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Abstruct- The paper builds on a recent explicit numeri- 
cal algorithm for Kolmogorov’s superpositions, and will 
show that in order to synthesise minimum size (i.e., size- 
optimal) circuits for implementing any Boolean function, 
the nonlinear activation function of the gates has to be the 
identity function. Because classical AND-OR implementa- 
tions, as well as threshold gate implementations require ex- 
ponential size, it follows that size-optimal solutions for im- 
plementing arbitrary Boolean functions can be obtained us- 
ing analog (or mixed analogdigital) circuits. Conclusions 
and several comments are ending the paper. 

I. INTRODUCTION 

In this paper a network is an acyclic graph having several 
input nodes, and some output nodes. If a synaptic weight 
is associated with each edge, and each node computes the 
weighted sum of its inputs to which a nonlinear activation 
function is applied: f (xl,. . ., xa) = CT ( ,:, wi xi + e), the 
network is a neural network (NN), with wi E IR the synaptic 
weights, 8 E IR known as the threshold, A being the fan-in, 
and 0 a non-linear activation function. The underlying 
graph is acyclic, thus the network can be layered, i.e., it is 
a multilayer feedfonvard NN. It is characterised by: depth 
(i.e., number of layers), and size (i.e., number of neurons). 

The paper starts by overviewing results dealing with the 
approximation capabilities of NNs, and known upper and 
lower bounds on the size of threshold gate circuits (TGCs). 
They show that TGCs require exponential size for imple- 
menting arbitrary Booleanfunctions (BFs). Based on a con- 
structive solution for Kolmogorov’s superpositions we will 
prove that in order to obtain linear size NNs (i.e., size-op- 
timal) for implementing any BF, the nonlinear activation 
function of the neurons has to be the identityfunction. Be- 
cause both Boolean and TG circuits require expo- nential 
size, it follows that size-optimal implementations of BFs 
can be obtained in analog circuitry. Conclusions, and com- 
ments on the required precision are ending the paper. 

11. PREVIOUS RESULTS 

NNs have been experimentally shown to be quite effec- 
tive in many applications (see Applications of Neural Net- 
works in [2], together with Part F: Applications of Neural 
Computation and Part G: Neural Networks in Practice: 
Case Studies from [20]). This success generated two direc- 
tions of research for finding: ( i )  existencekonstructive 
proofs for the ‘universal approximation problem ’; (ii) tight 
bounds on the size needed by the approximation problem. 
The paper will focus on both aspects, for the case when the 
functions to be implemented are BFs. 

* On leave of absence from the “Politehnica” University of Bucharest, 
Computer Science Department, Spl. Independenpi 313, RO-77206 
Bucharest Romhia. 

A. Neural Networks as Universal Approximators 
The first line of research has concentrated on the approxi- 

mation capabilities of NNs [14,22,35,36]. It was started in 
1987 by Hecht-Nielsen [26] and Lippmann [47] who, to- 
gether with LeCun [45], were probably the first to recog- 
nise that the specific format of Kolmogorov’s superposi- 
tions [41] f (x,, ..., x,) =C;:: Qqbq) in [67,68]: 

f ( X 1 , . . . r ~ J  = c y  ~ @ q [ ~ p “ , v ~ ~ p + ~ ~ a > l l  ( l )  
can be interpreted as a NN with one hidden layer. This gave 
an existence proof of the approximation properties of NNs. 
The first nonconstructive proof was given in 1988 by Cy- 
benko [16,17], and was independently presented by 
Irie&Miyake [34]. Similar results for radial basis functions 
were shortly reported [24,59]. Different enhancements 
have been later presented (see [9,64]): 

Funahashi [21] proved the same result and also re- 
fined the use of Kolmogorov’s theorem in [26], giving 
an approximation result for two-hidden-layer NNs; 

0 Hornik et al. [31] showed that the continuity require- 
ment for the output function can partly be removed; 

0 Hornik et al. [32] also proved that a NN can approxi- 
mate simultaneously a function and its derivative; 

0 Park&Sandberg [57,58] used radial basis functions in 
the hidden layer (almost constructive proof); 

0 Hornik [29] showed that the continuity requirement 
can be completely removed, the activation function 
having to be ‘bounded and nonconstant’; 

0 Geva&Sitte [23] proved that four-layered NNs with 
sigmoid activation are universal approximators; 
KfirkovS [43,44] has demonstrated the existence of 
approximate superposition representations within the 
constraints of NNs, i.e. w and Q q  being of the form 
C a, CT (b, x + c,) , where (r is an arbitrary activation 
sigmoidal function; 
Mhaskar&Micchelli [49,50] approach was based on 
the Fourier series of the function, by truncating the 
infinite sum, and rewriting e j R X  in terms of the activa- 
tion function (which now has to be periodic); 
Koiran [40] presented a proof on the line of Funa- 
hashi’s proof [21], which allows the use of units with 
‘piecewise continuous’ activation functions; 
Leshno et al. [46] relaxed the condition for the acti- 
vation function to ‘locally bounded piecewise con- 
tinuous’, thus embedding as special cases almost all 
the activation functions that have been reported; 

0 Hornik [30] added to these results by proving that: (i)  
if the activation function is locally Riemann inte- 
grable and nonpolynomial, the weights and the thresh- 
olds can be constrained to arbitrarily small sets; and 
(ii) if the activation function is locally analytic, a sin- 
gle universal threshold will do; 

0 Funahashi&Nakamura [22] showed that the universal 
approximation theorem also holds for trajectories; 
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Sprecher [69] has demonstrated that there are univer- 
sal hidden layers that are independent of n; 
Barron [4] described spaces of functions that can be 
approximated by the relaxed algorithm of Jones [37] 
using functions computed by single-hidden-layer net- 
works of perceptrons; 
Attali&Pag& [3] provide an elementary proof based 
on the Taylor expansion and the Vandermonde deter- 
minant, yielding bounds for the design of the hidden 
laver and converpence results for the derivatives. 

All fhese results w&e obtained provided that suflciently 
many hidden units are available. More constructive solu- 
tions have been obtained in very small depth [38,54,55], 
but their size still grows fast with respect to the number of 
dimensions and/or examples, or with the required preci- 
sion. Recently, an explicit numerical algorithm for super- 
positions has been detailed [70-721. 

B. Threshold Gate Circuits 
The other line of research was to find the smallest size 

NN which can realise an arbitrary function given a set of 
m vectors from IR '. Many results have been obtained for 
TGs [51]. The first lower bound of: 

(2) 
on the size of a TGC for 'almost all' nary  BFs (i.e., 
f: IB '+ IB) was given in [53]. Later [48] a very tight upper 
bound was proven in depth = 4: 

size I 2(2n/n) '12x (1  +a [(zn/n) 'I2]}. (3 )  
A similar existence exponential lower bound of (2n/3) 
for arbitrary BFs can be found in [65] (see also [63]). 

For classification problems, the first result was that a NN 
of depth = 3 and size = m - 1 could compute an arbitrary 
dichotomy. The main improvements have been: 

size 2 2 (2'/n) ' I 2  

0 Bat& [5] presenteda TGC with one hidden layer hav- 
ing rm/nl neurons realising an arbitrary dichotomy 
on a set of m points in general position in IR '; if the 
points are on the corners of the n-dimensional hyper- 
cube (f : IB ' + IB), m - 1 nodes are still needed; 
a tighter bound of r l  + (m - 2) /nl neurons in the hid- 
den layer for realising an arbitrary dichotomy on a set 
of m points which satisfy a more relaxed topological 
assumption was proven in [33]; the m - 1 nodes con- 
dition was shown to be the least upper bound needed; 
Arai [ 11 showed that m - 1 hidden neurons are neces- 
sary for arbitrary separability, but improved the bound 
for the dichotomy problem to m /3; 
Beiu&De Pauw [lo] have detailed existence lower 
and upper bounds: 2m / (nlogn) < size < 1.44m / n by 
estimating the entropy of the data-set ([ 11,131). 

Other existence lower bounds for the arbitrary dichotomy 
problem can be found in [25,59]: 

a depth-2 TGC requires rn / { n log(m / n)} TGs; 
a depth-3 TGC requires 2 (m/lo ) 1'2 TGs in each 

an arbitrarily interconnected TGC without feedback 

One study [15) has tried to unify these two lines of re- 
search by first presenting analytical solutions for the gen- 
eral NN problem in one dimension (having infinite size), 
and then giving practical solutions for the one-dimensional 

of the two hidden layer (if m >>n T. ), 

needs (2m/logm) ' I 2  TGs (if m >>n2). 

cases (i.e., including an upper bound on the size). Exten- 
sions to the n-dimensional case using three- and four-layers 
solutions were derived under piecewise constant approxi- 
mations, and under piecewise linear approximations. 

C. Boolean Functions 
The particular case of BFs has been studied intensively 

[9,56]. Many results have been obtained for particular BFs 
[63,65], but a size-optimal result for BFs that have m 
groups of ones in their truth table Fn,, (i.e., BFs defined 
on the m groups) was detailed by Red'kin in 1970 [62]. 
Theorem from [62] The complexity realisation (i.e., num- 
ber of elements) of Fn* is at  most 2 (2m) ' I2 + 3. 

This result is valid for unlimited fan-in TGs. Departing 
from these lines, Horne&Hush [28] have detailed a solution 
for limited fan-in TGCs. 
Theoremfiom[28] Arbitrary BFs f: {0, l}'+ (0, l}m 
can be implemented in a NN of perceptrons restricted to 
fan-in 2 with a node complexity of 0 {m 2n / (n  + logm)} 
and requiring 0 (n) layers. 

II. SIZE-OPTIMAL IMPLEMENTATIONS 
Implementing arbitrary BFs using classical Boolean 

gates (i.e., AND and OR) requires exponential size. The 
known bounds for size are also exponential if TGCs are 
used for solving arbitrary BFs [6]. These bounds reveal ex- 
ponential gaps, and also suggest that TGCs with more lay- 
ers (depth # constant [8,12]) might have a smaller size. 

Another approach is to use Kolmogorov's superposi- 
tions, which shows that there are NNs having only 2n + 1 
neurons which can approximate any function. Such a solu- 
tion is clearly size-optimal. We start from [70-721, where 
a constructive solution for the general case was detailed. 
Theorem from [70] Define the function y~ : 6'+ 9 such 
that for each integer k E N: 

(4) r - m  
n '-1 

- 
where i, = i,- (y- 2) (i,) and 

m ,  = (i,) { 1 +Z,C:li [is] x ... x [i,-,]} (5)' 
for r =  1, 2, ..., k. 

Here y 2 2n + 2 is a base, &= [0, 11 is the unit interval, 
9J is the set of rational numbers d, = ,:, I ' ~  y- ' defined 
on k E N digits (0 I i, I y- 1). Also, (i 1> = [i 1] = 0, while 
for r 2 2 :  (i,)=O when i,=O, 1, ...,y- 2, ( i r ) = l  when 
i ,=y-1,  [i,]=O when i,=O, 1 ,..., y-3, while [ i r ] = l  
when i, = y- 2, y- 1. If we limit the functions to be ap- 
proximated to BFs, one digit is enough (k = l), which gives 
y~ (0.i 1) = 0.i 1, i.e., the identity function y~ (x) = x. Such a 
solution builds simple analog neurons. They have fan-in 
A I 2n + 1, for which the known weight bounds (holding 
for any fun-in A 2 4) are [52,56,61,66]: 

2 (A- ' ) I2 < weight < (A + 1) (A+1)/2/2A. (6) 

Thus, a precision of between A, and A logA bits per weight 
would be expected. Unfortunately, the constructive solu- 
tion for Kolmogorov's superpositions requires a double ex- 
ponential precision for y~ (eq. 4), and for the weights: 
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Figure 1. The PARITY problem: (a) solution using XORs gates; (b) solution using TGs; (c) solution using AND-OR gates. 
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For BFs the precision is reduced to (2n + 2) -’, or 2nlogn 
bits per weight. Analog implementations are limited to just 
several bits [42], this being one of the reasons for investi- 
gations on precision [ 18,27,73,74], and on algorithms rely- 
ing on limited integer weights [7,19,39]. As an example, let 
us consider the PARITY function of four bits. It is known 
that PARITY can be implemented with three 2-input XOR 
gates (Fig. l.a), or with five 4-input TGs Fig. 1.b). It is 

[62]. A classical Boolean solution requires eight AND gates 
(Fig. 1.c). A brute force solution would approximate a 4- 
input BF (Fig. 2.a and 2.b). Another solution having COM- 
PARISON as the w function, and translated inputs is presen- 
ted in Fig. 2.c; it . The 2n + 1 = 5 hidden functions (@ are 
simple AND functions, while the addition is an OR function. 

Due to the limited precision, an optimal solution for im- 
plementing BFs should decompose the given BF in simpler 
BFs (which can be implemented based on Kolmogorov’s 
superpositions). The partial results from this first layer can 
be combined using (again) Kolmogorov’s superpositions. 
Such an analog implementation will requires more than 
three layers. A systematic solution which would utilise sili- 
con to the best advantage would be to rewrite a given com- 
putation (Le., set of BFs) in a base larger than 2, and use 
Kolmogorov’s superpositions for implementing the digit- 
wise computations in this larger base. 

also known that a 4-input BF requires 2 -$ 16 + 3 = 11 TGs 

IV. CONCLUSIONS 
Arbitrary BFs can be implemented using: (i) Boolean cir- 

cuits, but require exponential size; (ii) TGs, but (again) in 
exponential size; (iii) analog building blocks in linear size 
(having linear fan-in and polynomial precision). 

The main conclusion is that size-optimal hardware im- 

(a) 

Yo Y1 
0 

0 

1 

1 

plementations of BFs can be obtained using analog (or 
mixed analoddigital) circuitry. The high precision required 
by the solution based on Kolmogorov’s superpositions can 
be tackled by decomposing a BFs into simpler BFs. This is 
mathematically equivalent to computing in a larger base. 
Due to the reduced number of inputs, Kolmogorov’s super- 
positions can be used to design the analog implementations 
of the digit-wise computations in such larger bases. 
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