Significant improvements in long trace profiler measurement performance

PDF Version Also Available for Download.

Description

A Modifications made to the Long Trace Profiler (LTP II) system at the Advanced Photon Source at Argonne National Laboratory have significantly improved the accuracy and repeatability of the instrument The use of a Dove prism in the reference beam path corrects for phasing problems between mechanical efforts and thermally-induced system errors. A single reference correction now completely removes both error signals from the measured surface profile. The addition of a precision air conditioner keeps the temperature in the metrology enclosure constant to within {+-}0.1{degrees}C over a 24 hour period and has significantly improved the stability and repeatability of the ... continued below

Physical Description

12 p.

Creation Information

Takacs, P.Z. & Bresloff, C.J. July 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A Modifications made to the Long Trace Profiler (LTP II) system at the Advanced Photon Source at Argonne National Laboratory have significantly improved the accuracy and repeatability of the instrument The use of a Dove prism in the reference beam path corrects for phasing problems between mechanical efforts and thermally-induced system errors. A single reference correction now completely removes both error signals from the measured surface profile. The addition of a precision air conditioner keeps the temperature in the metrology enclosure constant to within {+-}0.1{degrees}C over a 24 hour period and has significantly improved the stability and repeatability of the system. We illustrate the performance improvements with several sets of measurements. The improved environmental control has reduced thermal drift error to about 0.75 microradian RMS over a 7.5 hour time period. Measurements made in the forward scan direction and the reverse scan direction differ by only about 0.5 microradian RMS over a 500mm, trace length. We are now able to put 1-sigma error bar of 0.3 microradian on an average of 10 slope profile measurements over a 500mm long trace length, and we are now able to put a 0.2 microradian error bar on an average of 10 measurements over a 200mm trace length. The corresponding 1-sigma height error bar for this measurement is 1.1 run.

Physical Description

12 p.

Notes

OSTI as DE96014548

Source

  • Denver `96: 1. conference on space processing of materials, at SPIE International Society for Optical Engineering (SPIE) annual international symposium on optical science, engineering, and instrumentation, Denver, CO (United States), 4-9 Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96014548
  • Report No.: BNL--62825
  • Report No.: CONF-960848--24
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 390611
  • Archival Resource Key: ark:/67531/metadc675471

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Dec. 3, 2015, 8:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Takacs, P.Z. & Bresloff, C.J. Significant improvements in long trace profiler measurement performance, article, July 1, 1996; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc675471/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.