Chemical synthesis of magnetic Fe-B and Fe-Co-B particles and chains

PDF Version Also Available for Download.

Description

With an objective to develop magnetic materials with high saturation magnetization for the Magnetically Assisted Chemical Separation (MACS) process the chemical synthesis of Fe-B and Fe-Co-B alloys by reducing iron and cobalt chloride solutions with potassium borohydride has been investigated systematically. The influence of the concentration of the reactants, applied magnetic field, reaction atmosphere, and method of mixing the reactants on the microstructure, particle size, composition and magnetic properties has been studied. Both M-B (M = Fe and Co) particles and elongated chains composed of nanometer size M-B particles have been obtained depending on the reaction conditions. The Fe-B samples ... continued below

Physical Description

Medium: P; Size: 23 p.

Creation Information

Fulmer, P.; Kim, J.; Manthiram, A. & Sanchez, J.M. April 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

With an objective to develop magnetic materials with high saturation magnetization for the Magnetically Assisted Chemical Separation (MACS) process the chemical synthesis of Fe-B and Fe-Co-B alloys by reducing iron and cobalt chloride solutions with potassium borohydride has been investigated systematically. The influence of the concentration of the reactants, applied magnetic field, reaction atmosphere, and method of mixing the reactants on the microstructure, particle size, composition and magnetic properties has been studied. Both M-B (M = Fe and Co) particles and elongated chains composed of nanometer size M-B particles have been obtained depending on the reaction conditions. The Fe-B samples exhibit saturation magnetization of M{sub S} of 120--190 emu/g, remanent magnetization M{sub r} of 10--22 emu/g, and coercive field H{sub c} of 400--900 Oe. A high M{sub S} value of 190 emu/g, which is close to the theoretical value of 218 emu/g for pure Fe, has been achieved particularly for samples with well-defined chain structures. Increasing the Co content in the Fe-Co-B alloys increases the boron content and thereby decreases the crystallinity and M{sub S} values although marginal increase in H{sub c} (1,250 Oe) and M{sub r} (36 emu/g) values could be made in some Fe-Co-B compositions. The chain structure with high M{sub S} may be attractive for other magnetic separation processes as well.

Physical Description

Medium: P; Size: 23 p.

Notes

INIS; OSTI as DE99002187

Source

  • Other Information: PBD: Apr 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99002187
  • Report No.: ANRCP--1999-15
  • Grant Number: FC04-95AL85832
  • DOI: 10.2172/334201 | External Link
  • Office of Scientific & Technical Information Report Number: 334201
  • Archival Resource Key: ark:/67531/metadc674910

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Nov. 19, 2015, 12:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fulmer, P.; Kim, J.; Manthiram, A. & Sanchez, J.M. Chemical synthesis of magnetic Fe-B and Fe-Co-B particles and chains, report, April 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc674910/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.