High-resolution neutron capture and transmission measurements and the stellar neutron capture cross sections of {sup 116,120}Sn

PDF Version Also Available for Download.

Description

Improved astrophysical reaction rates for {sup 116,120}Sn(n, {gamma}) are of interest because nucleosynthesis models have not been able to reproduce the observed abundances in this mass region. For example, previous s-process calculations have consistently underproduced the s-only isotope {sup 116}Sn. Also, these studies have resulted in residual reprocess abundances for the tin isotopes which are systematically larger than predicted by reprocess calculations. It has been suggested that these problems could be solved by reducing the solar tin abundance by 10-20%, but there is no experimental evidence to justify this renormalization. Instead, it is possible that the problem lies in the ... continued below

Physical Description

4 p.

Creation Information

Koehler, P.E.; Spencer, R.R. & Guber, K.H. June 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Improved astrophysical reaction rates for {sup 116,120}Sn(n, {gamma}) are of interest because nucleosynthesis models have not been able to reproduce the observed abundances in this mass region. For example, previous s-process calculations have consistently underproduced the s-only isotope {sup 116}Sn. Also, these studies have resulted in residual reprocess abundances for the tin isotopes which are systematically larger than predicted by reprocess calculations. It has been suggested that these problems could be solved by reducing the solar tin abundance by 10-20%, but there is no experimental evidence to justify this renormalization. Instead, it is possible that the problem lies in the (n,T) cross sections used in the reaction network calculations or in the s-process models. One reason to suspect the (n, {gamma}) data is that previous measurements did not extend to low enough energies to determine accurately the Maxwellian-averaged capture cross sections at the low temperatures (kT=6-8 keV) favored by the most recent stellar models of the s process. Also, the two most recent high-precision measurements of the {sup 120}Sn(n, {gamma}) cross section are in serious disagreement. Because of its small size, this cross section could affect (via the s-process branching at {sup 121}Sn) the relative abundances of the three s-only isotopes of Te.

Physical Description

4 p.

Notes

INIS; OSTI as DE97006308

Medium: P; Size: 4 p.

Source

  • International conference on nuclear data for science and technology, Trieste (Italy), 20-24 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97006308
  • Report No.: CONF-970512--4
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 485980
  • Archival Resource Key: ark:/67531/metadc675030

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • April 13, 2017, 12:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Koehler, P.E.; Spencer, R.R. & Guber, K.H. High-resolution neutron capture and transmission measurements and the stellar neutron capture cross sections of {sup 116,120}Sn, article, June 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc675030/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.