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1. INTRODUCTION 

Computational physicists at Sandia National Laboratories have moved the Eulerian 
CTH code, and the arbitrary-Lagrangian-Eulerian ALEGRA code to distributed memory 
parallel computers. CTH is a three-dimensional solid mechanics code used for large-de- 
formation, shock wave analysis [1,2]. ALEGRA is a three-dimensional arbitrary- 
Lagrangian-Eulerian solid-mechanics code used for coupled large-deformation, shock 
and structural mechanics problems [3]. This paper discusses our experiences moving the 
codes to parallel computers, the algorithms we used and our experiences running the 
codes. 

2. PARALLEL COMPUTERS 

We moved our CTH and ALEGRA codes to massively parallel computers because we 
needed their enormous memories and processor speeds to analyze large, three-dimen- 
sional problems. The memory requirements for our codes scale inversely as the cube of 
the zone size. For example, if we halve the element size in each direction, then the mem- 
ory requirement increases by a factor of eight. These codes use explicit, time-stepping in- 
tegration schemes so the time step scales inversely as the mesh size. For example, if we 
halve the element size, then the code decreases the time step in half. Therefore, the Float- 
ing Point Operations (FLOPS) scale as the fourth power of the mesh size. Since the FLOP 
requirements increase faster than the memory requirements, simply increasing the mem- 
ory on existing supercomputers is not a good solution to running larger problems because 
the run time quickly becomes excessive. 

Our codes run on distributed-memory parallel computers that are constructed from 
multiple compute nodes, as shown in Figure 1. Each compute node has a central process- 
ing unit (CPU), memory and may have special hardware such as a vector processor or in- 
put/output processor. A high speed communication network connects the compute nodes. 
This computer model fits many parallel computers including Sandia‘s 1840 compute node 
Intel Paragon, 1024 compute node nCUBE2, networks of workstations, and even shared- 
memory parallel computers like the Cray Y-MP. 

We designed our codes to easily switch the inter-node communication software. We 
have run with PVM3, MPI, and vendor specific message passing interfaces. We use the 
small size, high-performance SandiaAJniversity of New Mexico Operating System 
(SUNMOS) [4]. It maximizes the user memory, provides the needed functionality, and 
provides very high speed communications. MASTER 
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HGURE 1: DISTRIBUTED MEMORY PARALLEL COMPUTER 

3. THE CTH AND ALEGRA CODES 

CTH models multidimensional, multi-material, large deformation, shock wave phys- 
ics using a finite-volume numerical technique [1,2]. The massively parallel version of 
CTH supports only three-dimensional rectangular meshes. A rectangular mesh, as shown 
in Figure'2, is constructed fromparallel lines. ALEGRA models multidimensional, multi- 
material, transient solid mechanics physics using a finite element numerical technique 
[3]. Three and two dimensional arbitrary connectivity meshes, as shown in Figure 2, are 
available. Arbitrary connectivity meshes allow an arbitrary number of elements to share 
a common element node. 

rectangular 
mesh 

FIGURE 2: ARBITRARY-CONNECTIVITY AND RECTANGULAR MESH 

We use the Single Program Multiple Data (SPMD) model where the same program 
runs on all compute nodes but each compute node has a different data base. For example, 
we run 1840 identical copies of our code on the Paragon but each copy uses a different 
data base. The programs communicate using explicitly passed messages. 

3.1 Mesh Decomposition 
The data base of a large, three-dimensional problem is too large to fit on any single 

compute node. We address this problem by breaking the data base into several sub-data 
bases. In particular, we break the entire mesh into several sub-meshes. This is shown in 
Figure 3. Each compute node gets a different sub-mesh. The compute node's data base is 
the sub-mesh's data base. We decompose the mesh so that each sub-mesh has approxi- 
mately the same number of elements. Assuming equal work per element, equal sub-mesh- 



es result in the same amount of work for each compute node. 
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FIGURE 3: MESH AND SUB-MESHES 
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FIGURE 4: GHOST ELEMENTS ON SUB-MESH BOUNDARY 

CTH uses one layer of ghost elements around each sub-mesh perimeter for boundary 
conditions, as shown in Figure 4. The additional ghost elements represent a parallel pro- 
cessing cost that can be quite large for compute nodes with a small number of elements. 
For example, assume a compute node holds 10 x 10 x 10 = 1,000 elements. Then lo3 - 83 
= 488 elements (almost half) are boundary elements. If the compute node holds 100 x 100 
x 100 = 1,000,000 elements, then loo3 - 9g3 = 58,808 elements (about 6%) are boundary 
elements. We use a sub-mesh that fills the compute node's memory to minimize the num- 
ber of ghost elements. Minimizing the number of boundary elements also minimizes the 
amount of data passed between compute nodes. 

are replicated between compute nodes. This is shown in Figure 5. 

ance the work on the compute nodes and minimize the data passed between compute 
nodes. Rectangular meshes are relatively easy to decompose. Arbitrary connectivity 
meshes are much more difficult to decompose. We decompose the meshes using Sandia's 
Chaco [5] library of routines. 

ALEGRA does not use ghost elements. The element nodes on sub-mesh boundaries 

Good mesh decomposition is important to minimize the memory requirements, bal- 
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FIGURE 5: ARBITRARY CONNECTIVITY MESH DECOMPOSITION 

3.2 Algorithm Modifications 
We must modify the solution algorithm for parallel processing. The modifications are 

relatively simple for our codes because the governing equations are hyperbolic and we 
use explicit numerical techniques. Extending most of the numerical algorithms to parallel 
computers is simple because only an element's neighbors influence an element. 

One algorithm that must be modified in CTH is calculating the gradient of a field. The 
gradient uses the cell value and the values of the nearest neighbors. In the parallel version, 
some of the nearest neighbor values are in neighboring sub-meshes. We solve this prob- 
lem by sending the field values from the neighboring sub-meshes to the ghost elements 
before calculating the gradient. This process is shown in Figure 6. We then calculate the 
gradient in the sub-mesh interior. There are no major changes to the solution algorithms 
used with uni-processor computers. The major change is transmitting data between sub- 
meshes before the gradient operation. 

ghost elements exchange nodal 

sub-mesh 

FTGURE 6: SENDING FIELD VALUES TO GHOST ELEMENTS 

We must perform a similar modification in ALEGRA. We need to sum the forces and 
masses on a node to calculate the nodal acceleration. The nodal forces and masses are cal- 
culated from the elements attached to the node. First, we sum the forces and masses for 
the elements in the sub-mesh. Next, if the node is duplicated in another sub-mesh, then 
the sub-meshes exchange summed forces and masses, as shown in Figure 6. The total 
force and mass are calculated by summing the exchanged forces and masses. 

We must modify our algorithm to calculate fluxes between elements. We use'the van 
Leer algorithm [6] which is a monotone, second-order accurate algorithm. It uses donor 
element value and the gradients on the sides of the donor. This algorithm is more difficult 



to extend to parallel computers because it uses both nearest neighbor and next nearest 
neighbor values. The parallel CTH version of the algorithm uses a two step process. The 

. first step calculates the gradients, passes them to neighboring sub-meshes, and stores 
them as part of the mesh data base. Using this form of the data base, the solution algo- 
rithm now uses the donor cell values and the nearest neighbor values. The second step 
calculates the flux. The parallel ALEGRA version uses a different approach by copying 
the field values into a working array even if the values lie in two sub-meshes, as shown 
in Figure 7. 

working 

FIGURE 7: CALCULATJNG FLUXES ON A FXNTI'E ELEMENT MESH 

We need to calculate global information such as the calculation time step. The time 
step algorithm uses the smallest time step in the global mesh. The parallel algorithm first 
calculates the smallest time step for each sub-mesh. Then an efficient global algorithm 
calculates the minimum value to be used by all sub-meshes. 

3.3 Files 
Massively parallel calculations can generate enormous data bases that can result in 

long input/output times and enormous files. We address this problem by performing par- 
allel output and compacting the files. The restart files contain all the information required 
to restart the calculations. Our codes write a restart file for each computational node. We 
perform no compaction of this file. We compress our graphics file. We identify the largest 
and smallest values in a field, such as pressure. We then linearly or logarithmically map 
the values into sixteen bit integers. This bins the values into 65,536 values. We then per- 
form run-length encoding. This typically reduces the file size by two orders of magnitude. 

Post-processing the compressed files is still very challenging. We can merge the data 
bases to form a single post-processing file. The data base may be too large to fit into the 
post-processing computer's memory. We can then analyze only a fraction of the data base 
by reading a part of the data base (zooming into a region of interest), plotting a subset of 
the materials, or sampling the plot file, e.g. read every other point. 

3.4 Results 
The massively parallel version of CTH is being routinely used on the Paragon. The 

Paragon ran a complex, ten-material problem with explosives and elastic-plastic material 
models at a rate of approximately 280 Kcell-cycles/second. A single processor of the 
Cray Y-MP runs a coarser zoned version of the same problem at about 10 Kcell-cycles/ 
second. Recent optimization efforts may increase the speed by a factor of two. 

We recently completed a series of eight-million cell CTH calculations of the comet 
Shoemaker-Levy 9's impact on Jupiter. Figure 8 shows a Jupiter fire ball 55 seconds after 
comet impact. The outline of the state of New Mexico indicates the size of the fue ball 
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FIGUJ3E 8: COMET SHOEMAKER-LEVY 9 COLLISION WITH JUPITER 
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