
The Development and Application of Massively Parallel Solid Mechanics Codes

Mike McGlaun, Allen Robinson and James Peery

Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

a

1. INTRODUCTION

Computational physicists at Sandia National Laboratories have moved the Eulerian
CTH code, and the arbitrary-Lagrangian-Eulerian ALEGRA code to distributed memory
parallel computers. CTH is a three-dimensional solid mechanics code used for large-de-
formation, shock wave analysis [1,2]. ALEGRA is a three-dimensional arbitrary-
Lagrangian-Eulerian solid-mechanics code used for coupled large-deformation, shock
and structural mechanics problems [3]. This paper discusses our experiences moving the
codes to parallel computers, the algorithms we used and our experiences running the
codes.

2. PARALLEL COMPUTERS

We moved our CTH and ALEGRA codes to massively parallel computers because we
needed their enormous memories and processor speeds to analyze large, three-dimen-
sional problems. The memory requirements for our codes scale inversely as the cube of
the zone size. For example, if we halve the element size in each direction, then the mem-
ory requirement increases by a factor of eight. These codes use explicit, time-stepping in-
tegration schemes so the time step scales inversely as the mesh size. For example, if we
halve the element size, then the code decreases the time step in half. Therefore, the Float-
ing Point Operations (FLOPS) scale as the fourth power of the mesh size. Since the FLOP
requirements increase faster than the memory requirements, simply increasing the mem-
ory on existing supercomputers is not a good solution to running larger problems because
the run time quickly becomes excessive.

Our codes run on distributed-memory parallel computers that are constructed from
multiple compute nodes, as shown in Figure 1. Each compute node has a central process-
ing unit (CPU), memory and may have special hardware such as a vector processor or in-
put/output processor. A high speed communication network connects the compute nodes.
This computer model fits many parallel computers including Sandia‘s 1840 compute node
Intel Paragon, 1024 compute node nCUBE2, networks of workstations, and even shared-
memory parallel computers like the Cray Y-MP.

We designed our codes to easily switch the inter-node communication software. We
have run with PVM3, MPI, and vendor specific message passing interfaces. We use the
small size, high-performance SandiaAJniversity of New Mexico Operating System
(SUNMOS) [4]. It maximizes the user memory, provides the needed functionality, and
provides very high speed communications. MASTER

wok Was supported by the
States Depafiment oj ~ n e r g ~ under C”4,94kL+35~QO*
cowq %@f&$!J gg W$$ m m - T q & ~ j N L : ~ y ? ~ ~ ~ l

_7L-__--- - - -- -- .. _- _-----_--------------

DlSCLAlMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial. product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or

. any agency thereof.

DlSCLAlMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

high

/
/

speed communications network

/q-q -specialhardwarel
lmemoIyl

Distributed Memory Parallel Computer
HGURE 1: DISTRIBUTED MEMORY PARALLEL COMPUTER

3. THE CTH AND ALEGRA CODES

CTH models multidimensional, multi-material, large deformation, shock wave phys-
ics using a finite-volume numerical technique [1,2]. The massively parallel version of
CTH supports only three-dimensional rectangular meshes. A rectangular mesh, as shown
in Figure'2, is constructed fromparallel lines. ALEGRA models multidimensional, multi-
material, transient solid mechanics physics using a finite element numerical technique
[3]. Three and two dimensional arbitrary connectivity meshes, as shown in Figure 2, are
available. Arbitrary connectivity meshes allow an arbitrary number of elements to share
a common element node.

rectangular
mesh

FIGURE 2: ARBITRARY-CONNECTIVITY AND RECTANGULAR MESH

We use the Single Program Multiple Data (SPMD) model where the same program
runs on all compute nodes but each compute node has a different data base. For example,
we run 1840 identical copies of our code on the Paragon but each copy uses a different
data base. The programs communicate using explicitly passed messages.

3.1 Mesh Decomposition
The data base of a large, three-dimensional problem is too large to fit on any single

compute node. We address this problem by breaking the data base into several sub-data
bases. In particular, we break the entire mesh into several sub-meshes. This is shown in
Figure 3. Each compute node gets a different sub-mesh. The compute node's data base is
the sub-mesh's data base. We decompose the mesh so that each sub-mesh has approxi-
mately the same number of elements. Assuming equal work per element, equal sub-mesh-

es result in the same amount of work for each compute node.

I - - I
- - __

Mesh : sub-mes h
I
I
I
I
I

- - - - - - - - - - - - - - - - -

- - I sub-mes I sub-mes
8

FIGURE 3: MESH AND SUB-MESHES

I

I

Mesh :
I
I
I
I
I

. - - - - - - - - - - - - - - - - -

- - - - - - - I - - - -_
I
I

FIGURE 4: GHOST ELEMENTS ON SUB-MESH BOUNDARY

CTH uses one layer of ghost elements around each sub-mesh perimeter for boundary
conditions, as shown in Figure 4. The additional ghost elements represent a parallel pro-
cessing cost that can be quite large for compute nodes with a small number of elements.
For example, assume a compute node holds 10 x 10 x 10 = 1,000 elements. Then lo3 - 83
= 488 elements (almost half) are boundary elements. If the compute node holds 100 x 100
x 100 = 1,000,000 elements, then loo3 - 9g3 = 58,808 elements (about 6%) are boundary
elements. We use a sub-mesh that fills the compute node's memory to minimize the num-
ber of ghost elements. Minimizing the number of boundary elements also minimizes the
amount of data passed between compute nodes.

are replicated between compute nodes. This is shown in Figure 5.

ance the work on the compute nodes and minimize the data passed between compute
nodes. Rectangular meshes are relatively easy to decompose. Arbitrary connectivity
meshes are much more difficult to decompose. We decompose the meshes using Sandia's
Chaco [5] library of routines.

ALEGRA does not use ghost elements. The element nodes on sub-mesh boundaries

Good mesh decomposition is important to minimize the memory requirements, bal-

mesh sub-mesh
duplicated element nodes '

FIGURE 5: ARBITRARY CONNECTIVITY MESH DECOMPOSITION

3.2 Algorithm Modifications
We must modify the solution algorithm for parallel processing. The modifications are

relatively simple for our codes because the governing equations are hyperbolic and we
use explicit numerical techniques. Extending most of the numerical algorithms to parallel
computers is simple because only an element's neighbors influence an element.

One algorithm that must be modified in CTH is calculating the gradient of a field. The
gradient uses the cell value and the values of the nearest neighbors. In the parallel version,
some of the nearest neighbor values are in neighboring sub-meshes. We solve this prob-
lem by sending the field values from the neighboring sub-meshes to the ghost elements
before calculating the gradient. This process is shown in Figure 6. We then calculate the
gradient in the sub-mesh interior. There are no major changes to the solution algorithms
used with uni-processor computers. The major change is transmitting data between sub-
meshes before the gradient operation.

ghost elements exchange nodal

sub-mesh

FTGURE 6: SENDING FIELD VALUES TO GHOST ELEMENTS

We must perform a similar modification in ALEGRA. We need to sum the forces and
masses on a node to calculate the nodal acceleration. The nodal forces and masses are cal-
culated from the elements attached to the node. First, we sum the forces and masses for
the elements in the sub-mesh. Next, if the node is duplicated in another sub-mesh, then
the sub-meshes exchange summed forces and masses, as shown in Figure 6. The total
force and mass are calculated by summing the exchanged forces and masses.

We must modify our algorithm to calculate fluxes between elements. We use'the van
Leer algorithm [6] which is a monotone, second-order accurate algorithm. It uses donor
element value and the gradients on the sides of the donor. This algorithm is more difficult

to extend to parallel computers because it uses both nearest neighbor and next nearest
neighbor values. The parallel CTH version of the algorithm uses a two step process. The

. first step calculates the gradients, passes them to neighboring sub-meshes, and stores
them as part of the mesh data base. Using this form of the data base, the solution algo-
rithm now uses the donor cell values and the nearest neighbor values. The second step
calculates the flux. The parallel ALEGRA version uses a different approach by copying
the field values into a working array even if the values lie in two sub-meshes, as shown
in Figure 7.

working

FIGURE 7: CALCULATJNG FLUXES ON A FXNTI'E ELEMENT MESH

We need to calculate global information such as the calculation time step. The time
step algorithm uses the smallest time step in the global mesh. The parallel algorithm first
calculates the smallest time step for each sub-mesh. Then an efficient global algorithm
calculates the minimum value to be used by all sub-meshes.

3.3 Files
Massively parallel calculations can generate enormous data bases that can result in

long input/output times and enormous files. We address this problem by performing par-
allel output and compacting the files. The restart files contain all the information required
to restart the calculations. Our codes write a restart file for each computational node. We
perform no compaction of this file. We compress our graphics file. We identify the largest
and smallest values in a field, such as pressure. We then linearly or logarithmically map
the values into sixteen bit integers. This bins the values into 65,536 values. We then per-
form run-length encoding. This typically reduces the file size by two orders of magnitude.

Post-processing the compressed files is still very challenging. We can merge the data
bases to form a single post-processing file. The data base may be too large to fit into the
post-processing computer's memory. We can then analyze only a fraction of the data base
by reading a part of the data base (zooming into a region of interest), plotting a subset of
the materials, or sampling the plot file, e.g. read every other point.

3.4 Results
The massively parallel version of CTH is being routinely used on the Paragon. The

Paragon ran a complex, ten-material problem with explosives and elastic-plastic material
models at a rate of approximately 280 Kcell-cycles/second. A single processor of the
Cray Y-MP runs a coarser zoned version of the same problem at about 10 Kcell-cycles/
second. Recent optimization efforts may increase the speed by a factor of two.

We recently completed a series of eight-million cell CTH calculations of the comet
Shoemaker-Levy 9's impact on Jupiter. Figure 8 shows a Jupiter fire ball 55 seconds after
comet impact. The outline of the state of New Mexico indicates the size of the fue ball

- .

.r * =

FIGUJ3E 8: COMET SHOEMAKER-LEVY 9 COLLISION WITH JUPITER

4. REFERENCES

[l] McGlaun, J. M., S. L. Thompson, M. G. Elrick, 1990, “CTH: A Three-Dimensional
Shock Wave Physics Code,” Int. J. Impact Engng., Vol 10, pp 351-360, 1990
[2] McGlaun, J. M., E J. Zeigler, S. L. Thompson, M. G. Elrick, 1988, “CTH User’s
Manual and Input Instructions,” Sandia National Laboratories Report SAND88-0523,
Sandia National Laboratories, Albuquerque, NM
[3] Peery, J. S., Budge, K. G., Wong, M. K. W., Trucano, T. G., 1993, “RHALE: A 3D
MMALE Code for Unstructured Grids,” Proceedings of the Winter ASME Meeting,
New Orleans, LA
[4] Maccabe, A. B., McCurley, K. S., Riesen, R. Wheat, S. R., 1994, “SUNMOS for the
Intel Paragon: A brief user’s guide,” In Proceedings ofthe Intel Supercomputer User’s
Group. I994 Annual North America Users’ Conference
[5] Hendrickson, B. and Leland, R, 1993, “The Chaco User’s Guide,” Sandia National
Laboratories Report SAND93-2339, Sandia National Laboratories, Albuquerque, NM
[6] van Leer, B., 1977. “Towards the Ultimate Conservative Difference Scheme IV. A
New Approach to Numerical Convection.” J. Comp. Phys. Vol. 23, pp. 276-299
[7] Crawford, D. A., M. B. Boslough, T. G. Trucano, and A. C. Robinson, “The Impact
of Comet Shoemaker-Levy on Jupiter,” Shock Waves (1994) 4:47-50

