Electromagnetic imaging of a fuel oil spill at Sandia/CA

PDF Version Also Available for Download.

Description

The multifrequency, multisource integral wave migration method commonly used in the analysis of seismic data is extended to electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The integral wave-migration method is a numerical reconstruction procedure utilizing Green`s theorem where the fields are migrated (extrapolated) from the measuring aperture into the interior of the earth. To form the image, the approach used here is to Fourier transform the constructed image from frequency domain to time domain and set time equal to zero. The image ... continued below

Physical Description

29 p.

Creation Information

Bartel, L.C. April 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The multifrequency, multisource integral wave migration method commonly used in the analysis of seismic data is extended to electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The integral wave-migration method is a numerical reconstruction procedure utilizing Green`s theorem where the fields are migrated (extrapolated) from the measuring aperture into the interior of the earth. To form the image, the approach used here is to Fourier transform the constructed image from frequency domain to time domain and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; ie., the EM wave is phase coherent at its origination. In the application here, the secondary magnetic fields are treated as scattered fields. To determine the conductivity, the measured data migrated to a pixel location are equated to calculated data migrated to the same pixel. The conductivity is determined from solving a Fredholm integral equation of the first kind by solving a system of linear algebraic equations. The multifrequency, multisource integral wave-migration method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill. For the application discussed here, a two dimensional resistivity slice is calculated from the solution to the Fredholm integral equation. The resistivity image of the fuel oil agrees with the known location.

Physical Description

29 p.

Notes

OSTI as DE97005340

Source

  • Other Information: PBD: Apr 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97005340
  • Report No.: SAND--97-0914
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/469168 | External Link
  • Office of Scientific & Technical Information Report Number: 469168
  • Archival Resource Key: ark:/67531/metadc675775

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • April 14, 2016, 3:45 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bartel, L.C. Electromagnetic imaging of a fuel oil spill at Sandia/CA, report, April 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc675775/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.