Optimization of BNCT treatment planning

PDF Version Also Available for Download.

Description

Treatment planning for epithermal neutron capture therapy applications to date has relied on rigorous Monte Carlo calculations. Although many improvements have been made, the Monte Carlo process still requires a large amount of computer time and planning labor. With single-field, fixed-aperture irradiation, a near-optimum field can be found with an intuition-aided trial and error approach, however methods to more rapidly determine optimum irradiation configurations will significantly aid the process. As efforts become more aggressive, having the ability to select aperture size and number of fields, it will become expensive to manually find the optimum plan for a patient. Also, as ... continued below

Physical Description

5 p.

Creation Information

Wheeler, F.J. October 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

  • Wheeler, F.J. Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Treatment planning for epithermal neutron capture therapy applications to date has relied on rigorous Monte Carlo calculations. Although many improvements have been made, the Monte Carlo process still requires a large amount of computer time and planning labor. With single-field, fixed-aperture irradiation, a near-optimum field can be found with an intuition-aided trial and error approach, however methods to more rapidly determine optimum irradiation configurations will significantly aid the process. As efforts become more aggressive, having the ability to select aperture size and number of fields, it will become expensive to manually find the optimum plan for a patient. Also, as the modality moves to clinical applications, patient throughput will not permit the resource-expenditure currently utilized in clinical trials.

Physical Description

5 p.

Notes

OSTI as DE96014120

Source

  • Winter meeting of the American Nuclear Society (ANS) and the European Nuclear Society (ENS), Washington, DC (United States), 10-14 Nov 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96014120
  • Report No.: INEL--96/00219
  • Report No.: CONF-961103--9
  • Grant Number: AC07-94ID13223
  • Office of Scientific & Technical Information Report Number: 390523
  • Archival Resource Key: ark:/67531/metadc675293

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • April 25, 2016, 1:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wheeler, F.J. Optimization of BNCT treatment planning, article, October 1, 1996; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc675293/: accessed August 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.