA 22311

Ram Bhatt
NASA Lewis Research Center
21000 Brookpark Road
Cleveland OH 44135

Deane I. Biehler
Caterpillar Inc.
Engineering Research Materials
P.O. Box 1875, Bldg. E
Peoria IL 61656-1875

William D. Bjorndahl
TRW, Inc.
One Space Park, MS:R6-2188
Building 01, Room 2040
Redondo Beach CA 90278

Keith A. Blakely
Advanced Refractory Technologies, Inc.
699 Hertel Avenue
Buffalo NY 14207

Edward G. Blanchard
Netzsch Inc.
119 Pickering Way
Exton PA 19341

Bruce Boardman
Deere & Company Technical Ctr.
3300 River Drive
Moline IL 61265

Lawrence P. Boesch
EER Systems Corp.
1593 Spring Hill Road
Vienna VA 22182-2239

Donald H. Boone
Boone & Associates
2412 Cascade Drive
Walnut Creek CA 94598-4313

Tom Booth
AlliedSignal, Inc.
AiResearch Los Angeles Division
2525 West 190th Street
Torrance CA 90509-2960

Raj Bordia
University of Washington
Roberts Hall
Box 35212
Seattle WA 98195-2120

Tibor Bornemisza
Energy Technologies Applications, Inc.
5064 Caminito Vista Lujo
San Diego CA 92130-2846

J.A.M. Boulet
University of Tennessee
Engineering Science & Mechanics
Knoxville TN 37996-2030

Leslie J. Bowen
Materials Systems
53 Hillcrest Road
Concord MA 01742

Steven C. Boyce
Air Force Office of Scientific Research
AFOSR/NA Bldg. 410
Bolling AFB DC 20332-6448
Steve Bradley
UOP Research Center
50 E. Algonquin Road
Des Plaines IL 60017-6187

Michael C. Brands
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50179
Columbus IN 47201

Raymond J. Bratton
Westinghouse Science & Technology
1310 Beulah Road
Pittsburgh PA 15235

John J. Brennan
United Technologies Corporation
Silver Lane, MS:24
East Hartford CT 06108

Terrence K. Brog
Golden Technologies Company
4545 McIntyre Street
Golden CO 80403

Gunnar Broman
317 Fairlane Drive
Spartanburg SC 29302

Alan Brown
P.O. Box 882
Dayton NJ 08810

Jesse J. Brown
VPI & SU
Blacksburg VA 24061-0256

Sherman D. Brown
University of Illinois
Materials Science & Engineering
105 South Goodwin Avenue
Urbana IL 61801

S. L. Bruner
Ceramatec, Inc.
2425 South 900 West
Salt Lake City UT 84119

Walter Bryzik
U.S. Army Tank Automotive Command
R&D Center, Propulsion Systems
Warren MI 48397-5000

Curt V. Burkland
AMERCOM, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Bill Bustamante
AMERCOM, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Oral Buyukozturk
Massachusetts Institute of Technology
77 Massachusetts Ave., Rm 1-280
Cambridge MA 02139

David A. Caillet
Ethyl Corporation
451 Florida Street
Baton Rouge LA 70801

Roger Cannon
Rutgers University
P.O. Box 909
Piscataway NJ 08855-0909

Scott Cannon
P.O. Box 567254
Atlanta GA 30356

Harry W. Carpenter
1844 Fuerte Street
Fallbrook CA 92028

David Carruthers
Kyocera Industrial Ceramics
P.O. Box 2279
Vancouver WA 98668-2279

Calvin H. Carter, Jr.
Cree Research, Inc.
2810 Meridian Parkway
Durham NC 27713
J. David Casey
35 Atlantis Street
West Roxbury MA 02132

Jere G. Castor
J. C. Enterprise
5078 N. 83rd Street
Scottsdale AZ 85250

James D. Cawley
Case Western Reserve University
Materials Science & Engineering
Cleveland OH 44106

Thomas C. Chadwick
Den-Mat Corporation
P.O. Box 1729
Santa Maria CA 93456

Ronald H. Chand
Chand Kare Technical Ceramics
2 Coppage Drive
Worcester MA 01603-1252

William Chapman
Williams International Corp.
2280 W. Maple Road
Walled Lake MI 48390-0200

Ching-Fong Chen
LECO Corporation
3000 Lakeview Avenue
St. Joseph MI 49085

William J. Chmura
Torrington Company
59 Field Street
Torrington CT 06790-4942

Tsu-Wei Chou
University of Delaware
201 Spencer Laboratory
Newark DE 19716

R. J. Christopher
Ricardo Consulting Engineers
Bridge Works
Shoreham-By-Sea W. Sussex
BN435FG ENGLAND

Joel P. Clark
Massachusetts Institute of Technology
Room 8-409
Cambridge MA 02139

Giorgio Clarotti
Commission of the European Comm
DGXII-C3, MO75, 1-53;
200 Rue de la Loi
B-1049 Brussels
BELGIUM

W. J. Clegg
ICI Advanced Materials
P.O. Box 11, The Heath
Runcorn Cheshire WA7 4QE
ENGLAND

William S. Coblenz
Adv. Research Projects Agency
3701 N. Fairfax Drive
Arlington VA 22203

Gloria M. Collins
ASTM
1916 Race Street
Philadelphia PA 19103

William C. Connors
Sundstrand Aviation Operations
Materials Science & Engineering
4747 Harrison Avenue
Rockford IL 61125-7002

John A. Coppola
Carborundum Company
Niagara Falls R&D Center
P.O. Box 832
Niagara Falls NY 14302

Normand D. Corbin
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545
Douglas Corey
AlliedSignal, Inc.
2525 West 190th Street, MS:T52
Torrance CA 90504-6099

Keith P. Costello
Chand/Kare Technical Ceramics
2 Coppage Drive
Worcester MA 01603-1252

Ed L. Courtright
Pacific Northwest Laboratory
MS:K3-59
Richland WA 99352

Anna Cox
Mitchell Market Reports
P.O. Box 23
Monmouth Gwent NP5 4YG
UNITED KINGDOM

J. Wesley Cox
BIRL
1801 Maple Avenue
Evanston IL 60201-3135

Art Cozens
Instron Corporation
3414 Snowden Avenue
Long Beach CA 90808

Mark Crawford
New Technology Week
4604 Monterey Drive
Annandale VA 22003

Richard A. Cree
Markets & Products, Inc.
P.O. Box 14328
Columbus OH 43214-0328

Les Crittenden
Vesuvius McDanel
Box 560
Beaver Falls PA 15010

M. J. Cronin
Mechanical Technology, Inc.
968 Albany-Shaker Road
Latham NY 12110

Gary M. Crosbie
Ford Motor Company
20000 Rotunda Drive
MD-2313, SRL Building
Dearborn MI 48121-2053

Floyd W. Crouse, Jr.
U.S. Department of Energy
Morgantown Energy Tech. Ctr.
P.O. Box 880
Morgantown WV 26505

John Cuccio
AlliedSignal Engines
P.O. Box 52180, MS:1302-2Q
Phoenix AZ 85072-2180

Raymond A. Cutler
Ceramtec, Inc.
2425 South 900 West
Salt Lake City UT 84119

Stephen C. Danforth
Rutgers University
P.O. Box 909
Piscataway NJ 08855-0909

Sankar Das Gupta
Electrofuel Manufacturing Co.
9 Hanna Avenue
Toronto Ontario MGK-1W8
CANADA

Frank Davis
AlliedSignal Aerospace Company
7550 Lucerne Drive, #203
Middleburg Heights OH 44130

Robert F. Davis
North Carolina State University
Materials Engineering Department
P.O. Box 7907
Raleigh NC 27695

George C. DeBell
Ford Motor Company
Scientific Research Lab
P.O. Box 2053, Room S2023
Dearborn MI 48121-2053
Jean-Marie Drapier
FN Moteurs S.A.
Material and Processing
B-4041 Milmort (Herstal)
BELGIUM

Kenneth C. Dreitlein
United Technologies Res. Ctr.
Silver Lane
East Hartford CT 06108

Robin A.L. Drew
McGill University
3450 University Street
Montreal Quebec H3A 2A7
CANADA

Winston H. Duckworth
BCL
Columbus Division
505 King Avenue
Columbus OH 43201-2693

Ernest J. Duwell
3M Abrasive Systems Division
3M Center
St. Paul MN 55144-1000

Chuck J. Dziedzic
GTC Process Forming Systems
4545 McIntyre Street
Golden CO 80403

Robert J. Eagan
Sandia National Laboratories
Engineered Mater. & Proc.
P.O. Box 5800
Albuquerque NM 87185-5800

Harry E. Eaton
United Technologies Corporation
Silver Lane
East Hartford CT 06108

Harvill C. Eaton
Louisiana State University
240 Thomas Boyd Hall
Baton Rouge LA 70803
J. J. Eberhardt
U.S. Department of Energy
Office of Transportation Mater.
CE-34, Forrestal Building
Washington DC 20585

Jim Edler
Eaton Corporation
26201 Northwestern Highway
P.O. Box 766
Southfield MI 48037

G. A. Eisman
Dow Chemical Company
Ceramics and Advanced Materials
52 Building
Midland MI 48667

William A. Ellingson
Argonne National Laboratory
Energy Technology Division
9700 S. Cass Avenue
Argonne IL 60439

Anita Kaye M. Ellis
Machined Ceramics
629 N. Graham Street
Bowling Green KY 42101

Glen B. Engle
Nuclear & Aerospace Materials
16716 Martincoit Road
Poway CA 92064

Kenneth A. Epstein
Dow Chemical Company
2030 Building
Midland MI 48674

Art Erdemir
Argonne National Laboratory
9700 S. Cass Avenue
Argonne IL 60439

E. M. Erwin
Lubrizol Corporation
17710 Riverside Drive
Lakewood OH 44107

John N. Eustis
U.S. Department of Energy
Industrial Energy Efficiency
CE-221, Forrestal Building
Washington DC 20585

W. L. Everitt
Kyocera International, Inc.
8611 Balboa Avenue
San Diego CA 92123

Gordon Q. Evison
332 S. Michigan Avenue
Suite 1730
Chicago IL 60604

John W. Fairbanks
U.S. Department of Energy
Office of Propulsion Systems
CE-322, Forrestal Building
Washington DC 20585

Tim Fawcett
Dow Chemical Company
Advanced Ceramics Laboratory
1776 Building
Midland MI 48674

Robert W. Fawley
Sundstrand Power Systems
Div. of Sundstrand Corporation
P.O. Box 85757
San Diego CA 92186-5757

Jeff T. Fenton
Vista Chemical Company
900 Threadneedle
Houston TX 77079

Larry Ferrell
Babcock & Wilcox
Old Forest Road
Lynchburg VA 24505

Raymond R. Fessler
BIRL
1801 Maple Avenue
Evanston IL 60201
Ross F. Firestone
Ross Firestone Company
188 Mary Street
Winnetka IL 60093-1520

Sharon L. Fletcher
Arthur D. Little, Inc.
15 Acorn Park
Cambridge MA 02140-2390

Michael Foley
Norton Company
Goddard Road
Northboro MA 01532-2527

Thomas F. Foltz
Textron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Renee G. Ford
Materials and Processing Report
P.O. Box 72
Harrison NY 10528

John Formica
Supermaterials
2020 Lakeside Avenue
Cleveland OH 44114

Edwin Frame
Southwest Research Institute
P.O. Drawer 28510
San Antonio TX 78284

Armanet Francois
French Scientific Mission
4101 Reservoir Road, N.W.
Washington DC 20007-2176

R. G. Frank
Technology Assessment Group
10793 Bentley Pass Lane
Loveland OH 45140

David J. Franus
Forecast International
22 Commerce Road
Newtown CT 06470

Marc R. Freedman
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

Douglas Freitag
Bayside Materials Technology
17 Rocky Glen Court
Brookeville MD 20833

Brian R.T. Frost
Argonne National Laboratory
9700 S. Cass Avenue, Bldg. 900
Argonne IL 60439

Lawrence R. Frost
Instron Corporation
100 Royall Street
Canton MA 02021

Xiren Fu
Shanghai Institute of Ceramics
1295 Ding-xi Road
Shanghai 200050
CHINA

J. P. Gallagher
University of Dayton Research Institute
300 College Park, JPC-250
Dayton OH 45469-0120

Garry Garvey
Golden Technologies Company
4545 McIntyre Street
Golden CO 80403

Richard Gates
NIST
Materials Bldg., A-256
Gaithersburg MD 20899

L. J. Gauckler
ETH-Zurich
Sonneggstrasse 5
CH-8092 Zurich 8092
SWITZERLAND
D. Gerster
CEA-DCOM
33 Rue De La Federation
Paris 75015
FRANCE

John Ghinazzi
Coors Technical Ceramics Co.
1100 Commerce Park Drive
Oak Ridge TN 37830

Robert Giddings
General Electric Company
P.O. Box 8
Schenectady NY 12301

A. M. Glaeser
University of California
Lawrence Berkeley Laboratory
Hearst Mining Building
Berkeley CA 94720

Joseph W. Glatz
510 Rocksville Road
Holland PA 18966

W. M. Goldberger
Superior Graphite Company
R&D
2175 E. Broad Street
Columbus OH 43209

Allan E. Goldman
U.S. Graphite, Inc.
907 W. Outer Drive
Oak Ridge TN 37830

Stephen T. Gonczy
Allied Signal Research
P.O. Box 5016
Des Plaines IL 60017

Robert J. Gottschall
U.S. Department of Energy
ER-131, MS:G-236
Washington DC 20585

Earl Graham
Cleveland State University
Dept. of Chemical Engineering
Euclid Avenue at East 24th St.
Cleveland OH 44115

John W. Graham
Astro Met, Inc.
9974 Springfield Pike
Cincinnati OH 45215

G. A. Graves
U. of Dayton Research Institute
300 College Park
Dayton OH 45469-0001

Robert E. Green, Jr.
Johns Hopkins University
Mater. Sci. and Engineering
Baltimore MD 21218

Alex A. Greiner
Plint & Partners
Oaklands Park
Wokingham Berkshire RG11 2FD
UNITED KINGDOM

Lance Groseclose
Allison Engine Company
P.O. Box 420, MS:W-5
Indianapolis IN 46206

Thomas J. Gross
U.S. Department of Energy
Transportation Technologies
CE-30, Forrestal Building
Washington DC 20585

Mark F. Gruninger
Union Carbide Corporation
Specialty Powder Business
1555 Main Street
Indianapolis IN 46224

Ernst Gugel
Cremer Forschungsinstitut
GmbH&Co.KG
Oeslauer Strasse 35
D-8633 Roedental 8633
GERMANY
Osama Jadaan
U. of Wisconsin-Platteville
1 University Plaza
Platteville WI 53818

Said Jahanmir
NIST
Materials Bldg., Room A-237
Gaithersburg MD 20899

Curtis A. Johnson
General Electric Company
P.O. Box 8
Schenectady NY 12301

Sylvia Johnson
SRI International
333 Ravenswood Avenue
Menlo Park CA 94025

Thomas A. Johnson
Lanxide Corporation
P.O. Box 6077
Newark DE 19714-6077

Walter F. Jones
AFOSR/NA
110 Duncan Ave., Ste. B115
Washington DC 20332-0001

Jill E. Jonkouski
U.S. Department of Energy
9800 S. Cass Avenue
Argonne IL 60439-4899

L. A. Joo
Great Lakes Research Corporation
P.O. Box 1031
Elizabethton TN 37643

Adam Jonstsons
Australian Nuclear Science & Technology
New Illawarra Road
Lucas Heights New South Wales
AUSTRALIA

Lyle R. Kallenbach
Phillips Petroleum
Mail Drop:123AL
Bartlesville OK 74004

Nick Kamiya
Kyocera Industrial Ceramics Corp.
25 NW Point Blvd., #450
Elk Grove Village IL 60007

Roy Kamo
Adiabatics, Inc.
3385 Commerce Park Drive
Columbus IN 47201

Chih-Chun Kao
Industrial Technology Research Institute
195 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Keith R. Karasek
AlliedSignal Aerospace Company
50 E. Algonquin Road
Des Plaines IL 60017-5016

Robert E. Kassel
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Allan Katz
Wright Laboratory
Metals and Ceramics Division
Wright-Patterson AFB OH 45433

R. Nathan Katz
Worcester Polytechnic Institute
100 Institute Road
Worcester MA 01609

Ted Kawaguchi
Tokai Carbon America, Inc.
375 Park Avenue, Suite 3802
New York NY 10152
Noritsugu Kawashima
TOSHIBA Corporation
4-1 Ukishima-Cho
Kawasaki-Ku Kawasaki, 210
JAPAN

Lisa Kempfer
Penton Publishing
1100 Superior Avenue
Cleveland OH 44114-2543

Frederick L. Kennard, III
Delphi Energy & Engine Mgmt. Systems
Division of General Motors
1300 N. Dort Highway
Flint MI 48556

David O. Kennedy
Lester B. Knight Cast Metals
549 W. Randolph Street
Chicago IL 60661

George Keros
Photon Physics
3175 Penobscot Building
Detroit MI 48226

Thomas Ketcham
Corning, Inc.
SP-DV-1-9
Corning NY 14831

Pramod K. Khandelwal
Allison Engine Company
P.O. Box 420, MS:T10B
Indianapolis IN 46206

Jim R. Kidwell
AlliedSignal Engines
P.O. Box 52180
Phoenix AZ 85072-2180

Shin Kim
The E-Land Group
19-8 ChangJeon-dong
Mapo-gu, Seoul 121-190
KOREA

W. C. King
Mack Truck, Z-41
1999 Pennsylvania Avvenue
Hagerstown MD 21740

Carol Kirkpatrick
MSE, Inc.
P.O. Box 3767
Butte MT 59702

Tony Kim
Caterpillar Inc.
Defense Products Dept., JB7
Peoria IL 61629

James D. Kiser
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

Max Klein
900 24th Street, N.W., Unit G
Washington DC 20037

Richard N. Kleiner
Golden Technologies Company
4545 McIntyre Street
Golden CO 80403

Stanley J. Klima
NASA Lewis Research Center
21000 Brookpark Road, MS:6-1
Cleveland OH 44135

Albert S. Kobayashi
University of Washington
Mechanical Engineering Dept.
Mail Stop:FU10
Seattle WA 98195

Shigeki Kobayashi
Toyota Central Research Labs
Nagakute Aichi, 480-11
JAPAN

Richard A. Kole
Z-Tech Corporation
8 Dow Road
Bow NH 03304
Joseph A. Kovach
Eaton Corporation
32500 Chardon Road
Willoughby Hills OH 44094

Kenneth A. Kovaly
Technical Insights Inc.
P.O. Box 1304
Fort Lee NJ 07024-9967

Edwin H. Kraft
Kyocera Industrial Ceramics
5713 E. Fourth Plain Boulevard
Vancouver WA 98661

Arthur Kranish
Trends Publishing Inc.
1079 National Press Building
Washington DC 20045

A. S. Krieger
Radiation Science, Inc.
P.O. Box 293
Belmont MA 02178

Pieter Krijgsman
Ceramic Design International Holding B.V.
P.O. Box 68
Hattem 8050-AB
THE NETHERLANDS

Waltraud M. Kriven
University of Illinois
105 S. Goodwin Avenue
Urbana IL 61801

Edward J. Kubel, Jr.
ASM International
Advanced Materials & Processes
Materials Park OH 44073

Dave Kupperman
Argonne National Laboratory
9700 S. Cass Avenue
Argonne IL 60439

Oh-Hun Kwon
North Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

W. J. Lackey
GTRI
Materials Science and Tech. Lab
Atlanta GA 30332

Jai Lala
Tenmat Ltd.
40 Somers Road
Rugby Warwickshire CV22 7DH
ENGLAND

Hari S. Lamba
General Motors Corporation
9301 West 55th Street
LaGrange IL 60525

Richard L. Landingham
Lawrence Livermore National Lab
P.O. Box 808, L-369
Livermore CA 94550

James Lankford
Southwest Research Institute
6220 Culebra Road
San Antonio TX 78228-0510

Stanley B. Lasday
Business News Publishing Co.
1910 Cochran Road, Suite 630
Pittsburgh PA 15220

S. K. Lau
Carborundum Company
Technology Division
P.O. Box 832, B-100
Niagara Falls NY 14302

J. Lawrence Lauderdale
Babcock & Wilcox
1525 Wilson Blvd., #100
Arlington VA 22209-2411
Jean F. LeCosteauec
Textron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Benson P. Lee
Technology Management, Inc.
4440 Warrensville Rd., Suite A
Cleveland OH 44128

Burtrand I. Lee
Clemson University
Olin Hall
Clemson SC 29634-0907

June-Gunn Lee
KIST
P.O. Box 131, Cheong-Ryang
Seoul 130-650
KOREA

Stan Levine
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

David Lewis, III
Naval Research Laboratory
Code 6370
Washington DC 20375-5343

Ai-Kang Li
Materials Research Labs., ITRI
195-5 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Robert H. Licht
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Chih-Kuang Lin
National Central University
Dept. of Mechanical Engineering
Chung-Li 32054
TAIWAN

Laura J. Lindberg
AlliedSignal Aerospace Company
Garrett Fluid Systems Division
P.O. Box 22200
Tempe AZ 85284-2200

Hans A. Lindner
Cremer Forschungsinstitut
GmbH&Co.KG
Oeslauer Strasse 35
D-8633 Rodental 8866
GERMANY

Ronald E. Loehman
Sandia National Laboratories
Chemistry & Ceramics Dept. 1840
P.O. Box 5800
Albuquerque NM 87185

Bill Long
Babcock & Wilcox
P.O. Box 11165
Lynchburg VA 24506

L. A. Lott
EG&G Idaho, Inc.
Idaho National Engineering Lab
P.O. Box 1625
Idaho Falls ID 83415-2209

Raouf O. Loufty
MER Corporation
7960 S. Kolb Road
Tucson AZ 85706

Lydia Luckevich
Ortech International
2395 Speakman Drive
Mississauga Ontario L5K 1B3
CANADA
James W. MacBeth
Carborundum Company
Structural Ceramics Division
P.O. Box 1054
Niagara Falls NY 14302

George Maczura
Aluminum Company of America
3450 Park Lane Drive
Pittsburgh PA 15275-1119

David Maginnis
Tinker AFB
OC-ALC/LIIRE
Tinker AFB OK 73145-5989

Frank Maginnis
Aspen Research, Inc.
220 Industrial Boulevard
Moore OK 73160

Tai-il Mah
Universal Energy Systems, Inc.
4401 Dayton-Xenia Road
Dayton OH 45432

Kenneth M. Maillar
Barbour Stockwell Company
83 Linskey Way
Cambridge MA 02142

S. G. Malghan
NIST
I-270 & Clopper Road
Gaithersburg MD 20899

Lars Malmrup
United Turbine AB
Box 13027
Malmo S-200 44
SWEDEN

John Mangels
Ceradyne, Inc.
3169 Redhill Avenue
Costa Mesa CA 92626

Murli Manghnani
University of Hawaii
2525 Correa Road
Honolulu HI 96822

Russell V. Mann
Matec Applied Sciences, Inc.
75 South Street
Hopkinton MA 01748

William R. Manning
Champion Aviation Products Div
P.O. Box 686
Liberty SC 29657

Ken Marnoch
Amercom, Inc.
8928 Fullbright Avenue
Chatsworth CA 91311

Robert A. Marra
Aluminum Company of America
Alcoa Technical Center
Alcoa Center PA 15069

Steve C. Martin
Advanced Refractory Technologies
699 Hertel Avenue
Buffalo NY 14207

Kelly J. Mather
William International Corp.
2280 W. Maple Road
Walled Lake MI 48088

James P. Mathers
3M Company
3M Center, Bldg. 201-3N-06
St. Paul MN 55144

Ron Mayville
Arthur D. Little, Inc.
15-163 Acorn Park
Cambridge MA 02140

F. N. Mazadarany
General Electric Company
Bldg. K-1, Room MB-159
P.O. Box 8
Schenectady NY 12301
James W. McCauley
Alfred University
Binns-Merrill Hall
Alfred NY 14802

Colin F. McDonald
McDonald Thermal Engineering
1730 Castellana Road
La Jolla CA 92037

B. J. McEntire
Norton Company
10 Airport Park Road
East Granby CT 06026

Chuck McFadden
Coors Ceramics Company
600 9th Street
Golden CO 80401

Thomas D. McGee
Iowa State University
110 Engineering Annex
Ames IA 50011

James McLaughlin
Sundstrand Power Systems
4400 Ruffin Road
P.O. Box 85757
San Diego CA 92186-5757

Matt McMonigle
U.S. Department of Energy
Improved Energy Productivity
CE-231, Forrestal Building
Washington DC 20585

J. C. McVickers
AlliedSignal Engines
P.O. Box 52180, MS:9317-2
Phoenix AZ 85072-2180

D. B. Meadowcroft
"Jura," The Ridgeway
Oxshott
Leatherhead Surrey KT22 OLG
UNITED KINGDOM

Joseph J. Meindl
Reynolds International, Inc.
6603 W. Broad Street
P.O. Box 27002
Richmond VA 23261-7003

Michael D. Meiser
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

George Messenger
National Research Council of Canada
Building M-7
Ottawa Ontario K1A OR6
CANADA

Arthur G. Metcalfe
Arthur G. Metcalfe & Assoc.
2108 East 24th Street
National City CA 91950

R. Metselaar
Eindhoven University
P.O. Box 513
Eindhoven 5600 MB
THE NETHERLANDS

David J. Michael
Harbison-Walker Refractories
P.O. Box 98037
Pittsburgh PA 15227

Ken Michaels
Chrysler Motors Corporation
P.O. Box 1118, CIMS:418-17-09
Detroit MI 48288

Bernd Michel
Institute of Mechanics
P.O. Box 408
D-9010 Chemnitz
GERMANY
E. Beth Pardue
MPC
8297 Williams Ferry Road
Lenior City TN 37771

Soon C. Park
3M Company
Building 142-4N-02
P.O. Box 2963
St. Paul MN 55144

Vijay M. Parthasarathy
Caterpillar/Solar Turbines
2200 Pacific Highway
P.O. Box 85376
San Diego CA 92186-5376

Harmut Paschke
Schott Glaswerke
Christoph-Dorner-Strasse 29
D-8300 Landshut
GERMANY

James W. Patten
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50183
Columbus IN 47202-3005

Robert A. Penty
Penty & Associates
38 Oakdale Drive
Rocester NY 14618

Robert W. Pepper
Textron Specialty Materials
2 Industrial Avenue
Lowell MA 01851

Peter Perdue
Detroit Diesel Corporation
13400 Outer Drive West,
Speed Code L-04
Detroit MI 48239-4001

John J. Petrovic
Los Alamos National Laboratory
Group MST-4, MS:G771
Los Alamos NM 87545

Frederick S. Pettit
University of Pittsburgh
Pittsburgh PA 15261

Richard C. Phoenix
Ohmtek, Inc.
2160 Liberty Drive
Niagara Falls NY 14302

Bruce J. Pletka
Michigan Technological Univ.
Metallurgical & Materials Engr.
Houghton MI 49931

John P. Pollinger
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

P. Popper
High Tech Ceramics Int. Journal 22
Pembroke Drive - Westlands
Newcastle-under-Lyme
Staffs ST5 2JN
ENGLAND

F. Porz
Universitat Karlsruhe
Institut fur Keramik Im
Maschinendau
Postfach 6980
D-76128 Karlsruhe
GERMANY

Harry L. Potma
Royal Netherlands Embassy
Science and Technology
4200 Linnean Avenue, N.W.
Washington DC 20008

Bob R. Powell
General Motors Corporation
Metallurgy Department
Box 9055
Warren MI 48090-9055
Stephen C. Pred
Biesterfeld U.S., Inc.
500 Fifth Avenue
New York NY 10110

Karl M. Prewo
United Technologies Res. Ctr.
411 Silver Lane, MS:24
East Hartford CT 06108

Vimal K. Pujari
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Fred Quan
Corning Inc.
Sullivan Park, FR-02-08
Corning NY 14831

George Quinn
NIST
Ceramics Division, Bldg. 223
Gaithersburg MD 20899

Ramas V. Raman
Ceracon, Inc.
1101 N. Market Blvd., Suite 9
Sacramento CA 95834

Charles F. Rapp
Owens Corning Fiberglass
2790 Columbus Road
Granville OH 43023-1200

Dennis W. Readey
Colorado School of Mines
Metallurgy and Materials Engr.
Golden CO 80401

Wilfred J. Rebello
PAR Enterprises, Inc.
12601 Clifton Hunt Lane
Clifton VA 22024

Harold Rechter
Chicago Fire Brick Company
7531 S. Ashland Avenue
Chicago IL 60620

Robert R. Reeber
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park NC 27709-2211

K. L. Reifsnider
VPI & SU
Engineering Science and Mechanics
Blacksburg VA 24061

Paul E. Rempes
McDonnell Douglas Aircraft Co.
P.O. Box 516, Mail Code:0642263
St. Louis MO 63166-0516

Gopal S. Revankar
John Deere Company
3300 River Drive
Moline IL 61265

K. Y. Rhee
Rutgers University
P.O. Box 909
Piscataway NJ 08854

James Rhodes
Advanced Composite Materials
1525 S. Buncombe Road
Greer SC 29651

Roy W. Rice
W. R. Grace and Company
7379 Route 32
Columbia MD 21044

David W. Richerson
2093 E. Delmont Drive
Salt Lake City UT 84117

Tomas Richter
J. H. France Refractories
1944 Clarence Road
Snow Shoe PA 16874
Michel Rigaud
Ecole Polytechnique
Campus Universite De Montreal
P.O. Box 6079, Station A
Montreal, P.Q. Quebec H3C 3A7
CANADA

John E. Ritter
University of Massachusetts
Mechanical Engineering Department
Amherst MA 01003

W. Eric Roberts
Advanced Ceramic Technology
990 "F" Enterprise Street
Orange CA 92667

Y. G. Roman
TNO TPD Keramick
P.O. Box 595
Eindhoven 5600 AN
HOLLAND

Michael Rossetti
Arthur D. Little, Inc.
15 Acorn Park
Cambridge MA 01240

Barry Rossing
Lanxide Corporation
P.O. Box 6077
Newark DE 19714-6077

Steven L. Rotz
Lubrizol Corporation
29400 Lakeland Boulevard
Wickliffe OH 44092

Robert Ruh
Wright Laboratory
WL/MLLM
Wright-Patterson AFB OH 45433

Robert J. Russell
Riverdale Consulting, Inc.
24 Micah Hamlin Road
Centerville MA 02632-2107

Jon A. Salem
NASA Lewis Research Center
21000 Brookpark Road
Cleveland OH 44135

W. A. Sanders
NASA Lewis Research Center
21000 Brookpark Road, MS:49-3
Cleveland OH 44135

J. Sankar
North Carolina A&T State Univ.
Dept. of Mechanical Engineering
Greensboro NC 27406

Yasushi Sato
NGK Spark Plugs (U.S.A.), Inc.
1200 Business Center Dr., #300
Mt. Prospect IL 60056

Maxine L. Savitz
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Ashok Saxena
GTRI
Materials Engineering
Atlanta GA 30332-0245

David W. Scanlon
Instron Corporation
100 Royall Street
Canton MA 02021

Charles A. Schacht
Schacht Consulting Services
12 Holland Road
Pittsburgh PA 15235

Robert E. Schafrik
Natl Materials Advisory Board
2101 Constitution Ave., N.W.
Washington DC 20418

James Schienle
AlliedSignal Engines
P.O. Box 52180, MS:1302-2P
Phoenix AZ 85072-2180
Gary Schnittgrund
PyroPacific Processes
16401 Knollwood Drive
Granada Hills, CA 91344

Mark Schomp
Lonza, Inc.
17-17 Route 208
Fair Lann NJ 07410

Joop Schoonman
Delft University of Technology
P.O. Box 5045
2600 GA Delft
THE NETHERLANDS

Robert B. Schulz
U.S. Department of Energy
Office of Transportation Mater.
CE-34, Forrestal Building
Washington DC 20585

Murray A. Schwartz
Materials Technology Consulting
30 Orchard Way, North
Potomac MD 20854

Peter Schwarzkopf
SRI International
333 Ravenswood Avenue
Menlo Park CA 94025

William T. Schwessinger
Multi-Arc Scientific Coatings
1064 Chicago Road
Troy MI 48083-4297

W. D. Scott
University of Washington
Materials Science Department
Mail Stop:FB10
Seattle WA 98195

Nancy Scoville
Thermo Electron Technologies
P.O. Box 9046
Waltham MA 02254-9046

Thomas M. Sebestyen
U.S. Department of Energy
Advanced Propulsion Division
CE-322, Forrestal Building
Washington DC 20585

Brian Seegmiller
Coors Ceramics Company
600 9th Street
Golden CO 80401

T. B. Selover
AICRE/DIPPR
3575 Traver Road
Shaker Heights OH 44122

Charles E. Semler
Semler Materials Services
4160 Mumford Court
Columbus OH 43220

Thomas Service
Service Engineering Laboratory
324 Wells Street
Greenfield MA 01301

Kish Seth
Ethyl Corporation
P.O. Box 341
Baton Rouge LA 70821

William J. Shack
Argonne National Laboratory
9700 S. Cass Avenue, Bldg. 212
Argonne IL 60439

Peter T.B. Shaffer
Shaffer Associates
3225 Chimney Cove Drive
Cumming GA 30131

Richard K. Shaltens
NASA Lewis Research Center
21000 Brookpark Road, MS:302-2
Cleveland OH 44135

Robert S. Shane
1904 NW 22nd Street
Stuart FL 34994-9270
Ravi Shankar
Chromalloy
Research and Technology
Blaisdell Road
Orangeburg NY 10962

Terence Sheehan
Alpex Wheel Company
727 Berkley Street
New Milford NJ 07646

Dinesh K. Shetty
University of Utah
Materials Science and Engineering
Salt Lake City UT 84112

Masahide Shimizu
New Ceramics Association
Shirasagi 2-13-1-208, Nakano-ku
Tokyo, 165
JAPAN

Thomas Shreves
American Ceramic Society, Inc.
735 Ceramic Place
Westerville OH 43081-8720

Jack D. Sibold
Coors Ceramics Company
4545 McIntyre Street
Golden CO 80403

Johann Siebels
Volkswagen AG
Werkstofftechnologie
Postfach 3180
Wolfsburg 1
GERMANY

George H. Siegel
Point North Associates, Inc.
P.O. Box 907
Madison NJ 07940

Richard Silberglied
FM Technologies, Inc.
10529-B Braddock Road
Fairfax VA 22032

Mary Silverberg
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Gurpreet Singh
Department of the Navy
Code 56X31
Washington DC 20362-5101

Maurice J. Sinnott
University of Michigan
5106 IST Building
Ann Arbor MI 48109-2099

John Skildum
3M Company
3M Center
Building 224-2S-25
St. Paul MN 55144

Richard H. Smoak
Smoak & Associates
3554 Hollyslope Road
Altadena CA 91001-3923

Jay R. Smyth
AlliedSignal Engines
111 S. 34th Street, MS:503-412
Phoenix AZ 85034

Rafal A. Sobotowski
British Petroleum Company
Technical Center, Broadway
3092 Broadway Avenue
Cleveland OH 44115

S. Somiya
Nishi Tokyo University
3-7-19 Seijo, Setagaya
Tokyo, 157
JAPAN

Boyd W. Sorenson
DuPont Lanxide Composites
1300 Marrows Road
Newark DE 19711
Charles A. Sorrell
U.S. Department of Energy
Advanced Industrial Concepts
CE-232, Forrestal Building
Washington DC 20585

C. Spencer
EA Technology
Capenhurst Chester CH1 6ES
UNITED KINGDOM

Allen Spizzo
Hercules Inc.
Hercules Plaza
Wilmington DE 19894

Richard M. Spriggs
Alfred University
Ctr. for Advanced Ceramic Tech.
Alfred NY 14802

Charles Spuckler
NASA Lewis Research Center
21000 Brookpark Road, MS:5-11
Cleveland OH 44135-3191

Gordon L. Starr
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code:50182
Columbus IN 47202-3005

Tom Stillwagon
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

H. M. Stoller
TPL Inc.
3754 Hawkins, N.E.
Albuquerque NM 87109

Paul D. Stone
Dow Chemical USA
1776 "Eye" Street, N.W., #575
Washington DC 20006

F. W. Stringer
Aero & Industrial Technology
P.O. Box 46, Wood Top
Burnley Lancashire BB11 4BX
UNITED KINGDOM

Thomas N. Strom
NASA Lewis Research Center
21000 Brookpark Road, MS:86-6
Cleveland OH 44135

M. F. Stroosnijder
Institute for Advanced Materials
Joint Research Centre
21020 Ispra (VA)
ITALY

Karsten Styhr
30604 Ganado Drive
Rancho Palos Verdes CA 90274

T. S. Sudarshan
Materials Modification, Inc.
2929-P1 Eskridge Center
Fairfax VA 22031

M. J. Sundaresan
University of Miami
P.O. Box 248294
Coral Gables FL 33124

Patrick L. Sutton
U.S. Department of Energy
Office of Propulsion Systems
CE-322, Forrestal Building
Washington DC 20585

Willard H. Sutton
United Technologies Corporation
Silver Lane, MS:24
East Hartford CT 06108

Robert E. Swanson
Metalworking Technology, Inc.
1450 Scalp Avenue
Johnstown PA 15904
Yo Tajima
NGK Spark Plug Company
2808 Iwasaki
Komaki-shi Aichi-ken, 485
JAPAN

Fred Teeter
5 Tralee Terrace
East Amherst NY 14051

Victor J. Tennery
113 Newell Lane
Oak Ridge TN 37830

Monika O. Ten Eyck
Carborundum Microelectronics
P.O. Box 2467
Niagara Falls NY 14302-2467

David F. Thompson
Corning Glass Works
SP-DV-02-1
Corning NY 14831

T. Y. Tien
University of Michigan
Materials Science & Engineering
Dow Building
Ann Arbor MI 48103

D. M. Tracey
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Marc Tricard
Norton Company, WGTC
1 New Bond Street, MS-413-201
Worcester MA 01615-0008

L. J. Trostel, Jr.
Box 199
Princeton MA 01541

W. T. Tucker
General Electric Company
P.O. Box 8, Bldg. K1-4C35
Schenectady NY 12301

Masanori Ueki
Nippon Steel Corporation
1618 Ida
Nakahara-Ku Kawasaki, 211
JAPAN

Filippo M. Ugolini
ATA Studio
Via Degli Scipioni, 268A
ROMA, 00192
ITALY

Donald L. Vaccari
Allison Gas Turbines
P.O. Box 420, Speed Code S49
Indianapolis IN 46206-0420

Carl F. Van Conant
Boride Products, Inc.
2879 Aero Park Drive
Traverse City MI 49684

John F. Vander Louw
3M Company
3M Center, Bldg. 60-1N-01
Saint Paul MN 55144

Marcel H. Van De Voorde
Commission of the European Community
P.O. Box 2
1755 ZG Petten
THE NETHERLANDS

O. Van Der Biest
Katholiekke Universiteit Leuven
Dept. Metaalkunde en Toegepaste
de Croylaan 2
B-3030 Leuven
BELGIUM

Michael Vannier
Washington University,
St. Louis
510 S. Kings Highway
St. Louis MO 63110
Stan Venkatesan
Southern Coke & Coal Corp.
P.O. Box 52383
Knoxville TN 37950

V. Venkateswaran
Carborundum Company
Niagara Falls R&D Center
P.O. Box 832
Niagara Falls NY 14302

Ted Vojnovich
U.S. Department of Energy
Office of Energy Research, 3F077P
Washington DC 20585

John D. Volt
E.I. Dupont de Nemours & Co.
P.O. Box 80262
Wilmington DE 19880

John B. Wachtman
Rutgers University
P.O. Box 909
Piscataway NJ 08855

Shigetaka Wada
Toyota Central Research Labs
Nagakute Aichi, 480-11
JAPAN

Janet Wade
AlliedSignal Engines
P.O. Box 52180, MS:1303-2
Phoenix AZ 85072-2180

Richard L. Wagner
Ceramic Technologies, Inc.
537 Turtle Creek South Dr.
Indianapolis IN 46227

J. Bruce Wagner, Jr.
Arizona State University
Center for Solid State Science
Tempe AZ 85287-1704

Daniel J. Wahlen
Kohler, Co.
444 Highland Drive
Kohler WI 53044

Ingrid Wahlgren
Royal Institute of Technology
Studsvik Library
S-611 82 Nykoping
SWEDEN

Ron H. Walecki
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Michael S. Walsh
Vapor Technologies Inc.
6300 Gunpark Drive
Boulder CO 80301

Chien-Min Wang
Industrial Technology Research Institute
195 Chung-Hsing Road, Sec. 4
Chutung Hsinchu 31015 R.O.C.
TAIWAN

Robert M. Washburn
ASMT
11203 Colima Road
Whittier CA 90604

Kevin Webber
Toyota Technical Center, U.S.A.
1410 Woodridge, RR7
Ann Arbor MI 48105

Karen E. Weber
Detroit Diesel Corporation
13400 Outer Drive West
Detroit MI 48239-4001

James K. Weddell
Du Pont Lanxide Composites Inc.
P.O. Box 6100
Newark DE 19714-6100

R. W. Weeks
Argonne National Laboratory
MCT-212
9700 S. Cass Avenue
Argonne IL 60439
Ludwig Weiler
ASEA Brown Boveri AG
Eppelheimer Str. 82
D-6900 Heidelberg
GERMANY

James Wessel
127 Westview Lane
Oak Ridge TN 37830

Robert D. West
Therm Advanced Ceramics
P.O. Box 220
Ithaca NY 14851

Thomas J. Whalen
1845 Cypress Pointe Court
Ann Arbor MI 48108

Ian A. White
Hoeganaes Corporation
River Road
Riverton NJ 08077

Sheldon M. Wiederhorn
NIST
Building 223, Room A329
Gaithersburg MD 20899

John F. Wight
Alfred University
McMahon Building
Alfred NY 14802

D. S. Wilkinson
McMaster University
1280 Main Street, West
Hamilton Ontario L8S 4L7
CANADA

James C. Williams
General Electric Company
One Neumann Way, Mail Drop:H85
Cincinnati OH 45215-6301

Steve J. Williams
RCG Hagler Bailly, Inc.
1530 Wilson Blvd., Suite 900
Arlington VA 22209-2406

Thomas A. Williams
National Renewable Energy Lab
1617 Cole Boulevard
Golden CO 80401

Craig A. Willkens
Norton Company
SGNICC/NRDC
Goddard Road
Northboro MA 01532-1545

Roger R. Wills
Ohio Aerospace Institute (OAI)
22800 Cedar Point Road
Brook Park OH 44142

David Gordon Wilson
Massachusetts Institute of Technology
77 Massachusetts Ave., Rm 3-455
Cambridge MA 02139

J. M. Wimmer
AlliedSignal Ceramic Components
Department 27000, MS:T21
2525 W. 190th Street
Torrance CA 90509

Matthew F. Winkler
Seaworthy Systems, Inc.
P.O. Box 965
Essex CT 06426

Gerhard Winter
Hermann C. Starck Berlin GmbH
P.O. Box 25 40
D-3380 Goslar 3380
GERMANY

Thomas J. Wissing
Eaton Corporation
Engineering and Research Center
P.O. Box 766
Southfield MI 48037

James C. Withers
MER Corporation
7960 S. Kolb Road
Building F
Tucson AZ 85706
Dale E. Wittmer
Southern Illinois University
Mechanical Engineering Dept.
Carbondale IL 62901

Warren W. Wolf
Owens Corning Fiberglass
2790 Columbus Road, Route 16
Granville OH 43023

Egon E. Wolff
Caterpillar Inc.
Technical Center
P.O. Box 1875
Peoria IL 61656-1875

George W. Wolter
Howmet Turbine Components Corp.
Technical Center
699 Benston Road
Whitehall MI 49461

Wayne L. Worrell
University of Pennsylvania
3231 Walnut Street
Philadelphia PA 19104

John F. Wosinski
Corning Inc.
ME-2 E-5 H8
Corning NY 14830

Ruth Wroe
ERDC
Capenhurst Chester CH1 6ES
ENGLAND

Bernard J. Wrona
Advanced Composite Materials
1525 S. Buncombe Road
Greer SC 29651

Carl C. M. Wu
Naval Research Laboratory
Ceramic Branch, Code 6373
Washington DC 20375

David C. Wu
AlliedSignal Engines
P.O. Box 52181, MS:301-227
Phoenix AZ 85072-2181

John C. Wurst
U. of Dayton Research Institute
300 College Park
Dayton OH 45469-0101

Neil Wyant
ARCH Development Corp.
9700 S. Cass Avenue, Bldg. 202
Argonne IL 60439

Roy Yamamoto
Texaco Inc.
P.O. Box 509
Beacon NY 12508-0509

John Yamanis
AlliedSignal Aerospace Company
P.O. Box 1021
Morristown NJ 07962-1021

Harry C. Yeh
AlliedSignal, Inc.
Ceramic Components
P.O. Box 2960, MS:T21
Torrance CA 90509-2960

Hiroshi Yokoyama
Hitachi Research Lab
4026 Kuji-Cho
Hitachi-shi Ibaraki 319-12
JAPAN

Thomas M. Yonushonis
Cummins Engine Company, Inc.
P.O. Box 3005, Mail Code 50183
Columbus IN 47202-3005

Jong Yung
Sundstrand Aviation Operations
4747 Harrison Avenue
Rockford IL 61125

C. S. Yust
106 Newcrest Lane
Oak Ridge TN 37830
A. L. Zadoks
Caterpillar Inc.
Technical Center, Building L
P.O. Box 1875
Peoria IL 61656-1875

Avi Zangvil
University of Illinois
104 S. Goodwin Avenue
Urbana IL 61801

Charles H. Zemek
Transtech
6662 E. Paseo San Andres
Tucson AZ 85710-2106

Carl Zweben
General Electric Company
P. O Box 8555, VFSC/V4019
Philadelphia PA 19101

Department of Energy
Oak Ridge Operations Office
Asst. Manager for Energy
Research and Development
P.O. Box 2001
Oak Ridge, TN 37871-8600

Department of Energy
Office of Scientific and
Technical Information
Office of Information Services
P.O. Box 62
Oak Ridge, TN 37831?