Beyond transition state theory: Rigorous quantum approaches for determining chemical reaction rates

PDF Version Also Available for Download.

Description

Transition state theory (TST) has historically been the most important and widely used theoretical approach for describing the rates of chemical reactions, and for qualitative pictures and order-of-magnitude estimates one does not expect this situation to change. However a rigorous, quantitative treatment of chemical reaction rates must go beyond TST. A rigorous description, for example, must be based on a quantum mechanical description of the molecular system, but the fundamental assumption on which TST is based - namely that the molecular dynamics is {open_quotes}direct,{close_quotes} i.e., that no trajectories re-cross a dividing surface which separates reactants and products (vide infra) - ... continued below

Physical Description

42 p.

Creation Information

Miller, W.H. January 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Transition state theory (TST) has historically been the most important and widely used theoretical approach for describing the rates of chemical reactions, and for qualitative pictures and order-of-magnitude estimates one does not expect this situation to change. However a rigorous, quantitative treatment of chemical reaction rates must go beyond TST. A rigorous description, for example, must be based on a quantum mechanical description of the molecular system, but the fundamental assumption on which TST is based - namely that the molecular dynamics is {open_quotes}direct,{close_quotes} i.e., that no trajectories re-cross a dividing surface which separates reactants and products (vide infra) - is couched inherently in the language of classical mechanics. There is no unambiguous way to quantize TST, for the various ways of trying to do so invariably require one to introduce additional assumptions about the reaction dynamics. As one tries to eliminate these {open_quotes}additional assumptions{close_quotes} one is driven ultimately to an exact quantum treatment of the reaction dynamics which is then no longer a transition state theory (i.e., approximation) but simply an exact formulation. It is such exact approaches, those without inherent approximations, that are the subject of this chapter.

Physical Description

42 p.

Notes

OSTI as DE95008483

Source

  • Other Information: PBD: Jan 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95008483
  • Report No.: LBL--36751
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/29357 | External Link
  • Office of Scientific & Technical Information Report Number: 29357
  • Archival Resource Key: ark:/67531/metadc675393

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1995

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Aug. 23, 2016, 2:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Miller, W.H. Beyond transition state theory: Rigorous quantum approaches for determining chemical reaction rates, report, January 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc675393/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.