Formation of Chloropyromorphite from Galena (PbS) in the Presence of Hydroxyapatite

PDF Version Also Available for Download.

Description

Transformation of unstable lead [Pb(ll)] forms into insoluble pyromorphite, [Pb5(P04)3(OH, Cl, F...)], by addition of phosphate to Pb contaminated soil has been proposed as a remediation technology which reduces the mobility and bioavailability of Pb. Under aerobic condition, oxidation of dissolved sulfide increases dissolution of galena (PbS), causing it to become a source of liable Pb forms in soils, sediments and wastes. Thus, a galena ore was reacted with synthetic hydroxyapatite [Ca5(P04)30H] under various pH condition to determine the formation rate of pyromorphite and the volubility of galena under the ambient conditions. In a 6 day reaction period the dissolution ... continued below

Physical Description

24 Pages

Creation Information

Ryan, J.A. & Zhang, P. October 14, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Transformation of unstable lead [Pb(ll)] forms into insoluble pyromorphite, [Pb5(P04)3(OH, Cl, F...)], by addition of phosphate to Pb contaminated soil has been proposed as a remediation technology which reduces the mobility and bioavailability of Pb. Under aerobic condition, oxidation of dissolved sulfide increases dissolution of galena (PbS), causing it to become a source of liable Pb forms in soils, sediments and wastes. Thus, a galena ore was reacted with synthetic hydroxyapatite [Ca5(P04)30H] under various pH condition to determine the formation rate of pyromorphite and the volubility of galena under the ambient conditions. In a 6 day reaction period the dissolution rate of galena increased with pH due to the oxidation of dissolved sulfide. Correspondingly, formation of chloropyrornorphite became apparent in the galena- apatite suspensions with increasing pH. The insignificant effect of mineral P/Pb molar ratio on the formation of chloropyromorphite implied that dissolution of galena was the rate limiting step.

Physical Description

24 Pages

Subjects

Source

  • Journal Name: Environmental Science and Technology

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00002985
  • Report No.: SAND98-2304J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 2985
  • Archival Resource Key: ark:/67531/metadc674934

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 14, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 28, 2016, 6:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ryan, J.A. & Zhang, P. Formation of Chloropyromorphite from Galena (PbS) in the Presence of Hydroxyapatite, article, October 14, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc674934/: accessed May 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.