Interfacial segregation and deformation of superplastically deformed Al-Mg-Mn alloys

PDF Version Also Available for Download.

Description

Microstructural and microchemical studies have been carried out on superplastically deformed Al-Mg-Mn (AA5083-type) alloys. Grain boundary composition was measured using a Scanning Auger Microprobe (SAM) and an Analytical Transmission Electron Microscope (ATEM), while conventional TEM was used for microstructural evaluation. Non-equilibrium segregation of Si to grain boundaries following deformation was measured by both techniques. Significant interfacial Si enrichment was only detected in gage sections of tensile specimens after uniaxial strains from 50 to 200%. Grip regions which experience identical thermal histories, but without plastic deformation, did not reveal Si segregation. Selected samples also showed a slight depletion of Mg at ... continued below

Physical Description

9 p.

Creation Information

Vetrano, J.S.; Lavender, C.A. & Bruemmer, S.M. March 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 37 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Pacific Northwest Laboratory
    Publisher Info: Pacific Northwest Lab., Richland, WA (United States)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Microstructural and microchemical studies have been carried out on superplastically deformed Al-Mg-Mn (AA5083-type) alloys. Grain boundary composition was measured using a Scanning Auger Microprobe (SAM) and an Analytical Transmission Electron Microscope (ATEM), while conventional TEM was used for microstructural evaluation. Non-equilibrium segregation of Si to grain boundaries following deformation was measured by both techniques. Significant interfacial Si enrichment was only detected in gage sections of tensile specimens after uniaxial strains from 50 to 200%. Grip regions which experience identical thermal histories, but without plastic deformation, did not reveal Si segregation. Selected samples also showed a slight depletion of Mg at grain boundaries after deformation. The only reproducible observation of equilibrium segregation was in Zr-modified alloys, where Sn was detected by SAM in both the deformed and undeformed sections of the sample. Microstructural analysis documented subgrain formation and subgrain-precipitate interactions during superplastic deformation. In addition, many grain boundaries and precipitate interfaces contained small (5 to 20 nm) voids. Compositional analysis of these nano-voids revealed that they were enriched in Mg with the adjacent boundary regions correspondingly depleted.

Physical Description

9 p.

Notes

OSTI as DE95009572

Source

  • Annual meeting and exhibition of the Minerals, Metals and Materials Society (TMS), Las Vegas, NV (United States), 12-16 Feb 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95009572
  • Report No.: PNL-SA--26013
  • Report No.: CONF-950201--13
  • Grant Number: AC06-76RL01830
  • Office of Scientific & Technical Information Report Number: 40782
  • Archival Resource Key: ark:/67531/metadc675781

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1995

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 7, 2016, 4:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 37

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Vetrano, J.S.; Lavender, C.A. & Bruemmer, S.M. Interfacial segregation and deformation of superplastically deformed Al-Mg-Mn alloys, article, March 1, 1995; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc675781/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.