Thermodynamics of the Conversion of Calcium and Magnesium Fluorides to the Parent Metal Oxides and Hydrogen Fluoride
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Thermodynamics of the Conversion of Calcium and Magnesium Fluorides to the Parent Metal Oxides and Hydrogen Fluoride

Mike H. West
Keith M. Axler
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Table of Contents

ABSTRACT ...1
INTRODUCTION ..1
DESCRIPTION OF MODELING APPROACH ..2
RESULTS OF THERMODYNAMIC MODELING ..2
FUTURE WORK ..10
REFERENCES ..11

List of Figures

Fig. 1. Modeling results of MgF$_2$-H$_2$O reaction in N$_2$...3
Fig. 2. MgF$_2$-H$_2$O reaction in N$_2$ as a function of temperature (minor species included). ..4
Fig. 3. CaF$_2$-H$_2$O reaction in N$_2$ as a function of temperature5
Fig. 4. CaF$_2$-H$_2$O reaction in N$_2$ as a function of temperature (minor species included) ...6
Fig. 5. MgF$_2$-H$_2$O reaction in N$_2$ as a function of temperature and moles H$_2$O$_{(g)}$7
Fig. 6. CaF$_2$-H$_2$O reaction in N$_2$ as a function of temperature and moles H$_2$O$_{(g)}$8
Fig. 7. MgF$_2$-H$_2$O reaction in N$_2$ as a function of temperature (0.1 mol nickel)9
Fig. 8. MgF$_2$-H$_2$O reaction in N$_2$—composition vs. temperature (note 0.1 mol Ni provided). 10
Thermodynamics of the Conversion of Calcium and Magnesium Fluorides to the Parent Metal Oxides and Hydrogen Fluoride

by

Mike H. West and Keith M. Axler

ABSTRACT

We have used thermodynamic modeling to examine the reaction of calcium fluoride (CaF₂) and magnesium fluoride (MgF₂) with water (H₂O) at elevated temperatures. The calculated, equilibrium composition corresponds to the global free-energy minimum for the system. Optimum, predicted reaction temperatures and reactant mole ratios are reported for the recovery of hydrogen fluoride (HF), a valuable industrial feedstock. Complete conversion of MgF₂ is found at 1000°C and a ratio of 40 moles of H₂O per 1 mole of MgF₂. For CaF₂, temperatures as high as 1400°C are required for complete conversion at a corresponding mole ratio of 40 moles of H₂O per 1 mole of CaF₂. We discuss the presence of minor chemical constituents as well as the stability of various potential container materials for the pyrohydrolysis reactions at elevated temperatures. CaF₂ and MgF₂ slags are available as wastes at former uranium production facilities within the Department of Energy Complex and other facilities regulated by the Nuclear Regulatory Commission. Recovery of HF from these wastes is an example of environmental remediation at such facilities.

INTRODUCTION

Calcium fluoride (CaF₂) and magnesium fluoride (MgF₂) slags from production of uranium metal for Department of Energy and Department of Defense programs represent environmentally harmful waste volumes at multiple sites throughout the United States. Disposal (burial) costs are becoming prohibitively expensive, and, because of the radioactive content of the wastes, burial is increasingly restricted as the result of legislative actions in many states. However, recovery operations are viable since several chemical components in the slags have industrial applications. Therefore, slag recovery is attractive from an economic as well as an environmental standpoint.

One slag component, CaF₂, is used as a reagent in the steel industry. It is also used industrially as a source of hydrogen fluoride (HF) gas, a reactant used in the manufacture of aluminum trifluoride (AlF₃), another industrial commodity. The MgF₂ slags can also potentially be used to produce anhydrous HF for commercial distribution. Magnesium metal, another marketable quantity, can be
regenerated from the slag constituent MgF$_2$. Magnesium metal is combined with aluminum to produce lightweight alloys of industrial importance (e.g., Mg-Al-Zn-Mn, Mg-Al-Mn, Mg-Al-Si, or Mg-Al-lanthanide compounds). Recovered uranium can be re-introduced into uranium metal production. By sufficiently removing uranium from the treated waste streams, final waste disposal options would become more viable. If uranium concentrations are below specifications of the Nuclear Regulatory Commission Branch Technical Position (NRC-BTP) or the more rigorous NRC NUREG-1500 (currently in draft form) unrestricted release guidelines, burial of the treated waste could be accomplished with no reasonable environmentally-based objections.

DESCRIPTION OF MODELING APPROACH

We used computer modeling to assist in the development of optimized processes and equipment selection for the recovery operations. The modeling was used to elucidate reaction tendencies in the complex chemical systems which constitute the waste streams. Specifically, we used robust computer codes to model the chemical reactions to recover Ca, Mg, HF, and U from CaF$_2$ and MgF$_2$ and the separate reactions of CaF$_2$ and MgF$_2$ with water (H$_2$O).

The mole ratio of H$_2$O to the respective alkaline earth fluoride and the system temperature were the variables most thoroughly examined during this phase of the study. This modeling technique is based on the thermodynamic principle that the equilibrium chemical composition for a complex heterogeneous system corresponds to the global minimum value for the system free energy. Therefore, the computer-generated free-energy minimization corresponds to the system composition after all reaction sequences are completed. The approach to thermodynamic modeling used in this work has been described within a similar study we performed, and, therefore, a detailed description has not been reproduced herein.

RESULTS OF THERMODYNAMIC MODELING

We first studied the reaction of MgF$_2$ with H$_2$O because the majority of the slags are high in this constituent (from depleted uranium production in the armor penetrator program).

At 1500°C, the highest temperature used in the calculations, only 41.5% of fluoride is released as HF under a nitrogen atmosphere. The results of this iteration of the computer model appear in Fig. 1. In the initial conditions, only 1 mole of H$_2$O was present to react with 1 mole of MgF$_2$. Based
on the modeling results, under equilibrium conditions and stoichiometric quantities of reactants, the conversion of MgF$_2$ to HF with H$_2$O is not favorable over the temperature range 800–1500°C.

We extended the model to consider the effects of other initial gas compositions. Some minor species such as MgF$_2$(g), H$_2$(g), NO(g), and O$_2$(g) were observed in the nitrogen environment (see Fig. 2). Under an atmosphere of pure oxygen, the equilibrium distribution of species appears to be similar to a nitrogen atmosphere.

![Graph](image)

Fig. 1. Modeling results of MgF$_2$-H$_2$O reaction in N$_2$.

![Graph](image)

Fig. 1. Modeling results of MgF$_2$-H$_2$O reaction in N$_2$.

Fig. 2. MgF₂-H₂O reaction in N₂ as a function of temperature (minor species included).

The reaction between CaF₂ and H₂O, with a 1:1 mole ratio, in a nitrogen atmosphere proved to be considerably less favorable than the corresponding reaction for MgF₂ discussed above. Over the temperature range 800–1500°C, only 4.3% of the fluoride content of CaF₂ was converted to HF (see Fig. 3). Minor quantities of CaF₂(g), H₂(g), OH(g), NO(g), and O₂(g) were found at equilibrium (see Fig. 4).
Fig. 3. CaF$_2$-H$_2$O reaction in N$_2$ as a function of temperature.

It is interesting to note that the reaction of CaF$_2$ with sulfuric acid (H$_2$SO$_4$) is considerably more thermodynamically favorable than the MgF$_2$-H$_2$SO$_4$ reaction.2
As a result of the poor conversion of both MgF₂ and CaF₂ to HF in the presence of equimolar quantities of steam, we considered the use of excess steam to drive the reactions to completion. We discovered that 40 moles or more of H₂O in nitrogen would drive the former reaction to completion at temperatures as low as 1000°C (see Fig. 5). The temperature necessary for complete conversion might be somewhat lower under nonequilibrium conditions. For example, the removal of products in real time would drive the reactions towards completion.
Similarly, we explored the reaction of CaF$_2$ with excess steam under nitrogen and found complete formation of HF for 40 moles of H$_2$O per 1 mole of CaF$_2$ at 1400°C (see Fig. 6).
Finally, one potential material of construction (nickel) was examined for its stability toward corrosion in the high-temperature environment, presented by the reaction between MgF₂ and H₂O, under nitrogen. The amount of elemental nickel changed to nickel oxide (NiO) does not change over the temperature range of this study (see Fig. 7). This suggests nickel is a viable construction material for reactor vessels. In that application, the reactions of alkaline earth fluorides with steam can be performed without anticipated corrosion of the nickel. Nickel and Monel™ (nickel-copper alloy) are both resistant to attack by anhydrous HF.
Fig. 7. MgF$_2$–H$_2$O reaction in N$_2$ as a function of temperature (0.1 mol nickel).

The results of the calculations included a complete set of predicted equilibrium species. This includes the set of minor constituents MgF$_2$(g), H$_2$(g), H$_2$O(g), OH(g), NO$_2$(g), and O$_2$(g) (see Fig. 8).
Fig. 8. MgF₂-H₂O reaction in N₂—composition vs. temperature (note 0.1 mol Ni provided).

FUTURE WORK

The present thermodynamic modeling effort can be extended to include common impurities found in MgF₂ and CaF₂. In the modeling completed to date, we included nickel as the containment material.

The equilibrium compositions could be extended to study the influence of other construction materials in the system such as Monel™ and alternative ceramics.
REFERENCES

This report has been reproduced directly from the best available copy.

It is available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Prices are available from (615) 576-8401.

It is available to the public from the National Technical Information Service, US Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.