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Abstract 
The HINT benchmark was developed to provide a broad-spectrum metric for computers and to 
measure performance over the full range of memory sizes and time scales. We have extended our 
understanding of ~ v h y  HINT performance curves look the way they do and can now predict the 
curves using an analytical model based on simple hardware specifications as input parameters. 
Conversely. by fitting the experimental curves with the analytical model, hardware specifications 
such as memory performance can be inferred to provide insight into the nature of a given computer 
system. 
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Thc HIFT I 1.3 1 performance metric was developcd at Ames Laboratory to gauge the overall 

amount of  work to be done a priori, HINT fixes neither the problem size nor the execution time of the 
prcthlem to he soiiwi. Consequently, it measures the performance of a computer across aii mcmory 
rccimcs. The output o f  a HINT performance measurement produces a graph which is a rigorous 
measurenienl o f  the Quality Improvement Per Second (QUIPS) in an answer. The graph reveals the 
pcriiwmance range of the tested computer from bursf speed for very small problems to endurnt~cr speed 
for large problems that may have to  use mass storage. 

..., ,.Lrlo~-ni;iiice of a wide variety of computing machines. Unlike other benchmarks which dcterminc the 

HINT also consolidates precision, memory size, mcmoiy speed, and arithmetic spccd into a single figure 
oi merit. That metric. the Net QUIPS, is the area undcr thc HINT graph. More memory in a given 
regime keeps the yaph  on a plateau, thus increasing the Nct QUIPS. If a computcr has insufficient 
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memory, slow instruction execution, long pipeline startup, a "memory hog" operating system, low 
arithmetic precision, or other design shortcomings, some part of the HINT graph will fail and the Net 
QUIPS will be reduced. 

i 
i 

Figure 1: Example HINT graph of a DEC 3000/900 versus an IBM SP-2 

Any digitai computer, from a person using an abacus to the largest paraiiei supercomputer. can be 
measured and accurately compared using HINT. Comparisons across different architectures are valid 
and the differcnces are readily visible using the HINT graphs. Figure 1 demonstrates this by comparing 
a DEC 3000/900 workstation to the combined power of eight nodes of an IBM SP-2. Note that while the 
workstation has a quick startup time, once the parallel overhead is overcome, the SB-2 far outperforms 
thc workstation. Thc graph also shows the three performance levels of the DEC workstation. These 
levels correspond directly to the memory hierarchy. This particular workstation has 16 Kbytes of 
primitiy data cache. 2 Mbytes of secondary unified cache, and 256 Mbytes of main memory. Clearly, the 
HI N1' graph gives a visualization o f  computer performance and architecture differences previously 
11 n avai I ah le. 

Althou~h HINT has been widely acccpted and seen great success in predicting the performance of 
a ls t ing computer systems. i t  has not been used in the design of new computers. HINT performance 
knowledge is based on a prior run of the benchmark. The performance analysis cannot be run on a 
computer that does not exist outside of the mind of the computer designer. 'Therefore. it is difficult to 
incorporate HINT into the d e s i p  process. 

An analytical model, described here, allows performance prediction based on a small set of design 
statistics. It presents the computer architect with a powerful tool to build a balanced computer by 
varyiny desiyn parameters based on cost and performance. The model also benefits users of existing 
computers. ('onsider a computer user trying to determine whether or not to upgrade from 128 K 
sccondary cache to 5 12 K secondary cache. Advertisements indicate 'huge' performance increases. One 



could run HINT on the existing configuration, match the QUIPS curve using the analytical model to 
determine the input statistics, and then increase the secondary cache size input to the analytical model 
which would then predict the performance increase. At this point, an educated decision could be made 
based on cost increase versus performance increase. By fitting the model to existing HINT graphs, a user 
can find out the true computer performance parameters and compare them against manufacturer claims. 
For example, in one case we discovered a so-called "secondary data cache" was nothing of the kind, and 
served only as an extra memory for instruction storage. 

This paper focuses on the design of an analytical model of the HINT performance metric called AHINT. 
The model allows the user to enter design statistics such as processor speed, memory regime sizes and 
speeds, number of processors, and communication latency for parallel and distributed computer systems. 
Section 2 presents the model and describes the approach taken to calculate the execution time of the 
HINT kernel. The results in Sections 3 and 4 present the use of AHINT in matching existing computer 
systems. Finally, conclusions are presented in Section 5. 

2 Model Descri~tion A 

HINT tests a computer's performance by rigorously bounding the area under the curve 
,f'(.x)=( 1 - .r)/( l+xj in the range [0,1] using hierarchical integration. This is accomplished by dividing the 
largest remaining rectangular error in half and determining the area now known to be above and below 
the curve. After each division, knowledge is gained and quality is improved. The term quality is defined 
as the reciprocal of error, where error is the difference between the upper and lower bounds of the area 
under the curve. See [l J for details. If there were no precision loss, quality and the number of iterations 
would be identical. so i t  is a linear work measure. 

Q 
The analytical model presented here is based on  the assumption that execution time is the time to 
execute the instructions and the overhead associated with fetching memory that is not immediately 
available in the primary processor cache. Clearly, this is a high-level view of performance: further 
clarification is needed lor each area. 

Instruction execution time is based on the number of each instruction type, the amount of time to 
execute that type. and in some cases execution order. In order to avoid the complexity associated with 
this. cach instruction is assumcd to execute in the average number of cycles per instruction (CPIj. 
Therefore. instruction execution time, in processor cycles. is equal to the CPI 131 times the number of 
1 n s truc t i (1 n s . 

Mcniory l.ctch overhead is a much more complicated issue. AHINT assumes that all the data needed for 
the instructions are in the primary cache. This is not always the case. Therefore, the amount of time to 
copy the data into priinary cache must be calculated based on the current location of the data. The model 
assumes the principle of i17cIu.sio17: all the data in a nearby level of memory are included in the distant 
IC ve Is. 
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Figure 2: HINT memoiy access pattem 

The total number of blocks accessed by HINT increases linearly with the number of kernel iterations. 
However, the access pattern during the iterations is not linear. It is fractal in nature, as shown in Figure 
2. Every other access address is linearly increasing. Of the accesses remaining, every other access 
address is linearly increasing at half the rate, and the pattern continues. The effect of the above pattern is 
that once cache size is exceeded. the block to be accessed is replaced just before it is needed. This forces 
a cache miss and the memory block must be reloaded into the cache from the next lower memory 
regime. This cache miss and the time to load the cache is the memory fetch overhead that must be 
calculated. Also, since every other memory access is linearly increasing, one half of the memory 
accesses will not be in primary cache. 

The calculation of memory access overhead can best be explained through the following example: 
Consider a hypothetical computer system with three memory regimes. The primary cache is 16 Kbytes 
with a miss penalty of 3 cycles, secondary cache is 1 Mbyte. and main memory size is 64 Mbytes with 
latency 90 ns. Further suppose that the proccssor speed is 150 MHz and the average CPI is 1.8. For a full  
list and discussion of the input parameters and their effect on system performance. see section 5. Given 
this configuration, the time 10 execute 105 iterations can be calculated as follows: 

First, calculate the time to cxccute the instructions. This is simply the number of instructions multiplied 
by the number of iterations tmcs thc average CP1. In  most KfSC systems, HlNT averages 200 
instructions per iteration. Thcrcforc, instruction time in cycles is 

2.00 instructions per ite.r:ltior! * 105 iterations * 1.8 CPI = ?;c, x lo7 cycIes, 

The total number of data blocks accessed by HINT grows linearly with the number of iterations. Two 
data blocks are accessed during each subdivision (one data block is added and one is reused) yielding 2 
x 10s block accesses. Each data block conrains information describing one subintervai. Tne necessary 
data is ten numbers using the computation data type plus one number of the index data type. Typically, 
computation data is 64bi t  lEEE h a t i n g  point and indexing is done with 32-bit integers, but this is 
flexible. For a HINT run using 64-bit IEEE floating point numbers, the resulting data block size is 84 I 
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bytes. Since the primary cache is 16 Kbytes, it would hold approximately 195 data blocks, accounting 
for 390 data block accesses. Due to HINTS memory access pattern, half of these accesses will miss. The 
remaining 195 block accesses are in primary cache so there is no overhead associated with accessing 
these blocks. 

The secondary cache is 1 Mbyte and thus could hold approximately 12483 data blocks, but inclusion 
must be considered, yielding 12288 data blocks. Again, of the 24576 accesses at this level, one half will 
miss cache. The time for accessing blocks at this level is the miss penalty of the primary cache plus the 
access time of this level. For our example, this is 3 + 1 = 4 cycles. The overhead associated with these 
accesses is simply 

12288 data block accesses * 21 words per block * 4 cyclq per access = 1.03 x lo6 cycles. 

Finaliy, the remaining 1.87 x 10’data blocks accesses must all be loaded from main memory. If memory 
speed is 70 ns, then access time is 10.5 cycles plus 4 cycles miss overhead from the previous levels. 
Therefore, the remaining data block accesses account for 

7 1.87 x lo5 block accesses * 21 words per block * 14.5 cycles per access = 5-7 x 10 cycles. 

The total time to execute iterations is 

3,6 x lo7 cycles for instnictinns + 5.8 x lo7 total cycle< memory overhead = 9.4 x lo7 cycles. 

For a 150 MHz processor, this is 0.6275 seconds. The total time for execution must also account for 
function call overhead. From experimentation, a machine of this caliber typically has a function call 
overhead of 350 ns which is only significant for the extreme left portion of the HINT curve. 

With no precision loss, each subdivision improves the quality of the answer by one unit. The computer 
is using finite-precision arithmetic however, so there is a loss in quality due to discretization error. The 
quality at subdivision i can be determined as follows 

where SCJ is the number of area units i n  thc vertical coordinate axis for the function. It is generally the 
largest whole number expressiblc with half the available bits for data representation (mantissa only. if a 
floating point type is used). Using 64-bit IEEE floating point arithmetic, scy is 134217728. For the 
example, quality therefore does not increase perfectly linearly to IOO(K)O but results in 99925.55 at this 
point. A computer‘is allowed to start with the knowledge that the area under the curve is between 0 and 
1: quality is therefore 1 / ( 1  - 0) = 1 .  QUIPS IS changc in quality divided by time. l h e  resulting QUIPS for 
the hypothetical machine is 

&ha Q / time = (99925.55 - 1 )/0.6275 = 0. IS9 MQUIPS. 

3 Results 
In this section. the accuracy 0 1  the i-uodcl is dcrermincd by comparing the output of the model with 
known results. All comparisons are based on previous runs of the HINT benchmark and parameters 



obtained using technical references [7,8,9] for the given systems. The number of hand-tuned parameters 
is surprisingly limited, and will be discussed in Section 5 .  This section will fcxus on four systems: an 
SGI Indy pc, an SGI Indy sc, a DEC 3000/900, and an SGI Power Onyx. The SGI Indy systems are 
based on the MIPS 8 4 6 0  processor, differing only in the amount of secondary cache; the pc version has 
none, while the sc version has 5 12 Kbytes providing a controlled experiment in cache modeling. The 
DEC 30()0/900 uses the Alpha processor and the Power Onyx uses the MIPS R8000 chip set. The main 
difference between the Alpha chip and the R8000 is the pipelined instruction execution of the R8000. 

SGI lndy p= 2 . a  MGUIPS - 
Simulated Ir& --- 

l e &  i e 0 5  0 m i  0.w-1 0.01 0-I 1 1 0 l a  
Time 

Figure 3: Actual and simulated SGI Indy pc 

Most of the needed statistics for the SGI Indys were found in the technical reference for the R4600 
processor. Like most processors, the R4600 can access a data element in on-chip cache in a single clock 
cycle. The cache miss overhead is three clock cycles. Figure 3 shows the data from an actual run of 
HINT compared to the analytical model results for the Indy pc. Note that while the simulated curve is 
smooth, the curve for the actual HINT run has noise. This effect is caused by operating system interrupts 
that steal cycles from HINT. The last drop in performance is due to HINT running out of real memory 
and using virtual memory paged in from mass storagc. Currently, AHINT docs n o t  simulate lhis regime 
as it  adds very little to the net performance of the system. 
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Figure 4: Actual and simulated SGS Indy sc 

Figure 4 depicts the equivaient data for the SGS Indy sc. An interesting point to note on the graph is the 
eionzated performance plateau for the simulated results. Why is there a mismatch in the range from 
around 0.002 to 0.1 seconds? The plateau corresponds directly to the secondary cache size. On the Indy 
sc, the secondary cache is a unified instruction and data cache; not all of the cache is available for HINT 
data. The extra performance in the simulated curve can be eliminated by reducing the size of the 
modeled secondary cache, thus reflecting the percentage of space available for HINT data. In this way, 
the irstlble memory sizes can be determined for an existing machine. Because of operating system 
demands, the available memory is often much less than the nominal memory: HINT and AHINT 
quantify this discrepancy precisely and explicitly. 

f 
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Figure 5: Actual and simulated DEC 3000/900 
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Figure 6: Actual and simulated SGI Power Onyx 

5 shows the comparative results for the DEC 3000/900. The processor used in this machine is 
to that used in the CKAY T3B. It would be interesting to compare this with an actual f3B node. 



particularly at the point where shared virtual memory is invoked. The differences between the SGI 
Power Onyx and the IBM RS6000/590 are displayed in Figure 6. In this and many graphs that follow, 
AHINT is such a close match that the experimental measurements are covered up by the width of the 
analytic curve plot. To aid in differentiating the curves, actual HINT results are plotted in blue, while 
M I N T  simulation results are in red. The Power Onyx runs at 75 MHz while the IBM runs at 67 MHz. 
Each has the ability to execute up to 4 multiply-adds in a single clock cycle. The actual HINT 
performance is lower, resulting in approximately 0.95 and 0.75 average cycles per instruction, 
respectively. Notice that the relative performance drop between cache and main memory is much 
smaller for the IBM. This is a result of hiding the memory fetch overhead in the pipeline. It was for this 
machine that the parameter indicating the percentage of hidden memory fetches was added to AHTNT. 
Emphasis on multiply-add parallelism is the result of market pressure to perform well on LINPACK[ 101 
and related arithmetic kernels. We feel emphasis on memory speed and size is now more essential to 
high performance on actual applications. The emphasis on memory access is clearly seen in the IBM 
curve while the SGI takes a deep hit when retrieving data from main memory. 

4 Modeling Supercomputers 
HINT uses domain decomposition to distribute the function domain among the processors of a 
supercomputer. Each processor can calculate a scattered portion of the domain and then it is free to 
compute the area bounds for that subpartition. Global knowledge of the area bounds is obtained via a 
global sum collapse of each processor's upper and lower bounds. The time for this sum collapse must be 
accounted for in the current analytical model. Since communication overlap with processing is not 
possible in this case, the new model is simply 

Execution Time = Serial Execution Time + Communication Time 

Since there are only two double-precision floating-point numbers per processor. all messages are latency 
bound. In most parallel supercomputers, the global sum is performed via an @log n> collapse, where 11 
is the number of processors. Communication time becomes log iz messages multiplied by the message 
latency. There is a subtle additional time, however. On some systems, after the message is sent, there is 
some clean-up of system-maintained variables and queues. In a collapse involving more than one 
pairwise combine step, the clean-up time for the lower levels of the tree can occur in parallel with the 
remaining messaFe passing. The processors involved in the last level of the collapse are unable to hide 
the clean-up time. leaving that time to be added into the communication time as a system overhead. 

Communication Time = log 17 * Message Latency + Clean-up Time 

B~lscd on this model, Figures 7 - 10 show the comparison of actual HINT results with AHINT simulated 
results for an nCUBE 2S, an IBM SP-2. an SGI Power Onyx, and a cluster of SGl lndy pc workstations. 
In all cases. the serial model was used to match the curves for a single processor, after which the parallel 
model was applied for each configuration. Note that the vertical scale is logarithmic here, for clarity. 
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Figure 7: Actulrl and simulated nCUBE 2s 

The wrves rzprcscntcd in Figures 7 and 8 show the efficacy of'the model in estimating the performance 
of' a parallel supercomputer. Once the performance of a single processor is known, the only remaining 



statislics are the message latency and message overhead. The message latency can be found in technical 
references, but the message overhead must be experimentally obtained. This was accomplished by 
adjusting the overhead until the curves matched for two processors and the maximum number of 
processors. Once these two curves fit, all the other configurations matched with no further adjustments 
necessary. 
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Figure 9: Actual and simulated SGI Power Onyx 

The data in Figure 9 depict the results from matching AHINT results with actual HINT results for an 
SGI Power Onyx. When modeling a systcin such as this, shared memory contention must be considered. 
This effect was accounted for using the response time equations for an M/D/l queue with an input rate 
equal to n times the input rate of a single processor, where n is the number of processors[4]. However, 
duc to thc large caches on  the SGI and the eight-way interleaved memory, the memory contention was 
non-existent and thus had LO be set to  zero. 
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Figure 10: Actual and simulated SGI Indy pc workstation cluster 

A recent trend is the use of workstation clusters and a high-speed network for parallel computing. Whiie 
this provides a lower-cost solution than a supercomputer, there are drawbacks. The unpredictable nature 
of the network traffic and network contention make this a particularly difficult system to model. Figure 
10 shows the results of attempting to model a cluster of SGI Indy workstations connected by an ATM 
network using MPI [ l l ]  as the communication infrastructure. Previous research at Ames Laboratory 
resulted in a network analyzer called NetPIPE [5,6]. This tool reported that the effective message latency 
for AIKI is between 0.7 and 0.8 milliseconds. While this parameter was easily determined, clearly there 
are other factors that must be considered in this case. The initial points 011 the curve are closely matched 
by the model for 2 and 8 nodes, but unlike the previous resutts. using the same data for 4 nodes does not 
result in a match of the actual curve. Although the model is not as accurate in this case, it is still within 
five percent and does lend some insight. As is well known. the limitation of a workstation cluster is the 
high message latency. Also note that the graph clearly shows the result of the high latency. For programs 
with computation loop time less than 1 ms, a cluster of this nature should not be used. The performance 
for a serial processor is much higher in this case. 

A major issue in heterogeneous computing is how to measure and compare heterogeneous cluster 
performance.[ 121 AHINT and HINT solve this problem by providinf a broad-spectrum measure that 
ports easily to heterogeneous clusters. A heterogeneous measurement with HINT was done on the 
I-WAY and was described in [ 131. AHfNT can also be easily extended to simulate heterogeneous 
clusters of computers. 

Y 5 MINT Curve Fitting 

While most of the system parameters used by AHINT arc obtainable from technical manuals, some I 
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cannot be determined accurately a priori. The previous results were generated by gathering as many of 
the system parameters as possible from technical specifications. The remaining AHINT input parameters 
were derived through a manual curve fitting process. 

Table 1: AHINT Input Parameters 

Parameter 1 Units 1 HowDetermined 

II ~ ~~ 

Processor Speed MHz I Technical Specification 

Number of Instructions I Given; - 200 
Wordsize 1 bytes 1 Technical Specification 

HINT Data Block Size 3 bytes 1 Derived from Data Type 
I Technical Specifications Number of Cache Regimes 

Main Memorv Size 1 Mbvtes 1 Technical SDeciGcations 

Access Time1 cycles I 
Regime 1 Technical Specifications 

Line Size 1 bvtes 
I1 _I 

Miss Penalty1 cycles il 
......* 

Access Time] cycles 
Line Size I bytes 

Regime n' Technical Specifications 

IMiss Penalty! cycles 

Main Memory Speed 1 nanoseconds 1 Technical Specifications 
Number of Processors Technical Specifications 

Communication Latency 1 scconds Tcchnical Spccifications 

Memory Fetches Hidden o/c 1 Experimentally Obtainec 
Function Call Overhead seconds 1 Experimentally Obtuinec 

CPI hdes/instruc tion1 Experimentallv Obtainec 

Message Overhead fl seconds Experimentally Ob tainec 

Table 1 shows aii the input parameters required by AHlNT and the way each was determined. Notice the 
relatively small number of Experimentally Obtained parameters. While thesc parameters are not 
available in technical manuals. they can be determined for an existing machine by matching AHlNT 
results with an actual HINT curve. The parameters can also be closely approximated by computer 
architects for machines in the design stage. The parameters obtained from Technical Specifications can 
be ad<iusted to reflect emperical data rather than nominal values. 

The manual curve fitting revealed the effects of several variables on the HINT curve. Adjusting the CPI 
raises or lowers the entire HINT curve. Similarly, increasinddecreasing memory regime sizes 
lengthens/shortens the associated performance plateau. Since regime access times and miss penalties are 
additive, adjustments to the access time for regime i raises/Iowers the curve for all levels k:  where k >= i. 



For parallel machines, changing the message latency changes the time for the global sum collapse and 
correspondingly changes the location of the initial points on the HINT curve. The lessons learned from 
the manual process have added insight to an automated HINT curve fitting program, currently under 
development. Given the data from an actual HINT' run, the automated curve fitter wifl be able to vary the 
AHINT input parameters to match the model results with the actual results. This tool will be invaluable 
in understanding existing computer systems. 

6 Conclusion 
We have presented an accurate analytical model of the HINT performance metric. The model used is 
simple, yet predictive. The accuracy has been demonstrated by comparison of simulated results with 
actual HINT data. Because of its accuracy, the model can be effectively used in the design of a new 
computer. While HINT has become known as a powerful tool for analyzing the performance of an 
existing computer system, AHINT is an equally powerful tool that can be used to design a balanced 
computer sys tem. 

AHINT benefits computer design by providing an accurate estimate of the performance of a computer 
and allowing the architect to then balance the system for the best performance. It also allows users to 
assess the value of upgrades to their existing system. It can be used to reveal system parameters, 
particularly the performance of memory regimes, without reference to the manufacturer's claims. In this 
respect, AHINT appears unique among computer metrics. 
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