
E
Quinn 0. Srzell

236 Wilhelm Hall, Aines. IA 5001 2
sneii@amesiab.gov

http: //www.scl.ameslab.gov/Personnel/quinn.htmi

Scalable Cornpittirig kboratoq- OCT 1 7 19%

O S T I
John L. Gustafson

Scatabk Computing Laboraton.
236 Wilhelrn Hall, Aines, IA 5001 I

gus@amesiab.gov
http://~.n.nr.sci.amesiab.gov/Personnei/jo~n.html

Abstract
The HINT benchmark was developed to provide a broad-spectrum metric for computers and to
measure performance over the full range of memory sizes and time scales. We have extended our
understanding of ~ v h y HINT performance curves look the way they do and can now predict the
curves using an analytical model based on simple hardware specifications as input parameters.
Conversely. by fitting the experimental curves with the analytical model, hardware specifications
such as memory performance can be inferred to provide insight into the nature of a given computer
system.

Keywords
computer pcriormance. model, benchmark, supercomputer.

This work \+pas supported by the Applied Mathematical Sciences Program of the Amcs Laboratory. U.S
Department of^ Energy under contract number W-7405-ENG-82.

Thc HIFT I 1.3 1 performance metric was developcd at Ames Laboratory to gauge the overall

amount of work to be done a priori, HINT fixes neither the problem size nor the execution time of the
prcthlem to he soiiwi. Consequently, it measures the performance of a computer across aii mcmory
rccimcs. The output o f a HINT performance measurement produces a graph which is a rigorous
measurenienl o f the Quality Improvement Per Second (QUIPS) in an answer. The graph reveals the
pcriiwmance range of the tested computer from bursf speed for very small problems to endurnt~cr speed
for large problems that may have to use mass storage.

..., ,.Lrlo~-ni;iiice of a wide variety of computing machines. Unlike other benchmarks which dcterminc the

HINT also consolidates precision, memory size, mcmoiy speed, and arithmetic spccd into a single figure
oi merit. That metric. the Net QUIPS, is the area undcr thc HINT graph. More memory in a given
regime keeps the yaph on a plateau, thus increasing the Nct QUIPS. If a computcr has insufficient

MA

mailto:sneii@amesiab.gov
mailto:gus@amesiab.gov

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

memory, slow instruction execution, long pipeline startup, a "memory hog" operating system, low
arithmetic precision, or other design shortcomings, some part of the HINT graph will fail and the Net
QUIPS will be reduced.

i
i

Figure 1: Example HINT graph of a DEC 3000/900 versus an IBM SP-2

Any digitai computer, from a person using an abacus to the largest paraiiei supercomputer. can be
measured and accurately compared using HINT. Comparisons across different architectures are valid
and the differcnces are readily visible using the HINT graphs. Figure 1 demonstrates this by comparing
a DEC 3000/900 workstation to the combined power of eight nodes of an IBM SP-2. Note that while the
workstation has a quick startup time, once the parallel overhead is overcome, the SB-2 far outperforms
thc workstation. Thc graph also shows the three performance levels of the DEC workstation. These
levels correspond directly to the memory hierarchy. This particular workstation has 16 Kbytes of
primitiy data cache. 2 Mbytes of secondary unified cache, and 256 Mbytes of main memory. Clearly, the
HI N1' graph gives a visualization o f computer performance and architecture differences previously
11 n avai I ah le.

Althou~h HINT has been widely acccpted and seen great success in predicting the performance of
a ls t ing computer systems. i t has not been used in the design of new computers. HINT performance
knowledge is based on a prior run of the benchmark. The performance analysis cannot be run on a
computer that does not exist outside of the mind of the computer designer. 'Therefore. it is difficult to
incorporate HINT into the d e s i p process.

An analytical model, described here, allows performance prediction based on a small set of design
statistics. It presents the computer architect with a powerful tool to build a balanced computer by
varyiny desiyn parameters based on cost and performance. The model also benefits users of existing
computers. ('onsider a computer user trying to determine whether or not to upgrade from 128 K
sccondary cache to 5 12 K secondary cache. Advertisements indicate 'huge' performance increases. One

could run HINT on the existing configuration, match the QUIPS curve using the analytical model to
determine the input statistics, and then increase the secondary cache size input to the analytical model
which would then predict the performance increase. At this point, an educated decision could be made
based on cost increase versus performance increase. By fitting the model to existing HINT graphs, a user
can find out the true computer performance parameters and compare them against manufacturer claims.
For example, in one case we discovered a so-called "secondary data cache" was nothing of the kind, and
served only as an extra memory for instruction storage.

This paper focuses on the design of an analytical model of the HINT performance metric called AHINT.
The model allows the user to enter design statistics such as processor speed, memory regime sizes and
speeds, number of processors, and communication latency for parallel and distributed computer systems.
Section 2 presents the model and describes the approach taken to calculate the execution time of the
HINT kernel. The results in Sections 3 and 4 present the use of AHINT in matching existing computer
systems. Finally, conclusions are presented in Section 5.

2 Model Descri~tion A

HINT tests a computer's performance by rigorously bounding the area under the curve
,f'(.x)=(1 - .r)/(l+xj in the range [0,1] using hierarchical integration. This is accomplished by dividing the
largest remaining rectangular error in half and determining the area now known to be above and below
the curve. After each division, knowledge is gained and quality is improved. The term quality is defined
as the reciprocal of error, where error is the difference between the upper and lower bounds of the area
under the curve. See [l J for details. If there were no precision loss, quality and the number of iterations
would be identical. so i t is a linear work measure.

Q
The analytical model presented here is based on the assumption that execution time is the time to
execute the instructions and the overhead associated with fetching memory that is not immediately
available in the primary processor cache. Clearly, this is a high-level view of performance: further
clarification is needed lor each area.

Instruction execution time is based on the number of each instruction type, the amount of time to
execute that type. and in some cases execution order. In order to avoid the complexity associated with
this. cach instruction is assumcd to execute in the average number of cycles per instruction (CPIj.
Therefore. instruction execution time, in processor cycles. is equal to the CPI 131 times the number of
1 n s truc t i (1 n s .

Mcniory l.ctch overhead is a much more complicated issue. AHINT assumes that all the data needed for
the instructions are in the primary cache. This is not always the case. Therefore, the amount of time to
copy the data into priinary cache must be calculated based on the current location of the data. The model
assumes the principle of i17cIu.sio17: all the data in a nearby level of memory are included in the distant
IC ve Is.

k
I

Figure 2: HINT memoiy access pattem

The total number of blocks accessed by HINT increases linearly with the number of kernel iterations.
However, the access pattern during the iterations is not linear. It is fractal in nature, as shown in Figure
2. Every other access address is linearly increasing. Of the accesses remaining, every other access
address is linearly increasing at half the rate, and the pattern continues. The effect of the above pattern is
that once cache size is exceeded. the block to be accessed is replaced just before it is needed. This forces
a cache miss and the memory block must be reloaded into the cache from the next lower memory
regime. This cache miss and the time to load the cache is the memory fetch overhead that must be
calculated. Also, since every other memory access is linearly increasing, one half of the memory
accesses will not be in primary cache.

The calculation of memory access overhead can best be explained through the following example:
Consider a hypothetical computer system with three memory regimes. The primary cache is 16 Kbytes
with a miss penalty of 3 cycles, secondary cache is 1 Mbyte. and main memory size is 64 Mbytes with
latency 90 ns. Further suppose that the proccssor speed is 150 MHz and the average CPI is 1.8. For a full
list and discussion of the input parameters and their effect on system performance. see section 5. Given
this configuration, the time 10 execute 105 iterations can be calculated as follows:

First, calculate the time to cxccute the instructions. This is simply the number of instructions multiplied
by the number of iterations tmcs thc average CP1. In most KfSC systems, HlNT averages 200
instructions per iteration. Thcrcforc, instruction time in cycles is

2.00 instructions per ite.r:ltior! * 105 iterations * 1.8 CPI = ?;c, x lo7 cycIes,

The total number of data blocks accessed by HINT grows linearly with the number of iterations. Two
data blocks are accessed during each subdivision (one data block is added and one is reused) yielding 2
x 10s block accesses. Each data block conrains information describing one subintervai. Tne necessary
data is ten numbers using the computation data type plus one number of the index data type. Typically,
computation data is 64bi t lEEE h a t i n g point and indexing is done with 32-bit integers, but this is
flexible. For a HINT run using 64-bit IEEE floating point numbers, the resulting data block size is 84 I

R

bytes. Since the primary cache is 16 Kbytes, it would hold approximately 195 data blocks, accounting
for 390 data block accesses. Due to HINTS memory access pattern, half of these accesses will miss. The
remaining 195 block accesses are in primary cache so there is no overhead associated with accessing
these blocks.

The secondary cache is 1 Mbyte and thus could hold approximately 12483 data blocks, but inclusion
must be considered, yielding 12288 data blocks. Again, of the 24576 accesses at this level, one half will
miss cache. The time for accessing blocks at this level is the miss penalty of the primary cache plus the
access time of this level. For our example, this is 3 + 1 = 4 cycles. The overhead associated with these
accesses is simply

12288 data block accesses * 21 words per block * 4 cyclq per access = 1.03 x lo6 cycles.

Finaliy, the remaining 1.87 x 10’data blocks accesses must all be loaded from main memory. If memory
speed is 70 ns, then access time is 10.5 cycles plus 4 cycles miss overhead from the previous levels.
Therefore, the remaining data block accesses account for

7 1.87 x lo5 block accesses * 21 words per block * 14.5 cycles per access = 5-7 x 10 cycles.

The total time to execute iterations is

3,6 x lo7 cycles for instnictinns + 5.8 x lo7 total cycle< memory overhead = 9.4 x lo7 cycles.

For a 150 MHz processor, this is 0.6275 seconds. The total time for execution must also account for
function call overhead. From experimentation, a machine of this caliber typically has a function call
overhead of 350 ns which is only significant for the extreme left portion of the HINT curve.

With no precision loss, each subdivision improves the quality of the answer by one unit. The computer
is using finite-precision arithmetic however, so there is a loss in quality due to discretization error. The
quality at subdivision i can be determined as follows

where SCJ is the number of area units i n thc vertical coordinate axis for the function. It is generally the
largest whole number expressiblc with half the available bits for data representation (mantissa only. if a
floating point type is used). Using 64-bit IEEE floating point arithmetic, scy is 134217728. For the
example, quality therefore does not increase perfectly linearly to IOO(K)O but results in 99925.55 at this
point. A computer‘is allowed to start with the knowledge that the area under the curve is between 0 and
1: quality is therefore 1 / (1 - 0) = 1 . QUIPS IS changc in quality divided by time. l h e resulting QUIPS for
the hypothetical machine is

&ha Q / time = (99925.55 - 1)/0.6275 = 0. IS9 MQUIPS.

3 Results
In this section. the accuracy 0 1 the i-uodcl is dcrermincd by comparing the output of the model with
known results. All comparisons are based on previous runs of the HINT benchmark and parameters

obtained using technical references [7,8,9] for the given systems. The number of hand-tuned parameters
is surprisingly limited, and will be discussed in Section 5 . This section will fcxus on four systems: an
SGI Indy pc, an SGI Indy sc, a DEC 3000/900, and an SGI Power Onyx. The SGI Indy systems are
based on the MIPS 8 4 6 0 processor, differing only in the amount of secondary cache; the pc version has
none, while the sc version has 5 12 Kbytes providing a controlled experiment in cache modeling. The
DEC 30()0/900 uses the Alpha processor and the Power Onyx uses the MIPS R8000 chip set. The main
difference between the Alpha chip and the R8000 is the pipelined instruction execution of the R8000.

SGI lndy p= 2 . a MGUIPS -
Simulated Ir& ---

l e & i e 0 5 0 m i 0.w-1 0.01 0-I 1 1 0 l a
Time

Figure 3: Actual and simulated SGI Indy pc

Most of the needed statistics for the SGI Indys were found in the technical reference for the R4600
processor. Like most processors, the R4600 can access a data element in on-chip cache in a single clock
cycle. The cache miss overhead is three clock cycles. Figure 3 shows the data from an actual run of
HINT compared to the analytical model results for the Indy pc. Note that while the simulated curve is
smooth, the curve for the actual HINT run has noise. This effect is caused by operating system interrupts
that steal cycles from HINT. The last drop in performance is due to HINT running out of real memory
and using virtual memory paged in from mass storagc. Currently, AHINT docs n o t simulate lhis regime
as it adds very little to the net performance of the system.

353200 , I . ., * . ., . . ., . I , . .I . . I , . . ,I . , 't
SGI lrdlr sc 2.94 MclUlPS

Sim uktd lndy sc

0 ' "" " I ' "'
i e c G l e 0 5 0 . ~ 1 0.001 0.01 0.1 1 10 1 cx,

Ti m B
Figure 4: Actual and simulated SGS Indy sc

Figure 4 depicts the equivaient data for the SGS Indy sc. An interesting point to note on the graph is the
eionzated performance plateau for the simulated results. Why is there a mismatch in the range from
around 0.002 to 0.1 seconds? The plateau corresponds directly to the secondary cache size. On the Indy
sc, the secondary cache is a unified instruction and data cache; not all of the cache is available for HINT
data. The extra performance in the simulated curve can be eliminated by reducing the size of the
modeled secondary cache, thus reflecting the percentage of space available for HINT data. In this way,
the irstlble memory sizes can be determined for an existing machine. Because of operating system
demands, the available memory is often much less than the nominal memory: HINT and AHINT
quantify this discrepancy precisely and explicitly.

f

Figure
similar

0
iec6 l e 0 5 0.m1 0.031 0 01 0. I 1 10

Time
Figure 5: Actual and simulated DEC 3000/900

i ew le05 o m 1 0001 001 01 I 10
Time

Figure 6: Actual and simulated SGI Power Onyx

5 shows the comparative results for the DEC 3000/900. The processor used in this machine is
to that used in the CKAY T3B. It would be interesting to compare this with an actual f3B node.

particularly at the point where shared virtual memory is invoked. The differences between the SGI
Power Onyx and the IBM RS6000/590 are displayed in Figure 6. In this and many graphs that follow,
AHINT is such a close match that the experimental measurements are covered up by the width of the
analytic curve plot. To aid in differentiating the curves, actual HINT results are plotted in blue, while
M I N T simulation results are in red. The Power Onyx runs at 75 MHz while the IBM runs at 67 MHz.
Each has the ability to execute up to 4 multiply-adds in a single clock cycle. The actual HINT
performance is lower, resulting in approximately 0.95 and 0.75 average cycles per instruction,
respectively. Notice that the relative performance drop between cache and main memory is much
smaller for the IBM. This is a result of hiding the memory fetch overhead in the pipeline. It was for this
machine that the parameter indicating the percentage of hidden memory fetches was added to AHTNT.
Emphasis on multiply-add parallelism is the result of market pressure to perform well on LINPACK[101
and related arithmetic kernels. We feel emphasis on memory speed and size is now more essential to
high performance on actual applications. The emphasis on memory access is clearly seen in the IBM
curve while the SGI takes a deep hit when retrieving data from main memory.

4 Modeling Supercomputers
HINT uses domain decomposition to distribute the function domain among the processors of a
supercomputer. Each processor can calculate a scattered portion of the domain and then it is free to
compute the area bounds for that subpartition. Global knowledge of the area bounds is obtained via a
global sum collapse of each processor's upper and lower bounds. The time for this sum collapse must be
accounted for in the current analytical model. Since communication overlap with processing is not
possible in this case, the new model is simply

Execution Time = Serial Execution Time + Communication Time

Since there are only two double-precision floating-point numbers per processor. all messages are latency
bound. In most parallel supercomputers, the global sum is performed via an @log n> collapse, where 11
is the number of processors. Communication time becomes log iz messages multiplied by the message
latency. There is a subtle additional time, however. On some systems, after the message is sent, there is
some clean-up of system-maintained variables and queues. In a collapse involving more than one
pairwise combine step, the clean-up time for the lower levels of the tree can occur in parallel with the
remaining messaFe passing. The processors involved in the last level of the collapse are unable to hide
the clean-up time. leaving that time to be added into the communication time as a system overhead.

Communication Time = log 17 * Message Latency + Clean-up Time

B~lscd on this model, Figures 7 - 10 show the comparison of actual HINT results with AHINT simulated
results for an nCUBE 2S, an IBM SP-2. an SGI Power Onyx, and a cluster of SGl lndy pc workstations.
In all cases. the serial model was used to match the curves for a single processor, after which the parallel
model was applied for each configuration. Note that the vertical scale is logarithmic here, for clarity.

I ' I ' I ' I . I ' I

m n
3
r;c

le+07

le43 :

io0003 :

1
1maJ

1 Et-% #.&Vi 0.0331 0 01 17.1 1 10
Time

Figure 7: Actulrl and simulated nCUBE 2s

The wrves rzprcscntcd in Figures 7 and 8 show the efficacy of'the model in estimating the performance
of' a parallel supercomputer. Once the performance of a single processor is known, the only remaining

statislics are the message latency and message overhead. The message latency can be found in technical
references, but the message overhead must be experimentally obtained. This was accomplished by
adjusting the overhead until the curves matched for two processors and the maximum number of
processors. Once these two curves fit, all the other configurations matched with no further adjustments
necessary.

le+=

w a
3
0

4 nodes I 1 3.03 Net h4ClUIPS)

f f 2 n o d e s E 8 4 Net MQI

I . . , I , . , I . I . I . . . I , . . I , . . I * I

iy
z
I

\

Figure 9: Actual and simulated SGI Power Onyx

The data in Figure 9 depict the results from matching AHINT results with actual HINT results for an
SGI Power Onyx. When modeling a systcin such as this, shared memory contention must be considered.
This effect was accounted for using the response time equations for an M/D/l queue with an input rate
equal to n times the input rate of a single processor, where n is the number of processors[4]. However,
duc to thc large caches on the SGI and the eight-way interleaved memory, the memory contention was
non-existent and thus had LO be set to zero.

I . "I ' . ' I '

Seri

1 I
10303

le-&S l e 4 5 O W 1 0.0331 0 01 0 1 i 10
Time

Figure 10: Actual and simulated SGI Indy pc workstation cluster

A recent trend is the use of workstation clusters and a high-speed network for parallel computing. Whiie
this provides a lower-cost solution than a supercomputer, there are drawbacks. The unpredictable nature
of the network traffic and network contention make this a particularly difficult system to model. Figure
10 shows the results of attempting to model a cluster of SGI Indy workstations connected by an ATM
network using MPI [l l] as the communication infrastructure. Previous research at Ames Laboratory
resulted in a network analyzer called NetPIPE [5,6]. This tool reported that the effective message latency
for AIKI is between 0.7 and 0.8 milliseconds. While this parameter was easily determined, clearly there
are other factors that must be considered in this case. The initial points 011 the curve are closely matched
by the model for 2 and 8 nodes, but unlike the previous resutts. using the same data for 4 nodes does not
result in a match of the actual curve. Although the model is not as accurate in this case, it is still within
five percent and does lend some insight. As is well known. the limitation of a workstation cluster is the
high message latency. Also note that the graph clearly shows the result of the high latency. For programs
with computation loop time less than 1 ms, a cluster of this nature should not be used. The performance
for a serial processor is much higher in this case.

A major issue in heterogeneous computing is how to measure and compare heterogeneous cluster
performance.[121 AHINT and HINT solve this problem by providinf a broad-spectrum measure that
ports easily to heterogeneous clusters. A heterogeneous measurement with HINT was done on the
I-WAY and was described in [131. AHfNT can also be easily extended to simulate heterogeneous
clusters of computers.

Y 5 MINT Curve Fitting

While most of the system parameters used by AHINT arc obtainable from technical manuals, some I

f

cannot be determined accurately a priori. The previous results were generated by gathering as many of
the system parameters as possible from technical specifications. The remaining AHINT input parameters
were derived through a manual curve fitting process.

Table 1: AHINT Input Parameters

Parameter 1 Units 1 HowDetermined

II ~ ~~

Processor Speed MHz I Technical Specification

Number of Instructions I Given; - 200
Wordsize 1 bytes 1 Technical Specification

HINT Data Block Size 3 bytes 1 Derived from Data Type
I Technical Specifications Number of Cache Regimes

Main Memorv Size 1 Mbvtes 1 Technical SDeciGcations

Access Time1 cycles I
Regime 1 Technical Specifications

Line Size 1 bvtes
I1 _I

Miss Penalty1 cycles il
......*

Access Time] cycles
Line Size I bytes

Regime n' Technical Specifications

IMiss Penalty! cycles

Main Memory Speed 1 nanoseconds 1 Technical Specifications
Number of Processors Technical Specifications

Communication Latency 1 scconds Tcchnical Spccifications

Memory Fetches Hidden o/c 1 Experimentally Obtainec
Function Call Overhead seconds 1 Experimentally Obtuinec

CPI hdes/instruc tion1 Experimentallv Obtainec

Message Overhead fl seconds Experimentally Ob tainec

Table 1 shows aii the input parameters required by AHlNT and the way each was determined. Notice the
relatively small number of Experimentally Obtained parameters. While thesc parameters are not
available in technical manuals. they can be determined for an existing machine by matching AHlNT
results with an actual HINT curve. The parameters can also be closely approximated by computer
architects for machines in the design stage. The parameters obtained from Technical Specifications can
be ad<iusted to reflect emperical data rather than nominal values.

The manual curve fitting revealed the effects of several variables on the HINT curve. Adjusting the CPI
raises or lowers the entire HINT curve. Similarly, increasinddecreasing memory regime sizes
lengthens/shortens the associated performance plateau. Since regime access times and miss penalties are
additive, adjustments to the access time for regime i raises/Iowers the curve for all levels k: where k >= i.

For parallel machines, changing the message latency changes the time for the global sum collapse and
correspondingly changes the location of the initial points on the HINT curve. The lessons learned from
the manual process have added insight to an automated HINT curve fitting program, currently under
development. Given the data from an actual HINT' run, the automated curve fitter wifl be able to vary the
AHINT input parameters to match the model results with the actual results. This tool will be invaluable
in understanding existing computer systems.

6 Conclusion
We have presented an accurate analytical model of the HINT performance metric. The model used is
simple, yet predictive. The accuracy has been demonstrated by comparison of simulated results with
actual HINT data. Because of its accuracy, the model can be effectively used in the design of a new
computer. While HINT has become known as a powerful tool for analyzing the performance of an
existing computer system, AHINT is an equally powerful tool that can be used to design a balanced
computer sys tem.

AHINT benefits computer design by providing an accurate estimate of the performance of a computer
and allowing the architect to then balance the system for the best performance. It also allows users to
assess the value of upgrades to their existing system. It can be used to reveal system parameters,
particularly the performance of memory regimes, without reference to the manufacturer's claims. In this
respect, AHINT appears unique among computer metrics.

References
[11 J.L. Gustafson and Q.O. Snell, "HINT: A New way to measure computer performance",

Proceedings of the 28'" Aitnuai Hawaii interiiatioiiai Coigereiice on System Sciences, iEEE Computer
Socieiy Press, Vol. 2, pages 392-401.

P

[21 HINT, http://www.scl.ameslab.gov/HINT.

[3] J.L. Hennesey and D.A. Patterson, Cornputer Architectut-e: A Quantitative Approach, Morgan
Kaufmann Publishers, INC., San Francisco, CA, 19%.

[4] R. Jain, The Art qf Coinputer System Perjornuince Aiiul~sis, John Wiley and Sons, New York,
1991.

(5 J Q.O. Snell, A.Mikler, and J.L. Gustafson, "NetPIPE: A Network Protocol Independent Performance
Evaluator. " IAS TED In te rna tional Conference on I n re1 f ig e n t Ii? fo r i m tioii Man ag enzeizt and System,
June 1996.

[6] NetPIPE, http://www.scl.ameslab.gov/netpipe.

[7] R4600/0rioii MICROPROCESSOR Product Iilforniatiori.
h ttp:Nwww.mips.com/r460O/R4600-B.html, Silicon Graphics Inc.. 1995.

http://www.scl.ameslab.gov/HINT
http://www.scl.ameslab.gov/netpipe

[S] Digitul Technical Journal, Vol. 7 , Number 1, Digital Equipment Corporation, 1 9 5

[9] D. Bhandarkar, Alpha Implermntutions and Architecture: Complete Reference and Guide, Digital
Press, Newton, Massachusetts, 19136.

[101 J.J. Dongarra, et al. , "Performance of various computers using standard equations software in a
FORTRAN environment," ACM Computer Architecture News, Vol. 18, Number 1, March 1990.

[1 11 Message Passing Interface Forum, MPI: A message-passing interface standard, Znternafional
Journal of Supercomputer Applications, Volume 8, Number 314, 1994.

[12] S.L. Ambrosius, et al., "Work-based performance measurement and analysis of virtual
heterogeneous machines," Proceedings ofthe Sth Workshop 011 Heterogeneous Computing, Honolulu,
Hawaii, April 1996.

[131 Q.O. Snell, A HINT on the Performance of the I-WAY, GI1 Testbed Presentation ,
Supercomputing '95.

