SPECIMEN SIZE EFFECT ON THE CREEP OF Si₃N₄

A. A. Wereszczak, M. K. Ferber, A. S. Barnes, and T. P. Kirkland

High Temperature Materials Laboratory
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6069

ABSTRACT

The effect of specimen size on the measured tensile creep behavior of a commercially available gas pressure sintered Si₃N₄ was examined. Button-head tensile test specimens were used for the testing, and were machined to a variety of different gage section diameters (ranging from 2.5 to 6.35 mm) or different surface-area-to-volume ratios. The specimens were then creep tested at 1350°C and 200 MPa with tensile creep strain continuously measured as a function of time. The steady-state creep rate increased and the lifetime decreased with an increase in diameter (or decrease in the ratio of gage section surface area to volume). The time and specimen size dependence of transformation of a secondary phase correlated with the observed creep rate and lifetime dependence.

INTRODUCTION

Several ambient air creep studies of silicon nitrides have indicated that the test specimen size may influence creep performance (e.g., minimum creep rate and creep lifetime). The existence of such a size effect would necessitate the inclusion of an extra independent variable in models used to meaningfully predict the creep performance and lifetime of complex shaped components. Creep data of PY6 (GTE Laboratories, Waltham, MA) silicon nitride generated by Wiederhorn, et al., indicated that their smaller cross-section PY6 and NT 154 (Norton Advanced Ceramics, Northboro, MA) dogbone tensile test specimens (2.5 x 2.5 mm) crept slower and faster than PY6 [1] and NT 154 [2-3] button-head tensile test specimens.
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
STUDIES OF FLEXIBLE MOX/LEU FUEL CYCLES

Gustavo Alonso-Vargas
Marvin L. Adams

Date Published: March 1999

Report Prepared by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
P.O. Box 2008
Oak Ridge, Tennessee 37831-6363
Under
Subcontract Number 85B99398V

Funded by
Office of Fissile Materials Disposition
United States Department of Energy

Prepared for
Computational Physics and Engineering Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-96OR22464
FINAL REPORT

STUDIES OF FLEXIBLE MOX/LEU FUEL CYCLES

Gustavo Alonso-Vargas and Marvin L. Adams

Department of Nuclear Engineering
Texas A&M University
Zachry 129
College Station, Texas 77843

March, 1999
Studies of Flexible MOX/LEU Fuel Cycles
Final Report, Texas A&M University / Amarillo National Resource Center

Gustavo Alonso-Vargas and Marvin L. Adams, Texas A&M University

I. Introduction

This project was a collaborative effort involving researchers from Oak Ridge National Laboratory and North Carolina State University as well as Texas A&M University. The background, briefly, is that the United States is planning to use some of its excess weapons Plutonium (Pu) to make mixed-oxide (MOX) fuel for existing light-water reactors (LWRs). Considerable effort has already gone into designing fuel assemblies and core loading patterns for the transition from full-uranium cores to partial-MOX and full-MOX cores. However, these designs have assumed that any time a reactor needs MOX assemblies, these assemblies will be supplied. In reality there are many possible scenarios under which this supply could be disrupted. It therefore seems prudent to verify that a reactor-based Pu-disposition program could tolerate such interruptions in an acceptable manner. Such verification was the overall aim of this project.

The task assigned to the Texas A&M team was to use the HELIOS code\(^2\) to develop libraries of two-group homogenized cross sections for the various assembly designs that might be used in a Westinghouse Pressurized Water Reactor (PWR) that is burning weapons-grade MOX fuel. The NCSU team used these cross sections to develop optimized loading patterns under several assumed scenarios. Their results are documented in a companion report.\(^3\)

II. Methodology

Our starting point in developing the library was to test the HELIOS models of UO\(_2\) and MOX assemblies. We compared the results against those from the CASMO-3 code.\(^4\) This served as useful check on our HELIOS models and in addition it is desirable for a variety of reasons to understand the relative difference between the two codes.

Our HELIOS calculations used the “hy961a” cross-section library, which is an update of the hy941a library.\(^5\) This library is based upon the evaluated nuclear data file ENDF/B-VI.\(^5\) Our final results were generated using a 34-group cross-section set for LEU assemblies and an 89-group set for MOX assemblies, as described later. Our CASMO-3 calculations used the CASMO “K” libraries unless otherwise noted below; the exception was some calculations made to compare results from the “J” and “K” libraries. The main difference between the “K” and “J” libraries is an improvement in the cross sections for the higher Pu isotopes.\(^7\)

When there were discrepancies between the results given by HELIOS and CASMO we investigated the cause. This led us to correct several input and code-usage mistakes, but in some cases it led us to conclude that the discrepancies resulted from certain differences in underlying cross-section libraries or code methodologies. Only when we were sure that we were correctly modeling our assemblies did we proceed to generate the different HELIOS models for the different assemblies.

From the HELIOS output files we generated the library of two-group homogenized cross sections using the ZENITH code. ZENITH input files were generated according the FORMOSA input data required. North Carolina State University provided us with the input data structure of FORMOSA.

We modeled both UO\(_2\) and MOX assemblies. Figure 1 shows the layout of one eighth of an assembly; this picture is the same for all assemblies considered. Table I provides some details about the dimensions and materials of each assembly. These details are the same as used by previous studies of the ability of Westinghouse reactors to be used for disposition of weapons Pu.\(^8^,9\)

In Table II.a we list the different assemblies that were modeled, with their respective enrichments of \(^{235}\)U or fissile plutonium and the numbers and types of burnable absorbers used. For each of these assemblies there is a base case and five different branch cases such that each HELIOS file produces six different ZENITH output files. Table II.b
shows the conditions under which these cases were modeled. For the baffle model there are only four branch cases. For the full MOX cores the soluble boron is enriched to 40% B-10; the partial MOX cores use natural boron (approximately 20% B-10). We created libraries for both the natural and enriched scenarios, but only the enriched libraries were passed along to NCSU. The ZENITH output files constituted the two-group libraries used by NCSU for further analysis.

Table II.a. MOX and UO₂ assemblies that were modeled.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel lattice</td>
<td>17x17</td>
</tr>
<tr>
<td>Fuel rods per assembly</td>
<td>264</td>
</tr>
<tr>
<td>Fuel rod OD (in)</td>
<td>0.360</td>
</tr>
<tr>
<td>Fuel pellet OD (in)</td>
<td>0.3088</td>
</tr>
<tr>
<td>Cladding material</td>
<td>Zircaloy-4</td>
</tr>
<tr>
<td>Active Fuel Height</td>
<td>144</td>
</tr>
<tr>
<td>Clad Thickness (in)</td>
<td>0.0225</td>
</tr>
<tr>
<td>Pitch (in)</td>
<td>0.496</td>
</tr>
<tr>
<td>Assembly Pitch (in)</td>
<td>8.466</td>
</tr>
<tr>
<td>Assembly Gap (in)</td>
<td>0.034</td>
</tr>
</tbody>
</table>
Table II.a. MOX and UO$_2$ assemblies modeled.

<table>
<thead>
<tr>
<th>Type</th>
<th>HELIOS file</th>
<th>Enrichment w/o</th>
<th># IFBA</th>
<th>#WABA</th>
<th>Boron-10 per rod</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOX</td>
<td>hmhw89h.inp</td>
<td>4.0</td>
<td>0</td>
<td>0</td>
<td>0.006 g/cm</td>
</tr>
<tr>
<td>MOX</td>
<td>Hmhw189g.inp</td>
<td>4.0</td>
<td>0</td>
<td>12</td>
<td>0.006 g/cm</td>
</tr>
<tr>
<td>MOX</td>
<td>hmhnw89g.inp</td>
<td>4.0</td>
<td>0</td>
<td>24</td>
<td>0.006 g/cm</td>
</tr>
<tr>
<td>MOX</td>
<td>hmlwh89g.inp</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>0.006 g/cm</td>
</tr>
<tr>
<td>MOX</td>
<td>hmlw189g.inp</td>
<td>4.5</td>
<td>0</td>
<td>12</td>
<td>0.006 g/cm</td>
</tr>
<tr>
<td>MOX</td>
<td>hmlwn89g.inp</td>
<td>4.5</td>
<td>0</td>
<td>24</td>
<td>0.006 g/cm</td>
</tr>
<tr>
<td>MOX</td>
<td>hml3516i.inp</td>
<td>3.5</td>
<td>16</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu35ni.inp</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu3548i.inp</td>
<td>3.5</td>
<td>48</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu3564i.inp</td>
<td>3.5</td>
<td>64</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu3580i.inp</td>
<td>3.5</td>
<td>80</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu35104i.inp</td>
<td>3.5</td>
<td>104</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu35128i.inp</td>
<td>3.5</td>
<td>128</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hluulni.inp</td>
<td>4.0</td>
<td>0</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu16i.inp</td>
<td>4.0</td>
<td>16</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu48i.inp</td>
<td>4.0</td>
<td>48</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu64i.inp</td>
<td>4.0</td>
<td>64</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu80i.inp</td>
<td>4.0</td>
<td>80</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu104i.inp</td>
<td>4.0</td>
<td>104</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu128i.inp</td>
<td>4.0</td>
<td>128</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hlu1ni.inp</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hluh16i.inp</td>
<td>4.5</td>
<td>16</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hluh48i.inp</td>
<td>4.5</td>
<td>48</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hluh64i.inp</td>
<td>4.5</td>
<td>64</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hluh80i.inp</td>
<td>4.5</td>
<td>80</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hluh104i.inp</td>
<td>4.5</td>
<td>104</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>hluh128i.inp</td>
<td>4.5</td>
<td>128</td>
<td>0</td>
<td>1.5 mg/in</td>
</tr>
<tr>
<td>BAFFLE</td>
<td>hmhwref34.inp</td>
<td>4.5</td>
<td>0</td>
<td>24</td>
<td>0.006 g/cm</td>
</tr>
</tbody>
</table>

Table II.b. Base and branch conditions used in the HELIOS model.

<table>
<thead>
<tr>
<th>Case</th>
<th>Fuel Temperature (K)</th>
<th>Moderator Temperature (K)</th>
<th>Boron concentration (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>963</td>
<td>582.95</td>
<td>1000</td>
</tr>
<tr>
<td>Fuel Temperature</td>
<td>582.95</td>
<td>582.95</td>
<td>1000</td>
</tr>
<tr>
<td>Moderator Temp</td>
<td>963</td>
<td>564.59</td>
<td>1000</td>
</tr>
<tr>
<td>Boron conc High</td>
<td>963</td>
<td>599.32</td>
<td>1000</td>
</tr>
<tr>
<td>Boron conc Low</td>
<td>963</td>
<td>582.95</td>
<td>1000</td>
</tr>
</tbody>
</table>

III. Results

III.A. Verification of correct use and understanding of HELIOS/ZENITH

We began our work by building a HELIOS model of a UO$_2$ assembly and comparing results against those from CASMO-3. The assembly type tested had 4.203 w/o of 235U enrichment with integral fuel burnable absorber (IFBA) coatings incorporated onto 128 fuel pins. The infinite multiplication factor and absolute difference between results given by CASMO-3 and HELIOS are shown in Table III (along with results from a MOX assembly described later).
Table III. Multiplication factor for uranium and MOX assemblies.

<table>
<thead>
<tr>
<th>BU</th>
<th>HELIOS %w of 235U</th>
<th>CASMO 70K</th>
<th>Difference</th>
<th>HELIOS</th>
<th>CASMO 70K</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.11832</td>
<td>1.11716</td>
<td>0.00116</td>
<td>1.14394</td>
<td>1.15140</td>
<td>0.00746</td>
</tr>
<tr>
<td>500</td>
<td>1.09231</td>
<td>1.09137</td>
<td>0.00094</td>
<td>1.11523</td>
<td>1.12168</td>
<td>0.00645</td>
</tr>
<tr>
<td>1500</td>
<td>1.10314</td>
<td>1.10225</td>
<td>0.00089</td>
<td>1.10461</td>
<td>1.11101</td>
<td>0.00640</td>
</tr>
<tr>
<td>2500</td>
<td>1.11226</td>
<td>1.11139</td>
<td>0.00087</td>
<td>1.09712</td>
<td>1.10348</td>
<td>0.00636</td>
</tr>
<tr>
<td>5000</td>
<td>1.12340</td>
<td>1.12257</td>
<td>0.00083</td>
<td>1.08311</td>
<td>1.08953</td>
<td>0.00642</td>
</tr>
<tr>
<td>7500</td>
<td>1.12371</td>
<td>1.12319</td>
<td>0.00052</td>
<td>1.07169</td>
<td>1.07803</td>
<td>0.00634</td>
</tr>
<tr>
<td>10000</td>
<td>1.11702</td>
<td>1.11676</td>
<td>0.00026</td>
<td>1.06189</td>
<td>1.06809</td>
<td>0.00620</td>
</tr>
<tr>
<td>12500</td>
<td>1.10583</td>
<td>1.10575</td>
<td>0.00008</td>
<td>1.05303</td>
<td>1.05913</td>
<td>0.00610</td>
</tr>
<tr>
<td>15000</td>
<td>1.09180</td>
<td>1.09193</td>
<td>0.00013</td>
<td>1.04462</td>
<td>1.05065</td>
<td>0.00603</td>
</tr>
<tr>
<td>17500</td>
<td>1.07600</td>
<td>1.07618</td>
<td>0.00018</td>
<td>1.03620</td>
<td>1.04221</td>
<td>0.00601</td>
</tr>
<tr>
<td>20000</td>
<td>1.05915</td>
<td>1.05923</td>
<td>0.00008</td>
<td>1.02744</td>
<td>1.03352</td>
<td>0.00608</td>
</tr>
<tr>
<td>22500</td>
<td>1.04174</td>
<td>1.04186</td>
<td>0.00012</td>
<td>1.01809</td>
<td>1.02426</td>
<td>0.00617</td>
</tr>
<tr>
<td>25000</td>
<td>1.02407</td>
<td>1.02404</td>
<td>0.00003</td>
<td>1.00806</td>
<td>1.01429</td>
<td>0.00623</td>
</tr>
<tr>
<td>27500</td>
<td>1.00635</td>
<td>1.00611</td>
<td>0.00024</td>
<td>0.99733</td>
<td>1.00356</td>
<td>0.00623</td>
</tr>
<tr>
<td>30000</td>
<td>0.98872</td>
<td>0.98819</td>
<td>0.00053</td>
<td>0.98599</td>
<td>0.99207</td>
<td>0.00608</td>
</tr>
<tr>
<td>32500</td>
<td>0.97127</td>
<td>0.97031</td>
<td>0.00096</td>
<td>0.97416</td>
<td>0.97994</td>
<td>0.00578</td>
</tr>
<tr>
<td>35000</td>
<td>0.95396</td>
<td>0.95270</td>
<td>0.00126</td>
<td>0.96203</td>
<td>0.96735</td>
<td>0.00532</td>
</tr>
<tr>
<td>37500</td>
<td>0.93715</td>
<td>0.93518</td>
<td>0.00197</td>
<td>0.94973</td>
<td>0.95449</td>
<td>0.00476</td>
</tr>
<tr>
<td>40000</td>
<td>0.92060</td>
<td>0.91803</td>
<td>0.00257</td>
<td>0.93739</td>
<td>0.94150</td>
<td>0.00411</td>
</tr>
<tr>
<td>42500</td>
<td>0.90443</td>
<td>0.90123</td>
<td>0.00320</td>
<td>0.92512</td>
<td>0.92848</td>
<td>0.00336</td>
</tr>
<tr>
<td>45000</td>
<td>0.88868</td>
<td>0.88483</td>
<td>0.00385</td>
<td>0.91301</td>
<td>0.91557</td>
<td>0.00256</td>
</tr>
<tr>
<td>47500</td>
<td>0.87341</td>
<td>0.86888</td>
<td>0.00453</td>
<td>0.90109</td>
<td>0.90284</td>
<td>0.00175</td>
</tr>
<tr>
<td>50000</td>
<td>0.85862</td>
<td>0.85341</td>
<td>0.00521</td>
<td>0.88944</td>
<td>0.89033</td>
<td>0.00099</td>
</tr>
<tr>
<td>52500</td>
<td>0.84439</td>
<td>0.83850</td>
<td>0.00589</td>
<td>0.87808</td>
<td>0.87811</td>
<td>0.00030</td>
</tr>
<tr>
<td>55000</td>
<td>0.83075</td>
<td>0.82420</td>
<td>0.00655</td>
<td>0.86701</td>
<td>0.86619</td>
<td>-0.00082</td>
</tr>
<tr>
<td>57500</td>
<td>0.81772</td>
<td>0.81055</td>
<td>0.00717</td>
<td>0.85627</td>
<td>0.85461</td>
<td>-0.00166</td>
</tr>
<tr>
<td>60000</td>
<td>0.80533</td>
<td>0.79760</td>
<td>0.00773</td>
<td>0.84586</td>
<td>0.84339</td>
<td>-0.00247</td>
</tr>
</tbody>
</table>

Figure 2.a shows the behavior of the multiplication factor from HELIOS and CASMO-3, with several different cross-section libraries employed in the CASMO-3 runs. These were the 40-group and 70-group "J" libraries (denoted CASMO-40 and CASMO-70 in the figure) and the 70-group "K" library (denoted CASMO-70K). The "K" library was designed by Studsvik (the company that maintains and sells CASMO) to contain improved cross section data for Pu isotopes. We see that the different CASMO libraries cause smaller differences than the difference between CASMO and HELIOS. An important note is that we used only the 34-group library in the HELIOS runs.

Several runs were made in order to see if these discrepancies were related to the burnup step. When the number of burnup steps in CASMO was increased, the difference was smaller, however if we increase the number of burnup steps in HELIOS in order to have the same burnup steps as in CASMO, the difference returned to approximately its original value. Thus, we do not believe that burnup step is the source of a significant part of the difference; we believe instead that this difference stems from the different libraries and numerical approximations used in each code, and not to any parameters that are under the user’s control.

We turned next to a MOX assembly with an average of 3.992 %w of fissile Pu, composed of four different pin enrichments and containing 24 wet annular burnable absorber (WABA) rods. In this case CASMO-3 and HELIOS differ at BOC, with CASMO higher. As was true for the uranium assembly, CASMO-3 depletes faster than HELIOS, which in the MOX case means the two codes approach the same k-infinity late in the cycle. The infinite...
multiplication factor and absolute difference between results given by CASMO-3 and HELIOS are shown in Table III and Figure 2.b.

In the case of the MOX assembly we hypothesized that the differences were caused by differences in cross sections libraries. To test this hypothesis we replaced the weapons-grade plutonium in the assembly first with pure 239Pu and then with pure 241Pu. This, of course, isolates the differences in the two cross section libraries for these two fissile isotopes.
The results from the pure 239Pu case were as expected, showing the same trends as in the original weapons-grade MOX runs. These results are given in the Table IV.

Table IV. k-infinity results with pure 239Pu.

<table>
<thead>
<tr>
<th>Burnup (GWD/MT)</th>
<th>HELIOS</th>
<th>CASMO</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.14254</td>
<td>1.14992</td>
<td>0.00738</td>
</tr>
<tr>
<td>40</td>
<td>0.93781</td>
<td>0.94202</td>
<td>0.00421</td>
</tr>
<tr>
<td>50</td>
<td>0.88993</td>
<td>0.89097</td>
<td>0.00104</td>
</tr>
<tr>
<td>60</td>
<td>0.84635</td>
<td>0.84406</td>
<td>-0.00229</td>
</tr>
</tbody>
</table>

If we compare the MOX results from Table III against Table IV, we see that the differences between the two codes have the same sign but smaller magnitude. On the other hand, there is a very different trend for the 241Pu case. This is shown in Table V. At BOC there is a very large difference (2000 pcm) between the two codes, with a different sign than in the pure 239Pu case. That is, the CASMO library appears to have slightly more reactive 239Pu and considerably less reactive 241Pu than the HELIOS library.

Table V. K-infinity results with pure 241Pu.

<table>
<thead>
<tr>
<th>Bu (GWD/MT)</th>
<th>HELIOS</th>
<th>CASMO</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.44485</td>
<td>1.42466</td>
<td>-0.02019</td>
</tr>
<tr>
<td>40</td>
<td>0.88829</td>
<td>0.87289</td>
<td>-0.01426</td>
</tr>
<tr>
<td>50</td>
<td>0.79332</td>
<td>0.77625</td>
<td>-0.01707</td>
</tr>
<tr>
<td>60</td>
<td>0.74200</td>
<td>0.72660</td>
<td>-0.01520</td>
</tr>
</tbody>
</table>

The results shown in Table V help to explain why the difference between the CASMO and HELIOS results changes sign in the other two cases. When almost pure 239Pu is present at BOC, then $^{239}W_{Pu}$ and ^{241}Pu will buildup over time. At high burnup, much of the reactivity is due to the ^{241}Pu, which explains why the CASMO k-infinity drops below that of HELIOS.

Moving forward in the comparison of results coming from these two codes, we encountered an unforeseen difficulty, namely a considerable disagreement between the Moderator Temperature Coefficient (MTC) predicted by HELIOS and the MTC predicted by CASMO-3, for a simple Low-Enriched Uranium (LEU) assembly.

We ran HELIOS for a base case and five branch cases for a Westinghouse LEU assembly with no control rods and no burnable absorbers. The key parameters for the base and branch cases are shown in Table VI below.

Table VI. Parameters of Base and Branch Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Base</th>
<th>Branch 1</th>
<th>Branch 2</th>
<th>Branch 3</th>
<th>Branch 4</th>
<th>Branch 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Temp (K)</td>
<td>963</td>
<td>582.95</td>
<td>963</td>
<td>963</td>
<td>963</td>
<td>963</td>
</tr>
<tr>
<td>Mod. Temp (K)</td>
<td>582.95</td>
<td>582.95</td>
<td>599.32</td>
<td>564.59</td>
<td>582.95</td>
<td>582.95</td>
</tr>
<tr>
<td>Boron Conc. (ppm)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
<td>0</td>
</tr>
</tbody>
</table>

In Table VII below we present, for each branch at each depletion step, the ratio of the HELIOS k_{base}/k_{branch} to the CASMO-3 prediction of the same Δk. These Δk's are approximately proportional to various reactivity coefficients. The base cases agree reasonably well between the two codes. We see that the fuel temperature coefficients from the two codes agree within a few percent except for a 9% outlier at 5 GWD/MT. The boron worth, despite being computed over fairly large changes in boron concentration, is in similarly good agreement.

The two codes seem to disagree significantly, however, on Moderator Temperature Coefficients (MTC). To determine the source of this disagreement we looked beyond k-infinity and studied the two-group assembly-averaged cross sections. There are two reasons for this. First, there is a tight connection between k-infinity and the cross sections; studying the latter might help us understand the differences in the former. Second, these cross
sections—not k-infinity—are the quantities that would be used later in the full-core analysis. Results are shown in Tables VIII and IX. (The ratio of changes in downscattering cross section is not shown; the ratios were in all cases between 0.99 and 1.00.)

Table VII. Ratio of branch Δk’s: Δk_{HELIOS}/Δk_{CASMO}

<table>
<thead>
<tr>
<th>Exposure (GWD/MT)</th>
<th>Branch 1 (High T_M)</th>
<th>Branch 2 (High T_M)</th>
<th>Branch 3 (Low T_M)</th>
<th>Branch 4 (High B)</th>
<th>Branch 5 (Low B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2907</td>
<td>1.5935</td>
<td>1.9782</td>
<td>0.9906</td>
<td>0.9611</td>
</tr>
<tr>
<td>5</td>
<td>1.0903</td>
<td>1.2353</td>
<td>5.2727</td>
<td>0.9825</td>
<td>0.8773</td>
</tr>
<tr>
<td>10</td>
<td>1.0376</td>
<td>1.3938</td>
<td>1.6163</td>
<td>0.9849</td>
<td>0.9819</td>
</tr>
<tr>
<td>20</td>
<td>1.0123</td>
<td>1.3597</td>
<td>1.2647</td>
<td>0.9843</td>
<td>0.9754</td>
</tr>
<tr>
<td>30</td>
<td>1.0097</td>
<td>1.4469</td>
<td>1.2296</td>
<td>0.9849</td>
<td>0.9718</td>
</tr>
<tr>
<td>40</td>
<td>0.9686</td>
<td>1.7746</td>
<td>0.8415</td>
<td>0.9928</td>
<td>0.9647</td>
</tr>
<tr>
<td>50</td>
<td>1.0057</td>
<td>1.9372</td>
<td>1.7917</td>
<td>0.9910</td>
<td>0.9669</td>
</tr>
<tr>
<td>60</td>
<td>1.0758</td>
<td>2.1935</td>
<td>-1.7037</td>
<td>0.9862</td>
<td>0.9723</td>
</tr>
</tbody>
</table>

Table VIII. Ratio of branch ΔΣ’s and Δk for High Moderator Temperature Branch: ΔΣ_{HELIOS}/ΔΣ_{CASMO}

<table>
<thead>
<tr>
<th>Bu</th>
<th>Abs-1</th>
<th>Abs-2</th>
<th>nu fiss-1</th>
<th>nu fiss-2</th>
<th>k-inf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.97</td>
<td>0.98</td>
<td>0.94</td>
<td>0.98</td>
<td>1.47</td>
</tr>
<tr>
<td>5</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.95</td>
<td>1.04</td>
</tr>
<tr>
<td>10</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>0.96</td>
<td>1.23</td>
</tr>
<tr>
<td>20</td>
<td>0.98</td>
<td>0.97</td>
<td>1.00</td>
<td>0.93</td>
<td>1.28</td>
</tr>
<tr>
<td>30</td>
<td>1.01</td>
<td>0.96</td>
<td>0.98</td>
<td>0.89</td>
<td>1.30</td>
</tr>
<tr>
<td>40</td>
<td>1.04</td>
<td>0.95</td>
<td>0.99</td>
<td>0.74</td>
<td>1.61</td>
</tr>
<tr>
<td>50</td>
<td>1.04</td>
<td>0.95</td>
<td>0.99</td>
<td>0.50</td>
<td>1.77</td>
</tr>
<tr>
<td>60</td>
<td>1.03</td>
<td>0.98</td>
<td>0.99</td>
<td>0.82</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Table IX. Ratio of branch ΔΣ’s and Δk for Low Moderator Temperature Branch: ΔΣ_{HELIOS}/ΔΣ_{CASMO}

<table>
<thead>
<tr>
<th>Bu</th>
<th>Abs-1</th>
<th>Abs-2</th>
<th>nu fiss-1</th>
<th>nu fiss-2</th>
<th>k-inf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.97</td>
<td>0.99</td>
<td>0.91</td>
<td>0.96</td>
<td>1.9574</td>
</tr>
<tr>
<td>5</td>
<td>0.97</td>
<td>0.98</td>
<td>0.96</td>
<td>0.96</td>
<td>4.9200</td>
</tr>
<tr>
<td>10</td>
<td>0.98</td>
<td>0.98</td>
<td>1.00</td>
<td>0.94</td>
<td>1.6477</td>
</tr>
<tr>
<td>20</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
<td>0.92</td>
<td>1.3043</td>
</tr>
<tr>
<td>30</td>
<td>0.95</td>
<td>0.97</td>
<td>0.95</td>
<td>0.88</td>
<td>1.3488</td>
</tr>
<tr>
<td>40</td>
<td>0.94</td>
<td>0.97</td>
<td>0.96</td>
<td>0.89</td>
<td>1.0494</td>
</tr>
<tr>
<td>50</td>
<td>0.94</td>
<td>0.96</td>
<td>0.96</td>
<td>0.20</td>
<td>3.0526</td>
</tr>
<tr>
<td>60</td>
<td>0.95</td>
<td>0.94</td>
<td>0.96</td>
<td>1.60</td>
<td>-1.6667</td>
</tr>
</tbody>
</table>

Two things stand out in Tables VIII and IX. First, the two codes agree far more closely on the change in each cross section than they do on the change in k-infinity. For example, in some cases the codes agree within 6% on the change in each cross section, but differ by >60% on the change in k-infinity. This seems somewhat contradictory at first, and led us to investigate further the relationship between changes in the cross sections and changes in k-infinity, as we shall discuss below. Second, there appears to be significant disagreement between the codes on the change in the group-2 νΣ at high burnups. We shall discuss this disagreement first.

Table X shows the behavior of the relative change in fission cross sections (ΔΣ/Σ) for both codes and for high and low moderator temperature branches. A careful examination shows that at high burnups, where Tables VIII and IX showed that the ratio of the ΔνΣ’s from the two codes is large, this ratio is approximately 0/0, because the change...
in the cross section is very small (and in fact changes sign, passing through zero). Thus, we conclude that the two
codes are actually calculating the changes in the two-group homogenized cross sections, as functions of changes in
moderator temperature, remarkably consistently.

Table X. Cross sections changes for the Moderator-Temperature Branch cases.

<table>
<thead>
<tr>
<th></th>
<th>Moderator (base-branch)/base</th>
<th>moderator (base-branch)/base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nufiss2</td>
<td>nufiss1</td>
</tr>
<tr>
<td>Bu</td>
<td>CASMO</td>
<td>HELIOS</td>
</tr>
<tr>
<td>0</td>
<td>0.013809</td>
<td>0.013298</td>
</tr>
<tr>
<td>5</td>
<td>0.010387</td>
<td>0.010700</td>
</tr>
<tr>
<td>10</td>
<td>0.008288</td>
<td>0.008721</td>
</tr>
<tr>
<td>20</td>
<td>0.005654</td>
<td>0.005847</td>
</tr>
<tr>
<td>30</td>
<td>0.003746</td>
<td>0.003885</td>
</tr>
<tr>
<td>40</td>
<td>0.002056</td>
<td>0.002056</td>
</tr>
<tr>
<td>50</td>
<td>0.000506</td>
<td>0.000422</td>
</tr>
<tr>
<td>60</td>
<td>-0.001023</td>
<td>-0.000804</td>
</tr>
</tbody>
</table>

The next question is why the ratios of the Δk’s are so large when the changes in two-group cross sections are so
small. Table X, which shows the actual relative cross-section changes ($\Delta \Sigma /\Sigma$) for each code, offers a possible
explanation for the discrepancies at late burnups. Note that the change in the group-2 fission cross section is very
small at late burnups. Note further that each k calculation is iterative and that each code converges this iteration
only to some pre-set tolerance. This iteration is on the k-eigenvalue itself as well as the scalar flux, and typically the
fluxes are not converged as tightly as k. Because the cross sections come from the scalar fluxes that are generated
during this iterative process, it follows that if the iteration is not converged tightly, the cross sections will not have
many digits of precision. A small difference of two such numbers will of course be imprecise. This appears to be a
likely cause for the large discrepancies in the two codes’ Δk’s at late burnups.

However, because the changes in $\Delta \nu \Sigma f_2$ at earlier burnups are large enough to have some significant digits, the
above argument does not seem to explain the large Δk ratio at those small burnups. To explore the reasons for this,
we explored the relationship between k and the two-group cross sections. We found that if power iteration is used
for the fine-group assembly-level k-eigenvalue calculation, and standard homogenization techniques are used for the
two-group assembly-averaged cross sections, then there is a simple and direct relationship between the k-eigenvalue
and the two-group cross sections, regardless of how tightly the eigenvalue calculation is converged. Details are in
Appendix A; Eq. (8) from that appendix shows the relationship between the k-infinity at the end of any iteration
and the two-group homogenized cross sections:

$$k^{(n+1)} = \frac{\nu \Sigma f_1 \Phi_1 + \nu \Sigma f_2 \frac{\Sigma_{\text{net}}}{\Sigma a_2} \Phi_2}{\nu \Sigma f_1 + \nu \Sigma f_2 + \frac{\Sigma_{\text{net}}}{\Sigma a_1} \Phi_1 + \frac{\Sigma_{\text{net}}}{\Sigma a_2} \Phi_2} = \frac{\nu \Sigma f_1}{\Sigma a_1 + \Sigma \text{net}_{1 \rightarrow 2} \Phi_1} + \frac{\nu \Sigma f_2}{\Sigma a_2 + \Sigma \text{net}_{1 \rightarrow 2} \Phi_2} = \frac{\nu \Sigma f_1}{\Sigma a_1 + \Sigma \text{net}_{1 \rightarrow 2}} + \frac{\nu \Sigma f_2}{\Sigma a_2 + \Sigma \text{net}_{1 \rightarrow 2}}. \quad (8)$$

We recognize that this result rests on some assumptions that are somewhat questionable. First, it assumes that power
iteration is used as shown in Appendix A; in truth, CASMO and HELIOS do deviate somewhat from this “pure”
power iteration. Second, both codes actually compute their k-infinities from a calculation that is performed after the
two-dimensional transport k-eigenvalue calculation; this computation uses the two-group constants as input.
Nevertheless, Appendix A is useful in that it shows the relationship in question in the limit that the codes’ results
approach the result of power iteration on the two-dimensional transport equation. To test whether the k_∞’s reported
by the two codes are in fact close to this limit, we employed Eq. (8) to calculate “two-group k” values and compared
them against the reported k-infinity values. The results, taken from a typical LEU assembly, are shown in Table XI.
Note that the CASMO results are reasonably self-consistent but the HELIOS ones are not.
Table XI. Reported k's, 2-Group k's, and their differences.

<table>
<thead>
<tr>
<th>Burnup</th>
<th>HELIOS reported k</th>
<th>2-Group k</th>
<th>2G – report</th>
<th>CASMO Reported k</th>
<th>2-Group k</th>
<th>2G – report</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.13803</td>
<td>1.14054</td>
<td>-0.00251</td>
<td>1.13884</td>
<td>1.13842</td>
<td>0.00042</td>
</tr>
<tr>
<td>5</td>
<td>1.13813</td>
<td>1.14140</td>
<td>-0.00327</td>
<td>1.13827</td>
<td>1.13785</td>
<td>0.00042</td>
</tr>
<tr>
<td>10</td>
<td>1.13219</td>
<td>1.13546</td>
<td>-0.00327</td>
<td>1.13213</td>
<td>1.13171</td>
<td>0.00042</td>
</tr>
<tr>
<td>20</td>
<td>1.07706</td>
<td>1.08051</td>
<td>-0.00345</td>
<td>1.07705</td>
<td>1.07688</td>
<td>0.00021</td>
</tr>
<tr>
<td>30</td>
<td>1.00787</td>
<td>1.01142</td>
<td>-0.00355</td>
<td>1.00782</td>
<td>1.00781</td>
<td>0.00001</td>
</tr>
<tr>
<td>40</td>
<td>0.93993</td>
<td>0.94285</td>
<td>-0.00292</td>
<td>0.93938</td>
<td>0.93937</td>
<td>0.00001</td>
</tr>
<tr>
<td>50</td>
<td>0.87690</td>
<td>0.87880</td>
<td>-0.00279</td>
<td>0.87432</td>
<td>0.87416</td>
<td>0.00016</td>
</tr>
<tr>
<td>60</td>
<td>0.81893</td>
<td>0.82184</td>
<td>-0.00291</td>
<td>0.81618</td>
<td>0.81575</td>
<td>0.00043</td>
</tr>
</tbody>
</table>

After some investigation we found that the source of the HELIOS inconsistency is that the downscattering cross section it reports is not corrected [as in Eq. (7) of Appendix A] to be a net quantity. [The CASMO downscattering cross section is corrected as in Eq. (7).] It is possible to give ZENITH instructions to correct this cross section; the TAMU team developed and tested an input file that does this. After this correction, the HELIOS “two-group k” is brought into reasonable agreement with the reported k, as shown in Table XII.

Table XII. Reported k's, 2-Group k's, and their differences, with corrected net downscattering.

<table>
<thead>
<tr>
<th>Burnup</th>
<th>HELIOS reported k</th>
<th>2-Group k</th>
<th>2G – report</th>
<th>CASMO Reported k</th>
<th>2-Group k</th>
<th>2G – report</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.13803</td>
<td>1.13766</td>
<td>0.00037</td>
<td>1.13884</td>
<td>1.13842</td>
<td>0.00042</td>
</tr>
<tr>
<td>5</td>
<td>1.13813</td>
<td>1.13832</td>
<td>-0.00019</td>
<td>1.13827</td>
<td>1.13785</td>
<td>0.00042</td>
</tr>
<tr>
<td>10</td>
<td>1.13219</td>
<td>1.13206</td>
<td>0.00013</td>
<td>1.13213</td>
<td>1.13171</td>
<td>0.00042</td>
</tr>
<tr>
<td>20</td>
<td>1.07706</td>
<td>1.07682</td>
<td>0.00024</td>
<td>1.07705</td>
<td>1.07688</td>
<td>0.00017</td>
</tr>
<tr>
<td>30</td>
<td>1.00787</td>
<td>1.00765</td>
<td>0.00022</td>
<td>1.00782</td>
<td>1.00781</td>
<td>0.00001</td>
</tr>
<tr>
<td>40</td>
<td>0.93993</td>
<td>0.93909</td>
<td>0.00084</td>
<td>0.93938</td>
<td>0.93937</td>
<td>0.00001</td>
</tr>
<tr>
<td>50</td>
<td>0.87600</td>
<td>0.87508</td>
<td>0.00092</td>
<td>0.87432</td>
<td>0.87416</td>
<td>0.00016</td>
</tr>
<tr>
<td>60</td>
<td>0.81893</td>
<td>0.81821</td>
<td>0.00072</td>
<td>0.81618</td>
<td>0.81575</td>
<td>0.00043</td>
</tr>
</tbody>
</table>

Thus, this exercise has shown that HELIOS users must take care to instruct ZENITH to output a net downscattering cross section, unless the global two-group diffusion code will itself explicitly calculate upscattering. Without this correction, the reactivity of the assemblies in the global calculation would be artificially high by a few hundred pcm, as shown in the fourth column of Table XI, which could lead to significant systematic errors in the prediction of cycle length.

Another significant point is that if HELIOS and CASMO disagree on MTC, then global calculations using the two codes' cross section tables will also disagree on MTC. This follows from the consistency between the two-group cross sections (which the global code uses to calculate k's) and k's reported by HELIOS and CASMO, from which their MTC estimates are computed.

The next task was to consider a branch case, in which there is a base k calculation and then another k calculation for a different (“branch”) state of the assembly. Our first aim was to determine the relationship between the change in k and the change in the two-group cross sections. Equation (8) of Appendix A makes this a relatively simple task, although the algebraic details are somewhat tedious. These algebraic details are shown in the second section of Appendix A. The final result is that for a given branch, the ratio of Δk's from the two codes depends upon ratios of combinations of relative changes and also upon ratios of base-case quantities. Some of these combinations are actually differences of differences in cross sections. This leaves open the interesting possibility that the ratio of MTCs computed by the two codes can be much different than the ratio of the change in any cross section, even though (as we showed above) each k depends in a simple and direct way upon the two-group cross sections. In
Appendix A we use our derived expression to show that in fact this is what is happening in our comparisons. In other words, we now understand the mathematical reason that the two codes can agree closely on changes in the two-group constants while disagreeing on changes in k. The origin of this apparent contradiction is not related to iterative convergence, to errors in the codes, or to errors in input.

In summary, once the work described in this section (and Appendix A) was completed, we were confident that we understood how to properly use HELIOS to generate the desired cross section tables, and we were confident that the results would be reasonable.

On final check that we made compared the HELIOS 34-group and 89-group libraries. (ORNL researchers had discovered significant discrepancies between MOX results with the two libraries.) In Figure 3 and Table XIII we show k-infinities from four HELIOS runs: an LEU assembly and a MOX assembly, using the two different group structures for each. We see that the differences are small for the LEU assembly, but uncomfortably large for the MOX. We therefore decided that all MOX cross section tables to be given to NCSU would be generated using the 89-group library, and all LEU tables using the 34-group library.

![Figure 3. MOX and LEU results from HELIOS with different numbers of energy groups.](image-url)
Table XIII. Comparison k-infinity given by HELIOS with different group libraries.

<table>
<thead>
<tr>
<th>Burnup</th>
<th>UO$_2$ 4.5 w/o with 128 IFBA</th>
<th>MOX 4.5 w/o with 24 WABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.13803 1.13734 0.060668</td>
<td>1.16063 1.15482 0.503109</td>
</tr>
<tr>
<td>500</td>
<td>1.11116 1.11060 0.050423</td>
<td>1.13392 1.12830 0.498094</td>
</tr>
<tr>
<td>1000</td>
<td>1.11524 1.11478 0.041264</td>
<td>1.12817 1.12272 0.485428</td>
</tr>
<tr>
<td>1500</td>
<td>1.12006 1.11964 0.037512</td>
<td>1.12359 1.11830 0.473039</td>
</tr>
<tr>
<td>2500</td>
<td>1.12813 1.12770 0.038131</td>
<td>1.11630 1.11134 0.446308</td>
</tr>
<tr>
<td>5000</td>
<td>1.13813 1.13740 0.064181</td>
<td>1.10266 1.09860 0.369561</td>
</tr>
<tr>
<td>7500</td>
<td>1.13840 1.13738 0.089680</td>
<td>1.09146 1.08825 0.294969</td>
</tr>
<tr>
<td>10000</td>
<td>1.13219 1.13098 0.106987</td>
<td>1.08175 1.07929 0.227928</td>
</tr>
<tr>
<td>12500</td>
<td>1.12171 1.12041 0.116029</td>
<td>1.07292 1.07116 0.164308</td>
</tr>
<tr>
<td>15000</td>
<td>1.10843 1.10713 0.117421</td>
<td>1.06456 1.06340 0.109084</td>
</tr>
<tr>
<td>17500</td>
<td>1.09332 1.09211 0.110795</td>
<td>1.05629 1.05568 0.057783</td>
</tr>
<tr>
<td>20000</td>
<td>1.07706 1.07599 0.099443</td>
<td>1.04779 1.04765 0.013363</td>
</tr>
<tr>
<td>22500</td>
<td>1.06013 1.05926 0.082133</td>
<td>1.03867 1.03913 -0.025021</td>
</tr>
<tr>
<td>25000</td>
<td>1.04283 1.04219 0.061409</td>
<td>1.02941 1.03002 -0.059222</td>
</tr>
<tr>
<td>27500</td>
<td>1.02536 1.02498 0.037074</td>
<td>1.04821 1.04877 -0.053396</td>
</tr>
<tr>
<td>30000</td>
<td>1.00787 1.00776 0.010915</td>
<td>1.02028 1.02151 -0.120410</td>
</tr>
<tr>
<td>35000</td>
<td>0.97362 0.97412 -0.051328</td>
<td>0.99266 0.99433 -0.053796</td>
</tr>
<tr>
<td>40000</td>
<td>0.93993 0.94105 -0.119016</td>
<td>0.96636 0.96833 -0.203443</td>
</tr>
<tr>
<td>45000</td>
<td>0.90728 0.90894 -0.182630</td>
<td>0.94129 0.94343 -0.226832</td>
</tr>
<tr>
<td>50000</td>
<td>0.87600 0.87815 -0.244833</td>
<td>0.91737 0.91962 -0.244666</td>
</tr>
<tr>
<td>55000</td>
<td>0.84644 0.84900 -0.301531</td>
<td>0.89453 0.89682 -0.255347</td>
</tr>
<tr>
<td>60000</td>
<td>0.81893 0.82177 -0.345595</td>
<td>0.87283 0.87512 -0.261678</td>
</tr>
</tbody>
</table>

III.B. HELIOS/ZENITH Results

After we were confident in our proper use of the code and in its ability to deliver reasonable cross sections, we applied it to the assemblies listed in Table I to generate a large collection of cross-section files. These files were passed along to NCSU for use in full-core modeling.

All non-proprietary details of our geometric models are documented in our HELIOS input files, which are available electronically. We present some sample files in Appendices B, C, and D. Each assembly was a standard 17x17 array of pins of standard Westinghouse diameter and pitch. We employed both WABA and IFBA burnable absorbers, as shown in Table I. We used boron enriched to 40% in the coolant, but natural enrichment (19.6%) in the burnable absorbers. Central instrumentation tubes were filled with water.

HELIOS does not generate cross section files directly; its output is post-processed by the ZENITH code, whose output files constitute the two-group cross section libraries. We used the following naming convention for MOX files:

$$ zmXwY89gZ.out $$

where:

- **X** = enrichment
 - **h** or **l** for high (4.5 w/o fissile) or low (4.0 w/o fissile),
- **Y** = number of WABA rods
 - **h** or **l** or **n** for 24 or 12 or none,
- **Z** = case (branch) number
 - **1**, **2**, ..., **6**

We use the following convention for uranium files:

$$ ZuXYiZ.out $$

where:

- **Z** = enrichment
 - **n** for none, **s** for standard, **h** for high, **l** for low,
- **u** = uranium,
- **X** = number of WABA rods
 - **n** or **s** for none or standard, **h** or **l** for high or low,
- **Y** = case (branch) number
 - **1**, **2**, ..., **6**
X = enrichment = h or 1 or 35 for high (4.5 w/o) or low (4.0 w/o) or lower (3.5 w/o)
Y = number of IFBA rods = 16, 48, 64, 80, 104, 128 or n (none),
Z = case (branch) number = 1, 2, ..., 6

We use the following convention for baffle/reflector files:

zmhwhrefZ.out,

where:

Z = case (branch) number = 1, 2, ..., 5

Appendix E shows a ZENITH input file for a fuel assembly, and Appendix F contains a ZENITH file that produces cross sections for the reflector + baffle region.

References

Appendix A: Relationship between k and homogenized 2-group constants.

We begin with the equations that are used in an assembly-level transport calculation. If power iteration is used for the fine-group eigenvalue calculation, then:

$$
\int_{\partial A} \vec{n} \cdot \vec{j}^{(n+1)}(\vec{r})d^2r + \int_{A} \left[\Sigma_{a,g}(\vec{r}) + \sum_{g' \neq g} \Sigma_{s,g \rightarrow g'}(\vec{r}) \right] \phi^{(n+1)}_g(\vec{r})d^3r
$$

$$
= \int_{A} \left[\sum_{g' \neq g} \Sigma_{s,g \rightarrow g'}(\vec{r}) \phi^{(n+1)}_{g'}(\vec{r}) + \frac{1}{k^{(n)}} \chi_g \sum_{g'} \nu \Sigma_{f,g, g'}(\vec{r}) \phi^{(n)}_g(\vec{r}) \right]d^3r , \quad g = 1, \ldots, G, \quad (1a)
$$

$$
k^{(n+1)} = k^{(n)} \frac{\int_{A} \left[\sum_{g} \nu \Sigma_{f,g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) \right]d^3r}{\int_{A} \left[\sum_{g} \nu \Sigma_{f,g}(\vec{r}) \phi^{(n)}_g(\vec{r}) \right]d^3r}.
$$

Here the integrals over A are over the assembly volume, and the integral over ∂A is over the assembly surface. The parenthetical superscript represents iteration index. Each surface is treated as a reflecting boundary; in many methods this reflection is enforced for each group at each iteration, making the surface term in Eq. (1a) zero. (This will often depend on how tightly the code converges its within-group iteration.) Equations (1) contain integrals and a continuous spatial variable r, but this is simply a notational convenience. In the actual calculation spatial quantities are discretized; nevertheless, they satisfy a form of Eqs. (1) in which spatial integrals are represented as sums of products of spatial-cell volumes times cell-averaged quantities.

If Eq. (1a) is summed over all "fast" groups the result is:

$$
\int_{A} \left[\sum_{\text{fast } g} \Sigma_{a,g}(\vec{r}) + \sum_{g' \neq g} \Sigma_{s,g \rightarrow g'}(\vec{r}) \right] \phi^{(n+1)}_g(\vec{r})d^3r
$$

$$
= \int_{A} \left[\sum_{\text{fast } g} \Sigma_{s,g \rightarrow g'}(\vec{r}) \phi^{(n+1)}_{g'}(\vec{r}) + \frac{1}{k^{(n)}} \sum_{\text{fast } g} \chi_g \sum_{g'} \nu \Sigma_{f,g, g'}(\vec{r}) \phi^{(n)}_g(\vec{r}) \right]d^3r . \quad (2a)
$$

Many of the scattering terms now cancel from the right and left sides of the equation; the only ones remaining are those that involve scattering between "fast" and "thermal" groups:

$$
\int_{A} \left[\sum_{\text{fast } g} \Sigma_{a,g}(\vec{r}) + \sum_{\text{thermal } g'} \Sigma_{s,g \rightarrow g'}(\vec{r}) \right] \phi^{(n+1)}_g(\vec{r})d^3r
$$

$$
= \int_{A} \left[\sum_{\text{fast } g} \Sigma_{s,g \rightarrow g'}(\vec{r}) \phi^{(n+1)}_{g'}(\vec{r}) + \frac{1}{k^{(n)}} \sum_{\text{fast } g} \chi_g \sum_{g'} \nu \Sigma_{f,g, g'}(\vec{r}) \phi^{(n)}_g(\vec{r}) \right]d^3r . \quad (2b)
$$
Now we shall assume that χ_g is zero for thermal groups, and thus sums to 1 over the fast groups. Then the "fast" equation becomes:

$$
\int_A \left\{ \sum_{\text{fast } g} \left[\Sigma_{a,g}(\vec{r}) + \sum_{\text{thermal } g'} \Sigma_{s,g'\rightarrow g}(\vec{r}) \right] \phi^{(n+1)}_g(\vec{r}) d^3r \right\} = \int_A \left\{ \sum_{\text{fast } g} \sum_{\text{thermal } g'} \Sigma_{s,g'\rightarrow g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) + \frac{1}{k(n)} \sum_{g'} \nu \Sigma_{f,g'}(\vec{r}) \phi^{(n)}_g(\vec{r}) \right\} d^3r .
$$

(3a)

Under the same assumptions, summing Eq. (1a) over all thermal groups yields:

$$
\int_A \left\{ \sum_{\text{thermal } g} \Sigma_{a,g}(\vec{r}) + \sum_{\text{fast } g'} \Sigma_{s,g'\rightarrow g}(\vec{r}) \right\} \phi^{(n+1)}_g(\vec{r}) d^3r = \int_A \sum_{\text{thermal } g} \sum_{\text{fast } g'} \Sigma_{s,g'\rightarrow g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) d^3r .
$$

(3b)

The second term on the right-hand side of Eq. (3a) is the denominator of the right-hand side of Eq. (1b). Substitute this into Eq. (1b):

$$
k^{(n+1)} = \frac{\int_A \left\{ \sum_{g} \nu \Sigma_{f,g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) \right\} d^3r}{\int_A \left\{ \sum_{g} \Sigma_{a,g}(\vec{r}) + \sum_{g'} \Sigma_{s,g'\rightarrow g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) - \sum_{g'} \Sigma_{s,g'\rightarrow g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) \right\} d^3r} .
$$

(4)

It is important to note that this equation is satisfied at the end of each iteration, regardless of whether or not the iteration has converged.

Now we recall the standard definitions of assembly-averaged two-group scalar fluxes and cross sections:

$$
\Phi_1 = \frac{\int_A \sum_{g} \phi^{(n+1)}_g(\vec{r}) d^3r}{A} = \frac{1}{A} \int_A \sum_{g} \phi^{(n+1)}_g(\vec{r}) d^3r ,
$$

(5a)

where A is the assembly volume,

$$
\Phi_2 = \frac{1}{A} \int_A \sum_{g} \phi^{(n+1)}_g(\vec{r}) d^3r ,
$$

(5b)

$$
\Sigma_{a1} = \frac{\int_A \sum_{g} \Sigma_{a,g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) d^3r}{\int_A \sum_{g} \phi^{(n+1)}_g(\vec{r}) d^3r} = \frac{1}{\Phi_1 A} \int_A \sum_{g} \Sigma_{a,g}(\vec{r}) \phi^{(n+1)}_g(\vec{r}) d^3r ,
$$

(5c)

14
with very similar expressions for the average $\nu \Sigma_{f1}$ and $\nu \Sigma_{f2}$, and finally

\[
\bar{\Sigma}_{f1-2} = \frac{\int \sum \sum \Sigma_{s,g \rightarrow g'} \phi_{g'}^{(n+1)}(\tilde{r}) d^3r}{\Phi_2 A \int \sum \phi_{g'}^{(n+1)}(\tilde{r}) d^3r} = \frac{1}{\Phi_2 A} \int \sum \sum \Sigma_{s,g \rightarrow g'} \phi_{g'}^{(n+1)}(\tilde{r}) d^3r.
\]

Now if we use all of this in Eq. (4) we find:

\[
\phi_{g}^{(n+1)} = \frac{\int \left\{ \sum \nu \Sigma_{f,g} \phi_{g}^{(n+1)}(\tilde{r}) \right\} d^3r}{\Phi_1 \int \sum \Sigma_{s,g \rightarrow g'} \phi_{g'}^{(n+1)}(\tilde{r}) d^3r - \sum \Sigma_{s,g \rightarrow g'} \phi_{g'}^{(n+1)}(\tilde{r}) d^3r}
\]

In light of the definitions of assembly-averaged fluxes and cross sections, note now that Eq. (3b) becomes:

\[
A(\Sigma_{a2} + \Sigma_{a1}) \Phi_2 = A \Sigma_{a1} \Phi_1 \Rightarrow \Sigma_{a2} \Phi_2 = \left(\Sigma_{a1} - \frac{\Phi_2}{\Phi_1} \right) \Phi_1 \Rightarrow \Phi_2 = \frac{\Sigma_{net}}{\Sigma_{a2} \Phi_1}.
\]

where we have defined a "net" downscattering cross section:

\[
\Sigma_{net} = \left(\Sigma_{a1} - \frac{\Phi_2}{\Phi_1} \right).
\]
Here we have defined the fast-group removal cross section, \(\Sigma_{r1} \), to be the sum of the absorption plus net downscattering cross sections. Equation (8) is our first main result:

\[
\text{Regardless of how tightly the } k\text{-iteration is converged, Eq. (8) holds as a relationship between } k \text{ and the two-group constants.}
\]

This is true as long as power iteration is employed in the \(k \)-iteration, with Eq. (1b) used as the update equation for \(k \).

The next task was to consider a branch case, in which there is a base \(k \)-calculation and then another \(k \)-calculation for a different ("branch") state of the assembly. Here we try to determine the relationship between the change in \(k \) and the change in the two-group cross sections. Equation (8) makes this a relatively simple task, although the algebraic details are somewhat tedious. The change in \(k \) on a branch is:

\[
k_b - k = \frac{\nu \Sigma_{f1} \Phi_1 + \nu \Sigma_{f2} \frac{\Sigma_{1\to2}}{\Sigma_{a2}} \Phi_1}{\Sigma_{r1} + \Sigma_{1\to2}} - \frac{\nu \Sigma_{f1}}{\Sigma_{r1}} - \frac{\nu \Sigma_{f2}}{\Sigma_{r1}} \frac{\Sigma_{1\to2}}{\Sigma_{a2}}.
\]

(9)

where the subscript \(b \) represents the "branch" state. Now let us define the change in each group cross section:

\[
\delta f_1 = [\nu \Sigma_{f1}]_b - \nu \Sigma_{f1}, \quad \delta f_2 = [\nu \Sigma_{f2}]_b - \nu \Sigma_{f2}.
\]

(10a)

\[
\delta a_1 = [\Sigma_{a1}]_b - \Sigma_{a1}, \quad \delta a_2 = [\Sigma_{a2}]_b - \Sigma_{a2}.
\]

(10b)

\[
\delta_{12} = [\Sigma_{1\to2}]_b - \Sigma_{1\to2}, \quad \delta r_1 = [\Sigma_{r1}]_b - \Sigma_{r1}.
\]

(10c)

Similarly, we define relative changes in the cross sections:

\[
\epsilon f_1 = \frac{\delta f_1}{\nu \Sigma f_1}, \quad \epsilon f_2 = \frac{\delta f_2}{\nu \Sigma f_2}, \quad \epsilon_{12} = \frac{\delta_{12}}{\Sigma_{1\to2}}.
\]

(11a)

\[
\epsilon x = \delta x/\Sigma x, \quad x = a1, a2, \text{ or } r1.
\]

(11b)

Now we can manipulate Eq. (9) as follows.

\[
k_b - k = \frac{\nu \Sigma_{f1} (1 + \epsilon f_1)}{\Sigma_{r1}(1 + \epsilon_r)} - \frac{\nu \Sigma_{f1}}{\Sigma_{r1}} - \frac{\nu \Sigma_{f2} (1 + \epsilon f_2)}{\Sigma_{a2}(1 + \epsilon a_2)} + \frac{\Sigma_{1\to2}}{\Sigma_{a2}} \left(\frac{1 + \epsilon_{12}}{1 + \epsilon a_2} - 1 \right)
\]

(12)

where

\[
\frac{\nu \Sigma_{f1}}{\Sigma_{r1}} \left(\frac{\epsilon f_1 - \epsilon r_1}{1 + \epsilon r_1} \right) + \frac{\Sigma_{1\to2}}{\Sigma_{a2}} \left(\frac{\epsilon_{12} + \epsilon f_2 + \epsilon f_2 \epsilon_{12} - \epsilon r_1 - \epsilon a_2 - \epsilon r_1 \epsilon a_2}{(1 + \epsilon r_1)(1 + \epsilon a_2)} \right)
\]
Let us define α, a number between 0 and 1, as follows:

$$\alpha = \frac{\overline{\Sigma f_1}}{\Sigma r_1} \quad \text{and} \quad (1-\alpha) = \frac{\overline{\Sigma f_2}}{\Sigma a_2}.$$ \hfill (13)

Then Eq. (12) becomes

$$k_b - k = \alpha \left(\frac{E_{f_1} - E_{r_1}}{1 + E_{r_1}} \right) + (1 - \alpha) \left(\frac{E_{f_2} + E_{f_2} E_{12} - E_{r_1} - E_{f_2} E_{a_2}}{(1 + E_{r_1})(1 + E_{a_2})} \right),$$

or

$$k_b - k = \frac{\alpha (E_{f_1} - E_{r_1})(1 + E_{a_2}) + (1 - \alpha)(E_{f_2} + E_{f_2} E_{12} - E_{r_1} - E_{f_2} E_{a_2})}{(1 + E_{r_1})(1 + E_{a_2})}.$$ \hfill (15)

It follows that the ratio of the HELIOS branch Δk to the CASMO branch Δk is:

$$\left(\frac{k_b - k}{C} \right) = \left(\frac{k_b - k}{H} \right) \frac{(1 + E_{r_1}) \alpha (E_{f_1} - E_{r_1})(1 + E_{a_2}) + (1 - \alpha)(E_{f_2} + E_{f_2} E_{12} - E_{r_1} - E_{f_2} E_{a_2})}{(1 + E_{r_1})(1 + E_{a_2})}.$$ \hfill (16)

Intuitively, one might have expected that the ratio $(k_b - k)_H/(k_b - k)_C$ on the left side of the equation would depend fundamentally upon ratios of changes in cross sections, such as $(\delta_{g_2})_H/((\delta_{g_2})_C$, or perhaps upon ratios of relative changes in cross sections, such as $(E_{g_2})_H/(E_{g_2})_C$. However, an examination of the right side of equation (16) suggests that this is not the case — instead, the Δk ratio depends upon ratios of combinations of relative changes and also upon ratios of base-case quantities. Some of these combinations are actually differences of relative changes in cross sections. This leaves open the interesting possibility that the ratio of MTCs computed by the two codes can be much different than the ratio of the change (between branch and base cases) in any cross section, even though (as we showed above) each k depends in a simple and direct way upon the two-group cross sections. This phenomenon is observed in Table II above. For example, at zero burnup this table shows that the ratio $(k_b - k)_H/(k_b - k)_C$ is 1.95, even though all of the ratios of cross section changes, $(\delta g_2)_H/(\delta g_2)_C$, are between 0.91 and 1.0.

To verify that the MTC ratios reported in Table XII are in fact consistent with the two-group cross sections that the codes are outputting, we have selected a representative LEU assembly and a representative burnup step (40 GWD/MTU) and carefully examined the two-group cross sections from the two codes. For the chosen case we find the following ratios of changes in two-group cross sections:

$$\left(\delta f_1 \right)_H/\left(\delta f_1 \right)_C = 0.9642$$ \hfill (17a)

$$\left(\delta f_2 \right)_H/\left(\delta f_2 \right)_C = 0.9167$$ \hfill (17b)

$$\left(\delta a_1 \right)_H/\left(\delta a_1 \right)_C = 0.9365$$ \hfill (17c)

$$\left(\delta a_2 \right)_H/\left(\delta a_2 \right)_C = 0.9797$$ \hfill (17d)
\[(\delta_{r1})_H / (\delta_{r1})_C = 0.9924 \]
\[(\delta_{r2})_H / (\delta_{r2})_C = 0.9991 \]

Note that the two codes agree on most of the cross section changes to within 4\%, and on all of them to within 9\%.

We now calculate the terms that appear in Eq. (16):

\[k_H / k_C = 1.0006 \]
\[a_H (\varepsilon_{f1} - \varepsilon_{r1}) (1+\varepsilon_{a2})_H = -0.00786 \]
\[a_C (\varepsilon_{f1} - \varepsilon_{r1}) (1+\varepsilon_{a2})_C = -0.00770 \]

\[(1-\alpha)_H (\varepsilon_{12} + \varepsilon_{f2} + \varepsilon_{f2}^2 - \varepsilon_{r1} - \varepsilon_{r2})_H = 0.01033 \]

\[(1-\alpha)_C (\varepsilon_{12} + \varepsilon_{f2} + \varepsilon_{f2}^2 - \varepsilon_{r1} - \varepsilon_{r2})_C = 0.00923 \]

\[\frac{\alpha_H (\varepsilon_{f1} - \varepsilon_{r1}) (1+\varepsilon_{a2})_H + (1-\alpha)_H (\varepsilon_{12} + \varepsilon_{f2} + \varepsilon_{f2}^2 - \varepsilon_{r1} - \varepsilon_{r2})_H}{\alpha_C (\varepsilon_{f1} - \varepsilon_{r1}) (1+\varepsilon_{a2})_C + (1-\alpha)_C (\varepsilon_{12} + \varepsilon_{f2} + \varepsilon_{f2}^2 - \varepsilon_{r1} - \varepsilon_{r2})_C} = \frac{0.002462}{0.001530} = 1.61. \]

\[\frac{(1+\varepsilon_{r1})_C (1+\varepsilon_{a2})_C}{(1+\varepsilon_{r1})_H (1+\varepsilon_{a2})_H} = 1.0004 \]

If we insert these numbers into Eq. (16) we obtain:

\[\frac{(k_b-k)_H}{(k_b-k)_C} = (1.0006)(1.0004)(1.61) = 1.61. \]

There are several things worth noting. First, the two codes agree to within a few percent on the change in each cross section as a function of the change in temperature. Second, even the differences of the relative changes in cross section are in reasonable agreement – Eqs. (18b) and (18c) agree within 2\% and Eqs. (18d) and (18e) agree within 11\%. Third, the values of (18b) and (18c) are negative whereas those of (18d) and (18e) are positive; thus, when the terms are combined as in (18f), we basically have a difference of differences of relative changes, and this is where the codes do not agree. This results in MTCs that differ by more than 60\%.

18
Appendix B. HELIOS Input File: MOX, high fissile, 24 WABA, 89 groups
(hmhwh89h.inp)

+THEL
Vmhwh89h = CASE('hy8918-961a.dat'/ 'Vmhwh89h.hrf'/ 'MOX 4.5 24 waba')

! Data including thermal expansion !
! fuel !
$rpe = PAR("0.3950905")
$rair = PAR("0.4010399")
$rcan = PAR("0.4582740")
$rifba = PROPIETARY 1
! the radius was calculated preserving the ifba area!
$rcool = PAR("0.5624394")
$rbbox = PAR("0.6032221")
$rcrl = PAR("0.4331")
$rcrg = PAR("0.4369")
$rcro = PAR("0.4848823")
! thermal expansion included for waba rod!
$rcwo = PROPIETARY 2
$rcbox = PROPIETARY 3
$rcwair = PROPIETARY 4
$rcwaba = PROPIETARY 5
$rcwabair = PROPIETARY 6
$rgap = PROPIETARY 7
$pitch = PAR("1.2598")
$p2 = PAR("$pitch/2")
$psq2 = PAR("$rcan/2**0.5")
$psqh2 = PAR("$rbbox/2**0.5")
$pgap2 = PAR("$rgap/2")
$coup = PAR(3)

! Materials !
'H2O-1' = MAT(10.705/1001,11.19;8016,88.81;5010,0.04;5011,0.06)
'H2O-2' = MAT(10.705/1001,11.19;8016,88.81;5010,0.0;5011,0.0)
'H2O-3' = MAT(10.705/1001,11.19;8016,88.81;5010,0.08;5011,0.12)
'H2O-4' = MAT(10.743/1001,11.19;8016,88.81;5010,0.04;5011,0.06)
'H2O-5' = MAT(10.662/1001,11.19;8016,88.81;5010,0.04;5011,0.06)

Zy2 = MAT(10.6504/40002,100.0)

'PU-1' = MAT(10.41/92235,1.763E-1;94238,0.0; 94239,3.94991;94240,0.248936;94241,1.68366E-02;94242,4.23120E-03;92234,1.41040E-03;92238,83.7524;8016,11.85)
'PU-2' = MAT(10.41/92235,1.763E-1;94238,0.0; 94239,3.94991;94240,0.248936;94241,1.68366E-02;94242,4.23120E-03;92234,1.41040E-03;92238,83.7524;8016,11.85)
'boron1' = MAT(3.563548/8016,42.5262;6000,2.1004;13027,47.8109;5010,1.3938;5011,6.1687)
'boron2' = MAT(3.563548/8016,42.5262;6000,2.1004;13027,47.8109;
$\bar{w}gap2 = PAR(("$-\bar{w}gap2","-\bar{w}2") ("-$\bar{w}gap2",0) (\bar{w}gap2,0) (\bar{w}gap2,"-\bar{w}2") \\
/4,cool//)

$\bar{w}cel14 = PAR((0,"-\bar{w}2") (0,0) (\bar{w}2,0) (\bar{w}2,"-\bar{w}2") \\
(\bar{sr}box,0) (0,"-\bar{sr}box") (\bar{ps}qh2,"-\bar{ps}qh2") \\
/4,cool/Whole(0,0) 2/4,1,6,7,cool)

$\bar{w}gap4 = PAR(("-\bar{w}gap2","-\bar{w}gap2") ("-$\bar{w}gap2$,\bar{w}gap2) (\bar{w}gap2,\bar{w}gap2) \\
(\bar{w}gap2,"-\bar{w}gap2") /4,cool//)

'1.0' = STR(\cell) \\
'2.0' = STR(\icell) \\
'3.0' = STR(\wcell) \\
'4.0' = STR(\bcell) \\
'5.0' = STR(\cel12) \\
'6.0' = STR(\icel12) \\
'7.0' = STR(\wcel12) \\
'8.0' = STR(\bcel12) \\
'9.0' = STR(\wcel14) \\
'10.0' = STR($\bar{w}gap) \\
'11.0' = STR($\bar{w}gap2) \\
'12.0' = STR($\bar{w}gap4)

White = ALB(1/1/1)

$corder = PAR((1,3,4)$coup(2,2,1) / \\
(2,3,4)$coup(3,2,1)/(3,3,4)$coup(4,2,1)/ \\
(4,3,4)$coup(5,2,1)/(5,3,4)$coup(6,2,1)/ \\
(6,3,4)$coup(7,2,1)/(7,3,4)$coup(8,2,1)/ \\
(8,3,4)$coup(9,2,1)/(9,3,4)$coup(10,2,1))

$corder1 = PAR((1,4,1)$coup(2,2,1) / \\
(2,3,4)$coup(3,2,1)/(3,3,4)$coup(4,2,1)/ \\
(4,3,4)$coup(5,2,1)/(5,3,4)$coup(6,2,1)/ \\
(6,3,4)$coup(7,2,1)/(7,3,4)$coup(8,2,1)/ \\
(8,3,4)$coup(9,2,1)/(9,3,4)$coup(10,2,1))

$corder2 = PAR((1,4,1)$coup(2,3,2) / \\
(2,4,1)$coup(3,3,2)/(3,4,1)$coup(4,3,2)/ \\
(4,4,1)$coup(5,3,2)/(5,4,1)$coup(6,3,2)/ \\
(6,4,1)$coup(7,3,2)/(7,4,1)$coup(8,3,2)/ \\
(8,4,1)$coup(9,3,2)/(9,4,1)$coup(10,3,2))

Row1=CNX('9.0', '5.0', '5.0', '8.0', '5.0', '5.0', '8.0', '5.0', '5.0', '11.0'/$corder) \\
Row2=CNX('5.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '10.0'/$corder1) \\
Row3=CNX('5.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '10.0'/$corder1) \\
Row4=CNX('8.0', '1.0', '1.0', '4.0', '1.0', '1.0', '4.0', '1.0', '1.0', '1.0', '10.0'/$corder1) \\
Row5=CNX('5.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '10.0'/$corder1)
Row6=CNX('5.0','1.0','1.0','1.0','1.0','4.0','1.0','1.0','1.0',10.0)/$corder1)
Row7=CNX('8.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0',10.0)/$corder1)
Row8=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0',10.0)/$corder1)
Row9=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0',10.0)/$corder1)
Row10=CNX('11.0','10.0','10.0','10.0','10.0','10.0','10.0','10.0','10.0',12.0)/$corder2)
System =CNX(Row1,Row2,Row3,Row4,Row5,Row6,Row7,Row8,Row9,Row10/
(1-2,4,1)$coup(2-2,3,2)/
(2-2,4,1)$coup(3-2,3,2)/(3-2,4,1)$coup(4-2,3,2)/
(4-2,4,1)$coup(5-2,3,2)/(5-2,4,1)$coup(6-2,3,2)/
(5-2,4,1)$coup(7-2,3,2)/(7-2,4,1)$coup(8-2,3,2)/
(7-2,4,1)$coup(9-2,3,2)/(9-2,4,1)$coup(10-2,4,3)
)
System = BDRY((1-1,0,3)(10-1,2)$coup(0)/(1-1,2)(1-10,3)$coup(1-1,2)(10-1,2))

! Overlays !
AllMat = OVLM('H2O-1' /-**-**/ Zy2 / **--clad /
'air' /**--gap/
'FU-1' /**-1.0--fuel /
'FU-2' /**-5.0--fuel /
'boron1' /**-4.0--crod /
'boron2' /**-8.0--crod)

!Base case!
Alll = OVLD(1.0 /-**-**)
AllT = OVLT(582.95 /-**-**/ 963 /-**-fuel / 628.556 /-**-clad)
mos = OVSM(AllMat)
dos = OVSD(Alll)
tos = OVST(tos/LomT)
removal of waba rods at 25 GWD/MT!
CROMat = OVLM('H2O-1' /-**-4.0--crod,**-8.0--crod)
moscr = OVSM(mos/CROMat)

!Low fuel temperature!
LoFT = OVLT(582.95 /-**-fuel / 582.95 /-**-clad)
tLfos = OVST(tos/LoFT)

!Low and High moderator temperature!
mlMat = OVLM('H2O-4' /-**-water, **-0-cool)
mhMat = OVLM('H2O-5' /-**-water, **-0-cool)
mlom = OVSM(mos/mlMat)
mhim = OVSM(mos/mhMat)
LomT = OVLT(564.59 /-**-water, **-0-cool / 612.3992 /-**-clad)
HimT = OVLT(599.32 /-**-water, **-0-cool / 642.9616 /-**-clad)
tLmT = OVST(tos/LomT)
tHmT = OVST(tos/HimT)

!Low and High boron concentration(0 and 2000ppm)!
LobMat = OVLM('H2O-2' /*-**-water, *-*0-cool)
HibMat = OVLM('H2O-3' /*-**-water, *-*0-cool)
mLob = OVSM(mos/LobMat)
mHib = OVSM(mos/HibMat)

!Burnup!

st = STAT(mos, dos, tos, 38.02)
stccr = STAT(moscr, dos, tos, 38.02)
stloF = STAT(mos, dos, tLfos, 38.02)
sthM = STAT(mHim, dos, tHmT, 38.02)
stlOM = STAT(mLom, dos, tLmT, 38.02)
sthIB = STAT(mHib, dos, tos, 38.02)
stloB = STAT(mLob, dos, tos, 38.02)
Path = PATH(/P,(st),1500/3,2500,25000/9,60000/7)
LFPath = TREE(Path/P, (stloF)/0,500,1500,5000, 20000/3,60000/4)
HMPath = TREE(Path/P, (sthM)/0,500,1500,5000, 20000/3,60000/4)
LMPath = TREE(Path/P, (stlOM)/0,500,1500,5000, 20000/3,60000/4)
HBPath = TREE(Path/P, (sthIB)/0,500,1500,5000, 20000/3,60000/4)
LBPath = TREE(Path/P, (stloB)/0,500,1500,5000, 20000/3,60000/4)

! Output!

G1 = GROUP(N/0)
G2 = GROUP(N/0.625,0)
Apins = AREA(*-**-<water>, *-*<fuel>)
Aall = AREA(*-**)
Asol = AREA(*-*<water, *-*0-cool>)
Abur = AREA(*-*<trod>)
micAsol = MICRO(G2,Asol//tr,ab,fi,nf,kf)
micAbur = MICRO(G2,Abur//tr,ab,fi,nf,kf)
macAsol = MACRO(G2,Asol/tr,ab,fi,nf,kf,pO)
macAbur = MACRO(G2,Abur/tr,ab,fi,nf,kf,pO)
micAll = MICRO(G1,Aall//tr,ab,fi)
micAll2 = MICRO(G2,Aall//tr,ab,fi,nf,kf)
macAll2 = MACRO(G2,Aall/tr,ab,fi,nf,kf,pO)
MacPin = MACRO(G1, Apins/tr,fi,kf)

! corners!
NE = FACE((1-10,2,4))
SE = FACE((10-10,4,2))
SW = FACE((10-1,1,3))
NW = FACE((1-1,1,3))
! interior face!
Interior = FACE((1-1,2,1) (2-1,3,2) (3-1,3,2) (4-1,3,2)
(5-1,3,2) (6-1,3,2) (7-1,3,2) (8-1,3,2)
(9-1,3,2) (10-1,3,2))
! exterior face!
Exterior = FACE((10-1,2,1) (10-2,2,1) (10-3,2,1) (10-4,2,1)
(10-5,2,1) (10-6,2,1) (10-7,2,1) (10-8,2,1)
CurCorner = CUR(G2,NW,SW,SE,NE)
CurSide = CUR(G2,Interior,Exterior)

Vmhwh89h = RUN()
Appendix C. HELIOS Input File: MOX, LEU, 3.5%, 104 IFBA (hu35104i.inp)

+THEL
Vu35104i = CASE('library.bin'/ 'Vu35104i.hrf'/ 'UO-2 4.5 104 ifba')

! Data including thermal expansion !
fuel!
$rpe = PAR("0.3950905")
$rair = PAR("0.4010399")
$rcan = PAR("0.4582740")
$rifba = PAR("0.3990615")
$cool = PAR("0.5624394")
$box = PAR("0.6032221")
$cri = PAR("0.4331")
$cr = PAR("0.4369")
$cro = PAR("0.4839")
$wco = PAR("0.2858")
$wbox = PAR("0.3391")
$war = PAR("0.3531")
$waba = PAR("0.4179")
$gap = PAR("0.0435")
$pitch = PAR("1.2598")
$p2 = PAR("$pitch/2")
$psq2 = PAR("$rcan/2**0.5")
$psqh2 = PAR("$wbox/2**0.5")
$gap2 = PAR("$rgap/2")
$coup = PAR(3)

Materials
'H2O-1' = MAT(NB/.705/1001,11.19;8016,88.81;5010,0.04;5011,0.06)
'H2O-2' = MAT(NB/.705/1001,11.19;8016,88.81;5010,0.0;5011,0.0)
'H2O-3' = MAT(NB/.705/1001,11.19;8016,88.81;5010,0.08;5011,0.12)
'H2O-4' = MAT(NB/.743/1001,11.19;8016,88.81;5010,0.04;5011,0.06)
'H2O-5' = MAT(NB/.662/1001,11.19;8016,88.81;5010,0.04;5011,0.06)

'tifba' = MAT(1.69/40002,80.85;5010,3.53;5011,15.62)
'boron' = MAT(0.71/5010,19.6;5011,80.4)
'air' = MAT(NB/.001/8016,100)

! Geometry !
Pin = CCS($rpe,$rair,$rcan//fuel,gap,clad)
Whole = CCS($rcool,$rbox//water,clad)
Ipin = CCS($rpe,$rifba,$rair,$rcan//fuel,ifba,gap,clad)
Bpin = CCS($rcri,$rcrg,$rcro,$rcool,$rbox//water,clad)

$cell = PAR(('''-$p2'','''-$p2''') ('''-$p2''','''-$p2'') ('''-$p2'','''-$p2'') !nodes 1-4! (0,'''-$p2''') ('''-$p2'',0) (0,'''-$p2'') ($p2,0) (0,'''-$p2'') ($p2,0) (0,'''-$p2'') ($p2,0) !/4,cool//)

$icell = PAR(('''-$p2'','''-$p2''') ('''-$p2''','''-$p2'') ('''-$p2''','''-$p2'') !nodes 1-4! (0,'''-$p2''') ('''-$p2'',0) (0,'''-$p2'') ($p2,0) (0,'''-$p2'') ($p2,0) (0,'''-$p2'') ($p2,0) !/4,cool//)

$wcell = PAR(('''-$p2'', ''-$p2'') ('''-$p2'',''-$p2'') ('''-$p2'',''-$p2'') ('''-$p2'',''-$p2'') !nodes 1-4! (0,'''-$p2'') ('''-$p2'',0) (0,'''-$p2'') ($p2,0) (0,'''-$p2'') ($p2,0) (0,'''-$p2'') ($p2,0) !/4,cool//)

$bcell = PAR(('''-$p2'', ''-$p2'') ('''-$p2'',0) (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') !/4,cool//)

$wgap = PAR(('''-$pgap'', ''-$pgap'') ('''-$pgap'',0) (0,'''-$pgap'') (0,'''-$pgap'') (0,'''-$pgap'') (0,'''-$pgap'') !/4,cool//)

$cell12 = PAR(('''-$p2'', ''-$p2'') ('''-$p2'',0) (0,'''-$p2'') ($p2,0) ($p2,0) ($p2,0) ($p2,0) ($p2,0) ($p2,0) !/4,cool//)

$icell12 = PAR(('''-$p2'', ''-$p2'') ('''-$p2'',0) (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') !/4,cool//)

$wcell12 = PAR(('''-$p2'', ''-$p2'') ('''-$p2'',0) (0,'''-$p2'') ($p2,0) ($p2,0) ($p2,0) ($p2,0) ($p2,0) ($p2,0) !/4,cool//)

$bcell12 = PAR(('''-$p2'', ''-$p2'') ('''-$p2'',0) (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') (0,'''-$p2'') !/4,cool//)

$wgap2 = PAR(('''-$pgap2'', ''-$pgap2'') ('''-$pgap2'',0) ($pgap2,0) ($pgap2,0) ($pgap2,0) ($pgap2,0) !/4,cool//)
$wcel14 = \text{PAR((0,\"\$p2\") (0,0) ($p2,0) ($p2,\"\$p2\")}
($rbox,0) (0,\"\$rbox\") ($psqh2,\"\$psqh2\")
/4,\text{cool/Whole(0,0)} 2/4,1,6,7,\text{cool})

$wgap4 = \text{PAR((-\$pgap,' ','\"\'-\$pgap2") (-\$pgap2,'\",\"\'\$pgap2) ($pgap2,\"\'-\$pgap2") /4,\text{cool})} /4,\text{cool})

'1.0' = STR($cell)
'2.0' = STR($icell)
'3.0' = STR($wcell)
'4.0' = STR($bcell)
'5.0' = STR($cel12)
'6.0' = STR($icel12)
'7.0' = STR($wcel)
'8.0' = STR($bcel12)
'9.0' = STR($wcel14)
'10.0' = STR($wgap)
'11.0' = STR($wgap2)
'12.0' = STR($wgap4)

White = \text{ALB(1/1/1)}

$\text{corder = PAR((1,3,4)\$coup(2,2,1)/}$
\((2,3,4)\$coup(3,2,1)/(3,3,4)\$coup(4,2,1)/$
\((4,3,4)\$coup(5,2,1)/(5,3,4)\$coup(6,2,1)/$
\((6,3,4)\$coup(7,2,1)/(7,3,4)\$coup(8,2,1)/$
\((8,3,4)\$coup(9,2,1)/(9,3,4)\$coup(10,2,1))$

$\text{corderl = PAR((1,4,1)\$coup(2,2,1)/}$
\((2,3,4)\$coup(3,2,1)/(3,3,4)\$coup(4,2,1)/$
\((4,3,4)\$coup(5,2,1)/(5,3,4)\$coup(6,2,1)/$
\((6,3,4)\$coup(7,2,1)/(7,3,4)\$coup(8,2,1)/$
\((8,3,4)\$coup(9,2,1)/(9,3,4)\$coup(10,2,1))$

$\text{corder2 = PAR((1,4,1)\$coup(2,3,2)/}$
\((2,4,1)\$coup(3,3,2)/(3,4,1)\$coup(4,3,2)/$
\((4,4,1)\$coup(5,3,2)/(5,4,1)\$coup(6,3,2)/$
\((6,4,1)\$coup(7,3,2)/(7,4,1)\$coup(8,3,2)/$
\((8,4,1)\$coup(9,3,2)/(9,4,1)\$coup(10,3,2))$

ROW1=CNX(\'9.0', \'6.0', \'6.0', \'7.0', \'6.0', \'6.0', \'7.0', \'6.0', \'5.0', \'11.0'/corder)

ROW2=CNX(\'6.0', \'1.0', \'1.0', \'2.0', \'1.0', \'1.0', \'2.0', \'1.0', \'1.0', \'10.0'/corder1)

ROW3=CNX(\'6.0', \'1.0', \'1.0', \'2.0', \'1.0', \'1.0', \'2.0', \'1.0', \'1.0', \'10.0'/corder1)

ROW4=CNX(\'7.0', \'2.0', \'2.0', \'3.0', \'2.0', \'2.0', \'3.0', \'2.0', \'1.0', \'10.0'/corder1)

ROW5=CNX(\'6.0', \'1.0', \'1.0', \'2.0', \'1.0', \'2.0', \'2.0', \'1.0', \'1.0', \'10.0'/corder1)

ROW6=CNX(\'6.0', \'1.0', \'1.0', \'2.0', \'2.0', \'3.0', \'2.0', \'1.0', \'1.0', \'10.0'/corder1)
Row7=CNX('7.0', '2.0', '2.0', '3.0', '2.0', '2.0', '1.0', '1.0', '1.0', '10.0')
Row8=CNX('6.0', '1.0', '1.0', '2.0', '1.0', '1.0', '1.0', '1.0', '1.0', '10.0')
Row9=CNX('5.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '1.0', '2.0', '10.0')
Row10=CNX('11.0', '10.0', '10.0', '10.0', '10.0', '10.0', '10.0', '10.0', '10.0', '12.0')

System = CNX(Row1, Row2, Row3, Row4, Row5, Row6, Row7, Row8, Row9, Row10/
(1-2, 4, 1)$coup(2-2, 3, 2)/
(4-2, 4, 1)$coup(5-2, 3, 2)/
(6-2, 4, 1)$coup(7-2, 3, 2)/
(8-2, 4, 1)$coup(9-2, 3, 2)/
(9-2, 4, 1)$coup(10-2, 4, 3))

System = BDry((1-10, 3) (10-1, 2)$coup(0)/(1-1, 2)(1-10, 3)$coup(1-1, 2)(10-1, 2))

! Overlays!
AllMat = OVLM('H2O-1' /*-***/ Zy2 /*-***/ 'air' /*-***/-gap/
'Uifba' /*-***/-ifba/
'UO2-1' /*-***/-fuel /
'UO2-2' /*-***/-fuel /
'UO2-3' /*-***/-fuel /
'UO2-4' /*-***/-fuel)

! Base case!
All = OVLD(1.0 /*-***/)
AllT = OVLT(582.95 /*-***/ 963 /*-***/-fuel / 628.556 /*-***/-clad)
mos = OVSM(AllMat)
dos = OVSD(All1)
tos = OVST(AllT)

! Low fuel temperature!
LoT = OVLT(582.95 /*-***/-fuel / 582.95 /*-***/-clad)
tLoT = OVST(tos/LoT)

! Low and high moderator temperature!
mlMat = OVLM('H2O-4' /*-***/-water, /*-***/-cool)
mhMat = OVLM('H2O-5' /*-***/-water, /*-***/-cool)
mlom = OVSM(mos/mlMat)
mHim = OVSM(mos/mhMat)

LomT = OVLT(564.59 /*-***/-water, /*-***/-cool / 612.3992 /*-***/-clad)
HimT = OVLT(599.32 /*-***/-water, /*-***/-cool / 642.9616 /*-***/-clad)
tLomT = OVST(tos/LomT)
tHimT = OVST(tos/HimT)

! Low and high boron concentration (0 and 2000ppm)!
LobMat = OVLM('H2O-2' /*-***/-water, /*-***/-cool)
HibMat = OVLM('H2O-3' /*-***/-water, /*-***/-cool)
mlOb = OVSM(mos/mlObMat)
mHib = OVSM(mos/mHibMat)

28
! Burnup
st = STAT(mos, dos, tos, 37.79)
stloF = STAT(mos, dos, tLfos, 37.79)
sthiM = STAT(mHim, dos, tHmT, 37.79)
stloM = STAT(mLom, dos, tLmT, 37.79)
sthiB = STAT(mHib, dos, tos, 37.79)
stloB = STAT(mLob, dos, tos, 37.79)
Path = PATH(/ (st), 1500/3, 2500, 30000/11, 60000/6)
LFFPath = TREE(Path/(stloF)/0, 500, 1500, 5000, 20000/3, 60000/4)
HMPath = TREE(Path/(sthiM)/0, 500, 1500, 5000, 20000/3, 60000/4)
LMPath = TREE(Path/(stloM)/0, 500, 1500, 5000, 20000/3, 60000/4)
HBPath = TREE(Path/(sthiB)/0, 500, 1500, 5000, 20000/3, 60000/4)
LBPath = TREE(Path/(stloB)/0, 500, 1500, 5000, 20000/3, 60000/4)

! Output
G1 = GROUP(N/ 0)
G2 = GROUP(N/ 0.625, 0)
Apins = AREA(*-*--<water>, *-*--<fuel>)
Aall = AREA(*--*)
Asol = AREA(*--*<water, *--*0-cool>)
Abur = AREA(*--*<ifba>)

micAsol = MICRO(G2, Asol/tr, ab, fi, nf, kf)
micAbur = MICRO(G2, Abur/tr, ab, fi, nf, kf)
macAsol = MACRO(G2, Asol/tr, ab, fi, nf, kf, p0)
macAbur = MACRO(G2, Abur/tr, ab, fi, nf, kf, p0)

micAll = MICRO(G1, Aall/tr, ab, fi)
micAll2 = MICRO(G2, Aall/tr, ab, fi, nf, kf)
macAll2 = MACRO(G2, Aall/tr, ab, fi, nf, kf, p0)

MacPin = MACRO(G1, Apins/tr, fi, kf)

! corners!
NE = FACE((1-10, 2, 4))
SE = FACE((10-10, 4, 2))
SW = FACE((10-1, 1, 3))
NW = FACE((1-1, 1, 3))

!interior face!
Interior = FACE((1-1, 2, 1) (2-1, 3, 2) (3-1, 3, 2) (4-1, 3, 2)
 (5-1, 3, 2) (6-1, 3, 2) (7-1, 3, 2) (8-1, 3, 2)
 (9-1, 3, 2) (10-1, 3, 2))

!exterior face!
Exterior = FACE((10-1, 2, 1) (10-2, 2, 1) (10-3, 2, 1) (10-4, 2, 1)
 (10-5, 2, 1) (10-6, 2, 1) (10-7, 2, 1) (10-8, 2, 1)
 (10-9, 2, 1) (10-10, 2, 1))

CurCorner = CUR(G2, NW, SW, SE, NE)
CurSide = CUR(G2, Interior, Exterior)
Vu35104i = RUN()
Appendix D. HELIOS Input File: Reflector
(hmhwhrref34.inp)

+THEL
Vmhwhrref = CASE('library.bin'/ 'Vmwhrref.hrf'/ 'MOX 4.5 24 waba')

! Data including thermal expansion !
! fuel!
$rpe = PAR("0.3950905")
$rai = PAR("0.4010399")
$rca = PAR("0.4582740")
$rifb = PROPRIETARY 1
! the radius was calculated preserving the ifba area!
$rc = PAR("0.5624394")
$rbx = PAR("0.6032221")
$rc1 = PAR("0.4331")
$rc2 = PAR("0.4369")
$rc3 = PAR("0.4848823")
! thermal expansion included for waba rod!
$rwco = PROPRIETARY 2
$rbx = PROPRIETARY 3
$rwair = PROPRIETARY 4
$rwaba = PROPRIETARY 5
$rwabair = PROPRIETARY 6
$rgap = PROPRIETARY 7

$pitch = PAR("1.2598")
$p2 = PAR("$pitch/2")
$psq2 = PAR("$rc/2")
$psq2 = PAR("$rbx/2")
$psq2 = PAR("$rgap/2")
$psq2 = PAR("3")

! Materials!
'H2O-1' = MAT(NB/.705/1001,11.19;8016,88.81;5010,0.04;5011,0.06)
'H2O-2' = MAT(NB/.705/1001,11.19;8016,88.81;5010,0.0;5011,0.0)
'H2O-3' = MAT(NB/.705/1001,11.19;8016,88.81;5010,0.09;5011,0.12)
'H2O-4' = MAT(NB/.743/1001,11.19;8016,88.81;5010,0.04;5011,0.06)
'H2O-5' = MAT(NB/.662/1001,11.19;8016,88.81;5010,0.04;5011,0.06)

'Zy2' = MAT(NB/6.504/40002,100.0)
'PU-1' = MAT(10.41/92325,1.763E-1;94238,0.0; 94239,3.94991;94240, 0.248936;94241,1.68366E-2;94242,4.23120E-03; 92234,1.41040E-03;92238,83.7524;8016,11.85)
'PU-2' = MAT(10.41/92325,1.763E-1;94238,0.0; 94239,3.94991;94240, 0.248936;94241,1.68366E-2;94242,4.23120E-03; 92234,1.41040E-03;92238,83.7524;8016,11.85)
'boron1' = MAT(3.563548/8016,42.5262;6000,2.1004;13027,47.8109; 5010,1.3938;5011,6.1687)
'boron2' = MAT(3.563548/8016,42.5262;6000,2.1004;13027,47.8109; 5010,1.3938;5011,6.1687)
'air' = MAT(NB/.001/8016,100)
'CRS' = MAT(NB/7.92/14000,0.51;24000,17.40;25055,1.99;26000,
68.35;28000,11.70)

! Geometry!
Pin = CCS($rpe,$rair,$rcan//fuel,gap,clad)
Whole = CCS($rcool,$rbox//water,clad)
Ipin = CCS($rifba,$rair,$rcan//fuel,ifba,gap,clad)
Bpin = CCS($rwco,$rwbox,$rwair,$rwaba,$rwabair,$rcro,
$rcool,$rbox//water,clad,gap,crod,gap,clad,water,clad)

$cell = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2") !nodes 1-4!
(0,"$p2") ("$p2",0) (0,$p2) ($p2,0) ($rcan,0) (0,"$rcan") ("$rcan",0)
(0,$rcan) ($psq2,$psq2) ($psq2,"$psq2") ("$psq2","$psq2") ("$psq2","$psq2")
/4,cool/Pin(0,0)/ 1,6,11,15,cool; 6,2,16,11,cool; 2,7,12,16,cool;
7,3,13,12,cool; 3,8,9,13,cool; 8,4,14,9,cool; 4,5,10,14,cool)

$icell = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2") !nodes 1-4!
(0,"$p2") ("$p2",0) (0,$p2) ($p2,0) ($rcan,0) (0,"$rcan") ("$rcan",0)
(0,$rcan) ($psq2,$psq2) ($psq2,"$psq2") ("$psq2","$psq2") ("$psq2","$psq2")
/4,cool/Ipin(0,0)/ 1,6,11,15,cool; 6,2,16,11,cool; 2,7,12,16,cool;
7,3,13,12,cool; 3,8,9,13,cool; 8,4,14,9,cool; 4,5,10,14,cool)

$wcell = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2") !nodes 1-4!
(0,"$p2") ("$p2",0) (0,$p2) ($p2,0) ($rcan,0) (0,"$rcan") ("$rcan",0)
(0,$rcan) ($psqh2,$psqh2) ($psqh2,"$psqh2") ("$psqh2","$psqh2")
("$psqh2","$psqh2")/4,cool/Whole(0,0)/ 1,6,11,15,cool; 6,2,16,11,cool;
2,7,12,16,cool;7,3,13,12,cool; 3,8,9,13,cool; 8,4,14,9,cool; 4,5,10,14,cool)

$bcell = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2") !nodes 1-4!
(0,"$p2") ("$p2",0) (0,$p2) ($p2,0) ($rcan,0) (0,"$rcan") ("$rcan",0)
(0,$rcan) ($psqh2,$psqh2) ($psqh2,"$psqh2") ("$psqh2","$psqh2")
("$psqh2","$psqh2")/4,cool/Bpin(0,0)/ 1,6,11,15,cool; 6,2,16,11,cool;
2,7,12,16,cool;7,3,13,12,cool; 3,8,9,13,cool; 8,4,14,9,cool; 4,5,10,14,cool)

$wgap = PAR(('"$pgap2","$p2") ('"$pgap2",$p2) ($pgap2,$p2) ($pgap2,"$p2")
/4,cool//)

$cell2 = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2")
(0,"$p2") ($rcan,0) (0,"$rcan") ("$rcan",0) ($psq2,"$psq2")
("$psq2","$psq2")/4,cool/Pin(0,0) 3/ 3,4,9,6,cool; 4,5,7,9,cool;
5,1,10,7,cool)

$icell2 = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2")
(0,"$p2") ($rcan,0) (0,"$rcan") ("$rcan",0) ($psq2,"$psq2")
("$psq2","$psq2")/4,cool/Ipin(0,0) 4/ 3,4,9,6,cool; 4,5,7,9,cool;
5,1,10,7,cool)

$wcell2 = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2")
(0,"$p2") ($rbox,0) (0,"$rbox") ("$rbox",0) ($psqh2,"$psqh2")
("$psqh2","$psqh2")/4,cool/Whole(0,0) 2/3,4,9,6,cool; 4,5,7,9,cool;
5,1,10,7,cool)

$bcell2 = PAR(('"$p2","$p2") ('"$p2",$p2) ($p2,$p2) ($p2,"$p2")
(0,"$p2") ($rbox,0) (0,"$rbox") ("$rbox",0) ($psqh2,"$psqh2")
("$psqh2","$psqh2")/4,cool/Bpin(0,0) 8/3,4,9,6,cool; 4,5,7,9,cool;
$wgap2 = PAR(("-$pgap2", "$p2") ("-$p2", 0) ($pgap2, 0) ($pgap2, "$p2") /4, cool//)

$wcel14 = PAR((0, "$p2") (0, 0) ($p2, 0) ($p2, "$p2") ($rbox, 0) (0, "$rbox") ($psqh2, "$psqh2") /4, cool/Whole(0, 0) 2/4, 1, 6, 7, cool)

$wgap4 = PAR(("-$pgap2", "$p2") ("-$p2", $pgap2) ($pgap2, "$p2") ($pgap2, "$p2") /4, cool//)

$baffle = PAR((0, 0) (0, "$rgap+17*"$p2") ("2.8575", "$rgap+17*"$p2") ("2.8575", 0) ("2.8575/2", 0) ("2.8575/2", "$rgap+17*"$p2") /4, baf// 1, 2, 6, 5, baf)

$ref1 = PAR((0, 0) (0, "$rgap+17*"$p2") (18.64614, "$rgap+17*"$p2") (18.64614, 0) (1.578864, 0) (1.578864, "$rgap+17*"$p2") (4.739562, 0) (4.739562, "$rgap+17*"$p2") (6.315456, 0) (6.315456, "$rgap+17*"$p2") (7.89432, 0) (7.89432, "$rgap+17*"$p2") (10.044684, 0) (10.044684, "$rgap+17*"$p2") (12.195048, 0) (12.195048, "$rgap+17*"$p2") (14.345412, 0) (14.345412, "$rgap+17*"$p2") (16.495776, 0) (16.495776, "$rgap+17*"$p2") /4, ref//1, 2, 6, 5, refl; 5, 6, 8, 7, refl; 7, 8, 10, 9, refl1; 9, 10, 12, 11, refl1; 11, 12, 14, 13, refl1; 13, 14, 16, 15, refl; 15, 16, 18, 17, refl; 17, 18, 20, 19, ref; 19, 20, 22, 21, ref)

'1.0' = STR($cell)
'2.0' = STR($icell)
'3.0' = STR($wcell)
'4.0' = STR($bcell)
'5.0' = STR($cell12)
'6.0' = STR($icell12)
'7.0' = STR($wcell12)
'8.0' = STR($bcell12)
'9.0' = STR($wcell14)
'10.0' = STR($wgap)
'11.0' = STR($wgap2)
'12.0' = STR($wgap4)
'13.0' = STR($baffle)
'14.0' = STR($ref1)

White = ALB(1/1/1)
Black = ALB(1/0/0)

$corder = PAR((1, 3, 4)$coup(2, 2, 1)/
(2, 3, 4)$coup(3, 2, 1)/(3, 3, 4)$coup(4, 2, 1)/
(4, 3, 4)$coup(5, 2, 1)/(5, 3, 4)$coup(6, 2, 1)/
(6, 3, 4)$coup(7, 2, 1)/(7, 3, 4)$coup(8, 2, 1)/
(8, 3, 4)$coup(9, 2, 1)/(9, 3, 4)$coup(10, 2, 1))

$corder1 = PAR((1, 4, 1)$coup(2, 2, 1)/
(2, 3, 4)$coup(3, 2, 1)/(3, 3, 4)$coup(4, 2, 1)/
(4, 3, 4)$coup(5, 2, 1)/(5, 3, 4)$coup(6, 2, 1)/
(6, 3, 4)$coup(7, 2, 1)/(7, 3, 4)$coup(8, 2, 1)/
(8, 3, 4)$coup(9, 2, 1)/(9, 3, 4)$coup(10, 2, 1))
$corder2 = PAR((1,4,1)$coup(2,3,2)/
(2,4,1)$coup(3,3,2)/(3,4,1)$coup(4,3,2)/
(4,4,1)$coup(5,3,2)/(5,4,1)$coup(6,3,2)/
(6,4,1)$coup(7,3,2)/(7,4,1)$coup(8,3,2)/
(8,4,1)$coup(9,3,2)/(9,4,1)$coup(10,3,2))
Row1=CNX('9.0','5.0','5.0','8.0','5.0','8.0','5.0','5.0','11.0'/$corder)
Row2=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','10.0'/$corder1)
Row3=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','10.0'/$corder1)
Row4=CNX('8.0','1.0','1.0','4.0','1.0','4.0','1.0','1.0','10.0'/$corder1)
Row5=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','10.0'/$corder1)
Row6=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','10.0'/$corder1)
Row7=CNX('8.0','1.0','1.0','4.0','1.0','1.0','1.0','1.0','10.0'/$corder1)
Row8=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','10.0'/$corder1)
Row9=CNX('5.0','1.0','1.0','1.0','1.0','1.0','1.0','1.0','10.0'/$corder1)
Row10=CNX('11.0','10.0','10.0','10.0','10.0','10.0','10.0','10.0','12.0'/$corder2)
System = CNX(Row1,Row2,Row3,Row4,Row5,Row6,Row7,Row8,Row9,Row10,'13.0','14.0'/
(1-2,4,1)$coup(2-2,3,2)/
(2-2,4,1)$coup(3-2,3,2)/(3-2,4,1)$coup(4-2,3,2)/
(4-2,4,1)$coup(5-2,3,2)/(5-2,4,1)$coup(6-2,3,2)/
(6-2,4,1)$coup(7-2,3,2)/(7-2,4,1)$coup(8-2,3,2)/
(8-2,4,1)$coup(9-2,3,2)/(9-2,4,1)$coup(10-2,4,3)/
(10-10,1,4)$coup(11,1,(0,"$rgap"))/
System = BDRY((12,4,3)$coup(White)/(12,3,4)$coup(Black))

! Overlays !
AllMat = OVLM('H2O-1' /*-**-*/ *Zy2 / '*-**-clad /
'air' /*-**-gap/
'PU-1' /*1.0--fuel /
'PU-2' /*5.0--fuel /
'boron1' /*4.0--crod /
'boron2' /*8.0--crod /
'CRS' /*0-baf)

!Base case!
All1 = OVLD(1.0 /*-**-*/)
AllT = OVLT(582.95 /*-**-*/ 963 /*-**-fuel / 628.556 /*-**-clad)
mos = OVSM(AllMat)
dos = OVSD(A1ll)
tos = OVST(A1lT)
!removal of waba rods at 25 GWD/MT!
CROMat = OVLM('H2O-1' /*-'4.0'-*-crod,*-'8.0'-*-crod)
moscr = OVSM(mos/CROMat)

!Low fuel temperature!
LoFt = OVLT(582.95 //*-*-*-fuel / 582.95 //*-*-*-clad)
tLfos = OVST(tos/LoFt)

!Low and High moderator temperature!
mlMat = OVLM('H2O-4' /*-*-*water, *-*0-cool)
mlM = OVSM(mos/mlMat)
mlT = OVLT(564.59 /*-*-*water, *-*0-cool / 612.3992 /*-*-*clad)
tlmT = OVST(tos/mlT)

!Low and High boron concentration (0 and 2000 ppm)!
LlobMat = OVLM('H2O-2' /*-*-*water, *-*0-cool)
Llob = OVSM(mos/LlobMat)
Llob = OVSM(mos/HlobMat)

!Burnup!
st = STAT(mos,dos,tos,38.02)
stccr = STAT(moscr,dos,tos,38.02)
stlFoF = STAT(mos,dos,tLfos,38.02)
sthM = STAT(mHiM,dos,tHmT,38.02)
stloM = STAT(mLom,dos,tLmT,38.02)
sthB = STAT(mHiB,dos,tos,38.02)
stloB = STAT(mLob,dos,tos,38.02)
Path = PATH(/P,(st),1500/3,2500,25000/9,60000/7)
!LFPath = TREE(Path/ P, (stlFoF)/0,500,1500,5000,20000/3,60000/4)!
HMP = TREE(Path/P,(sthiM)/0,500,1500,5000,20000/3,60000/4)
LMPath = TREE(Path/P,(stloM)/0,500,1500,5000,20000/3,60000/4)
HBP = TREE(Path/P,(sthiB)/0,500,1500,5000,20000/3,60000/4)
LBP = TREE(Path/P,(stloB)/0,500,1500,5000,20000/3,60000/4)

G1 = GROUP(N/ 0)
G2 = GROUP(N/ 0.625, 0)
ABARE = AREA(<11-*>,12-0-ref1>)
ABA = AREA(<11-**>)
ARE = AREA(<12-0-ref>)

micBARE = MICRO(G2,ABARE/ab)
macBARE = MACRO(G2,ABARE/tr,ab,fi,nf,kf,p0)
McBA = MICRO(G2, ABA/ab)
MacBA = MACRO(G2, ABA/tr,ab,fi,nf,kf,p0)

MicRE = MICRO(G2, ARE/ab)
MacRE = MACRO(G2, ARE/tr,ab,fi,nf,kf,p0)
fuba = FACE((1-10,3,4) (2-10,3,4) (3-10,3,4) (4-10,3,4)
 (5-10,3,4) (6-10,3,4) (7-10,3,4) (8-10,3,4)
 (9-10,3,4) (10-10,4,1))
Curuba = CUR(G2,fuba)

bare = FACE((12,13,14))
Cubare = CUR(G2,bare)

refle = FACE((12,4,3))
Curef = CUR(G2,refle)

Vmhwhref = RUN()
Appendix E. Zenith Input: Fuel Assemblies
(zmwh89g1.inp)

BEGIN ('Output generator for FORCIP-P : Fuel Region ' / 0.4; 0.4)

!----------------------------- Gustavo Alonso ----------------------------------!
!----------------------------- Texas A&M University -------------------------------!
!----------------------------- Westinghouse 17x17 ---------------------------------

!Case # : Descriptions
!--
! 1 : Base Conditions [Average Conditions @HFP]
! 2 : Fuel Temperature Decrease
! 3 : Moderator Temperature Increase
! 4 : Moderator Temperature Decrease
! 5 : Boron Concentration Increase
! 6 : Boron Concentration Decrease

!--
!File # : File Name
!--
! 1 : Vuhhi.hrf
! 2 : Vuhmi.hrf
! 3 : Vuhni.hrf
! 4 : Vulhi.hrf
! 5 : Vulmi.hrf
! 6 : Vulni.hrf
! 7 : Vmhw89h.hrf
! 8 : Vmhw189g.hrf
! 9 : Vmlwh89g.hrf
!10 : Vmlwl89g.hrf
!11 : Vmhwmn89g.hrf
!12 : Vmlwn89g.hrf

!!!

<<<<<<<<< BEGINNING of USER INPUT >>>>

!-- Core Design Data -------------------------------
!-- Half inter-assembly gap thickness (cm) : gapt
!-- Pin pitch (cm) : ppitch
!-- Assembly Pitch (cm) : apitch
!-- Symmetry of assembly
!-- Number of rods across outer edge

!--
! gapt = FOR(0.0217621)
! ppitch = FOR(1.2623574)
! apitch = FOR(21.5036)
! isym = FOR(8)
! num = FOR(17)
PARAM = LIS(;;6/'Parameters'/E/f5: gapt; ppitch; apitch; isym; num)

!-- Enter your case and file selection --!
% 'Case#' = 1
% 'file' = 7

!--- For each file, enter the following info.: -------------------------------!
!--- Burnup steps for base case: $BurnupBase ---!
!--- Burnup steps for branch case: $BurnupBranch ---!
!--- Helios case: $Hcase ---!
!--- Helios output file: $Hfile ---!
!--- Weight percent of BA: $wba ---!
!--- Present number of BA rods: $ibap ---!

%if ('file'.eq.1) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000, 40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000, 30000, 40000, 50000, 60000)
$Hcase = PAR('Vuhhl')
$Hfile = PAR('Vuhhl.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.5)
wba = FOR(0.00)
ibap = FOR(64) ! present number of BA rods!
FILEPARAM = LIS(/'Parameters'/E/f5: enr; fo: wba; ibap)
%endif

%if ('file'.eq.2) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000, 40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000, 30000, 40000, 50000, 60000)
$Hcase = PAR('Vuhmi')
$Hfile = PAR('Vuhmi.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.5)
wba = FOR(0.00)
ibap = FOR(64)
FILEPARAM = LIS(/'Parameters'/E/f5: enr; fo: wba; ibap)
%endif

%if ('file'.eq.3) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000, 40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000, 30000, 40000, 50000, 60000)
$Hcase = PAR('Vuhni')

38
$Hfile = PAR('Vulni.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(0)
FILEPARAM = LIS('Parameters'/E/f5: enr; f0: wba; ibap)
%endif

%if ('file' .eq. 4) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500,
15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000,
40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000,
30000, 40000, 50000, 60000)
$Hcase = PAR('Vulni')
$Hfile = PAR('Vulni.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(64)
FILEPARAM = LIS('Parameters'/E/f5: enr; f0: wba; ibap)
%endif

%if ('file' .eq. 5) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500,
15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000,
40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000,
30000, 40000, 50000, 60000)
$Hcase = PAR('Vulni')
$Hfile = PAR('Vulni.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(64)
FILEPARAM = LIS('Parameters'/E/f5: enr; f0: wba; ibap)
%endif

%if ('file' .eq. 6) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500,
15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000,
40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000,
30000, 40000, 50000, 60000)
$Hcase = PAR('Vulni')
$Hfile = PAR('Vulni.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(0)
%if ('file'.eq.7) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500,
 15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000,
 40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000,
 30000, 40000, 50000, 60000)
$Hcase = PAR('Vmhwh89h')
$Hfile = PAR('Vmhwh89h.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.5)
wba = FOR(0.000)
ibap = FOR(24)
FILEPARAM = LIS('/Parameters'/E/f5: enr; f0: wba; ibap)
%endif

%if ('file'.eq.8) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500,
 15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000,
 40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000,
 30000, 40000, 50000, 60000)
$Hcase = PAR('Vmhwh89g')
$Hfile = PAR('Vmhwh89g.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(12)
FILEPARAM = LIS('/Parameters'/E/f5: enr; f0: wba; ibap)
%endif

%if ('file'.eq.9) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500,
 15000, 17500, 20000, 22500, 25000, 27500, 30000, 35000,
 40000, 45000, 50000, 55000, 60000)
$BurnupBranch = PAR(0, 500, 1500, 5000, 10000, 15000, 20000,
 30000, 40000, 50000, 60000)
$Hcase = PAR('Vmlwh89g')
$Hfile = PAR('Vmlwh89g.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(24)
FILEPARAM = LIS('/Parameters'/E/f5: enr; f0: wba; ibap)
%endif

%if ('file'.eq.10) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500, 10000, 12500,
15000,17500,20000,22500,25000,27500,30000,35000,
40000,45000,50000,55000,60000)
$BurnupBranch = PAR(0, 500, 1500, 5000,10000,15000,20000,
30000,40000,50000,60000)
$Hcase = PAR('Vmlw189g')
$Hfile = PAR('Vmlw189g.hrf')
C1 = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(12)
FILEPARAM = LIS('/Parameters'/f5 : enr; f0 : wba; ibap)

%endif
%if ('file' .eq.11) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500,10000,12500,
15000,17500,20000,22500,25000,27500,30000,35000,
40000,45000,50000,55000,60000)
$BurnupBranch = PAR(0, 500, 1500, 5000,10000,15000,20000,
30000,40000,50000,60000)
$Hcase = PAR('Vmhwn89g')
$Hfile = PAR('Vmhwn89g.hrf')
C1 = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.5)
wba = FOR(0.000)
ibap = FOR(0)
FILEPARAM = LIS('/Parameters'/f5 : enr; f0 : wba; ibap)

%endif
%if ('file' .eq.12) then
$BurnupBase = PAR(0, 500, 1000, 1500, 2500, 5000, 7500,10000,12500,
15000,17500,20000,22500,25000,27500,30000,35000,
40000,45000,50000,55000,60000)
$BurnupBranch = PAR(0, 500, 1500, 5000,10000,15000,20000,
30000,40000,50000,60000)
$Hcase = PAR('Vmhwn89g')
$Hfile = PAR('Vmhwn89g.hrf')
C1 = IMP(HELIOS; $Hcase/$Hfile)
enr = FOR(4.0)
wba = FOR(0.000)
ibap = FOR(0)
FILEPARAM = LIS('/Parameters'/f5 : enr; f0 : wba; ibap)

%endif

!--- For each case, enter the following info.: -------------------------------!
!-------------------------- Path : $Path ----!
!-------------------------- State : $State ----!
!-------------------------- Instantaneous fuel temperature : tfuchg ----!
!-------------------------- Reference fuel temperature : tfuref ----!
!-------------------------- Instantaneous moderator temperature : tmochg ----!
!-------------------------- Reference moderator temperature : tmoref ----!
!-------------------------- Instantaneous boron concentration : ppmchc ----!
!-------------------------- Reference boron concentration : ppmref ----!
%if ('Case#' .eq.1) then
 $Path = PAR('Path')
 $State = PAR('st')
 $Burnup = PAR($BurnupBase)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(582.95)
 tmoref = FOR(582.95)
 ppmchg = FOR(1000)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f2:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#' .eq.2) then
 $Path = PAR('LFPath')
 $State = PAR(stloF)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(582.95)
 tfuref = FOR(963)
 tmochg = FOR(582.95)
 tmoref = FOR(582.95)
 ppmchg = FOR(1000)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f2:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#' .eq.3) then
 $Path = PAR('HMPath')
 $State = PAR(sthiM)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(599.32)
 tmoref = FOR(582.95)
 ppmchg = FOR(1000)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f2:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#' .eq.4) then
 $Path = PAR('LMPath')
 $State = PAR(stloM)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(963)
 %endif
tfuref = FOR(963)
tmochg = FOR(564.59)
tmoref = FOR(582.95)
ppmchg = FOR(1000)
ppmref = FOR(1000)
CASEPARAM = LIS(;;6/'Parameters'
 /E/f2:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#'.eq.5) then
 $Path = PAR('HBPath')
 $State = PAR(sthIB)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path:($State)$Burnup)
 tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(582.95)
 tmoref = FOR(582.95)
 ppmchg = FOR(2000)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f2:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#'.eq.6) then
 $Path = PAR('LBPath')
 $State = PAR(stloB)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path:($State)$Burnup)
 tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(582.95)
 tmoref = FOR(582.95)
 ppmchg = FOR(0)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f2:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

!--------------------------------- Cross Section Data ---------------------!
! Enter cross sections names inside PAR() ----------------------!
!--------------------------------- Path : $Path ---!
! Homogenized over quarter assembly, one-group micro xs : $micALL ---!
! Homogenized over quarter assembly, two-group micro xs : $micALL2 ---!
! Homogenized over quarter assembly, two-group macro xs : $macALL2 ---!
! Homogenized over fuel pin, one group macro xs : $macPin ---!
! Surface currents (interior,exterior), two groups : $Curside ---!
! Corner currents (NW,SW,SE,NE), two groups : $CurCor ---!

$micALL = 'PAR('micAll')
$micALL2 = PAR('micAll2')
$macALL2 = PAR('macAll2')
$macPin = PAR('MacPin')
'Yield(I)' = FOR(1E24*'N(I)'*$lambdaI/avfxfi)
'Yield(Xe)' = FOR(1E24*'N(Xe)'*(avfxaXe*1E-24*$lambdaXe)/avfxfi-'Yield(I)')
'Yield(Pm)' = FOR(1E24*'N(Pm)'*$lambdaPm/avfxfi)

FPYIELDS = LIS('/Fission Product Yields for I-135, Xe-135, Pm-149'
/E/f0:bu; e5:'Yield(I)'; 'Yield(Xe)'; 'Yield(Pm)')

! (4) XESM !
micxe = SEL(ab/MIC/Cl;$micALL2/$calp/54635)
ndxe = SEL(nd/MIC/Cl;$micALL2/$calp/54635)
macxe = FOR(micxe*ndxe)
micsm = SEL(ab/MIC/Cl;$micALL2/$calp/62649)
ndsm = SEL(nd/MIC/Cl;$micALL2/$calp/62649)
macsm = FOR(micsm*ndsm)

XESM = LIS('/Micro- & Macro– Absorption XS for Xe and Sm'
/E/f0:bu; e5: micxe; macxe; micsm; macsm)

! (5) SOLBO !
micabbo10 = SEL(ab/MIC/Cl;$micAsol/$calp/5010)
dbo10x = SEL(nd/MIC/Cl;$micAsol/$calp/5010)
vo = SEL(vo/MIC/Cl;$micAsol/$calp)
vox = SEL(vo/MIC/Cl;$micAsol/$calp)
macabbo10 = FOR(micabbo10*ndbo10x*vox/vo)

micabboll = SEL(ab/MIC/Cl;$micAsol/$calp/5011)
dbo1lx = SEL(nd/MIC/Cl;$micAsol/$calp/5011)
macabboll = FOR(micabboll*ndbo1lx*vox/vo)

micbo = FOR((macabbo10+macabboll)/((ndbo10x+ndbo1lx)*vox/vo))
macbo = FOR(macabbo10+macabboll)

SOLBO = LIS('/Micro- & Macro– Absorption XS for Soluble Boron'
/E/f0:bu; e5: micbo; macbo)

! (6) KINF !
kinf = SEL(kinf/MAC/Cl;$macALL2/$calp)

! (7) POWERRAT !
fx = SEL(fx/MAC/Cl;$macPin/$calp)
kf = SEL(kf/MAC/Cl;$macPin/$calp)
vo = SEL(vo/MAC/Cl;$macPin/$calp)
vx = SEL(vx/MAC/Cl;$macPin/$calp)
vx = SEL(vx/MAC/Cl;$macPin/$calp)
vy = SEL(vy/MAC/Cl;$macPin/$calp)

Power = FOR(fx*kf*vo)

!<<< might need to change def'n of average power. Avg. over FUEL pin only >>>!
%if ('file'.eq.1) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.2) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.3) then
AvePower = FOR((@smR(Power))/66)
%endif
%endif

%if ('file'.eq.4) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.5) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.6) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.7) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.8) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.9) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.10) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.11) then
AvePower = FOR((@smR(Power))/66)
%endif

%if ('file'.eq.12) then
AvePower = FOR((@smR(Power))/66)
%endif

PP = FOR(Power/AvePower)
PP2 = FOR(2*PP)
PPmax = FOR(@mrR(PP))

! (8) FLUXRAT !
fx = SEL(fx/MAC/C1;$macALL2/$calp)
i1 = IND(fx/RAN:::1;)
i2 = IND(fx/RAN:::2;)
flxfast = FOR(fx^i1)
flxthm = FOR(fx^i2)
fxrat = FOR((flxfast)/(flxthm))

POWER = LIS(/'k_inf, Max Rel. Pin Power, flux ratio'
 /E/f0:bu; f5:kinf; PPmax; fxrat)

! (9) FORMFACTOR !
irow1 = IND(PP2/RAN:1-9:::)
irow2a = IND(PP2/RAN:10 ::::)
irow2b = IND(PP/RAN:11-18:::;)

46
FORMFACTOR = IND(PP/RAN:19;;;;)
irow3a = IND(PP/RAN:20-27;;;;)
irow3b = IND(PP/RAN:28;;;;)
irow4a = IND(PP/RAN:29-36;;;;)
irow4b = IND(PP/RAN:37;;;;)
irow5a = IND(PP/RAN:38-45;;;;)
irow5b = IND(PP/RAN:46;;;;)
irow6a = IND(PP/RAN:47-54;;;;)
irow6b = IND(PP/RAN:55;;;;)
irow7a = IND(PP/RAN:56-63;;;;)
irow7b = IND(PP/RAN:64;;;;)
irow8a = IND(PP/RAN:65-72;;;;)
irow8b = IND(PP/RAN:73;;;;)
irow9a = IND(PP/RAN:74-81;;;;)
irow9b = IND(PP/RAN:82;;;;)
PProw1 = FOR(PP^irow1)
PProw2a = FOR(PP^irow2a)
PProw2b = FOR(PP^irow2b)
PProw3a = FOR(PP^irow3a)
PProw3b = FOR(PP^irow3b)
PProw4a = FOR(PP^irow4a)
PProw4b = FOR(PP^irow4b)
PProw5a = FOR(PP^irow5a)
PProw5b = FOR(PP^irow5b)
PProw6a = FOR(PP^irow6a)
PProw6b = FOR(PP^irow6b)
PProw7a = FOR(PP^irow7a)
PProw7b = FOR(PP^irow7b)
PProw8a = FOR(PP^irow8a)
PProw8b = FOR(PP^irow8b)
PProw9a = FOR(PP^irow9a)
PProw9b = FOR(PP^irow9b)
FORMFACTOR = LIS(;;9/'Pin Power'/E/f5:PProw1;PProw2a;PProw2b;PProw3a;
PProw3b;PProw4a;PProw4b;PProw5a;PProw5b;
PProw6a;PProw6b;PProw7a;PProw7b;PProw8a;PProw8b;
PProw9a;PProw9b)

!<<< End of form factor user input

! (10) MACRO !

! 12 = IND(p0/RAN:;;2;1)
i21 = IND(p0/RAN:;;1;2)
i1 = IND(nf/RAN:;;1;1)
i2 = IND(nf/RAN:;;2;2)
diff = FOR(dr/(3.0*tr))
d1 = FOR(diff^i1)
d2 = FOR(diff^i2)
s12 = FOR(p0^i12)
\[s_{21} = \text{FOR}(p_{0}^\ast_{i12}) \]
\[a_{b1} = \text{FOR}(a_{b}^\ast_{i1}) \]
\[a_{b2} = \text{FOR}(a_{b}^\ast_{i2}) \]
\[n_{sigf1} = \text{FOR}(n_{f}^\ast_{i1}) \]
\[n_{sigf2} = \text{FOR}(n_{f}^\ast_{i2}) \]
\[k_{sigf1} = \text{FOR}(k_{f}^\ast_{i1}) \]
\[k_{sigf2} = \text{FOR}(k_{f}^\ast_{i2}) \]
\[f_{i1} = \text{FOR}(f_{i}^\ast_{11}) \]
\[f_{i2} = \text{FOR}(f_{i}^\ast_{i2}) \]
\[n_{u2} = \text{FOR}(n_{sigf2}/f_{i2}) \]
\[k_{appa2} = \text{FOR}(k_{sigf2}/f_{i2}) \]
\[s_{rem} = \text{FOR}(s_{12}-s_{21}/fxrat) \]

'\text{MACRO-FAST}' = \text{LIS}(/'\text{Macroscopic XS Fast}'
\quad /E/f0;bu; e5: d1; srem; ab1; n_{sigf1}; k_{sigf1})

'\text{MACRO-TERMAL}' = \text{LIS}(/'\text{Macroscopic XS Thermal}'
\quad /E/f0;bu; e5: d2; ab2; n_{sigf2}; k_{sigf2}; n_{u2}; k_{appa2})

\[\begin{align*}
\text{! (11) ISOTOPES !} \\
\text{id} &= \text{SEL}(id/MIC/C1;$micALL) \\
\text{ISOTOPES} &= \text{LIST}(/'\text{Isotopes present in the system'}/I/f0: id)
\end{align*} \]

\[\text{!<<< Make list for isotopes present in the assembly} \]
\[\text{>>>!} \]

\[\begin{align*}
!\text{idformsa=1!} \\
\text{nd} &= \text{SEL}(nd/MIC/C1;$micALL2/$calp/92234) \\
\text{micab} &= \text{SEL}(ab/MIC/C1;$micALL2/$calp/92234) \\
\text{micfi} &= \text{SEL}(fi/MIC/C1;$micALL2/$calp/92234) \\
\text{mickf} &= \text{SEL}(kf/MIC/C1;$micALL2/$calp/92234) \\
\text{micnf} &= \text{SEL}(nf/MIC/C1;$micALL2/$calp/92234) \\
\text{il} &= \text{IND}(mickf/RAN;;;;1;) \\
\text{mickf1} &= \text{FOR}(mickf^\ast il) \\
\text{92234} &= \text{LIS}(/'\text{Micro. vs. burnup for Isotope U-234}'
\quad /E/f0;bu; e5: nd; micab; micfi; micnf; mickf1)
\end{align*} \]

\[\begin{align*}
!\text{idformsa=2!} \\
\text{nd} &= \text{SEL}(nd/MIC/C1;$micALL2/$calp/92235) \\
\text{micab} &= \text{SEL}(ab/MIC/C1;$micALL2/$calp/92235) \\
\text{micfi} &= \text{SEL}(fi/MIC/C1;$micALL2/$calp/92235) \\
\text{mickf} &= \text{SEL}(kf/MIC/C1;$micALL2/$calp/92235) \\
\text{micnf} &= \text{SEL}(nf/MIC/C1;$micALL2/$calp/92235) \\
\text{il} &= \text{IND}(mickf/RAN;;;;1;) \\
\text{mickf1} &= \text{FOR}(mickf^\ast il) \\
\text{92235} &= \text{LIS}(/'\text{Micro. vs. burnup for Isotope U-235}'
\quad /E/f0;bu; e5: nd; micab; micfi; micnf; mickf1)
\end{align*} \]

\[\begin{align*}
!\text{idformsa=3!} \\
\text{nd} &= \text{SEL}(nd/MIC/C1;$micALL2/$calp/92236) \\
\text{micab} &= \text{SEL}(ab/MIC/C1;$micALL2/$calp/92236) \\
\text{micfi} &= \text{SEL}(fi/MIC/C1;$micALL2/$calp/92236) \\
\text{mickf} &= \text{SEL}(kf/MIC/C1;$micALL2/$calp/92236) \\
\text{micnf} &= \text{SEL}(nf/MIC/C1;$micALL2/$calp/92236) \\
\text{il} &= \text{IND}(mickf/RAN;;;;1;) \\
\text{mickf1} &= \text{FOR}(mickf^\ast il) \\
\text{92236} &= \text{LIS}(/'\text{Micro. vs. burnup for Isotope U-236}'
\quad /E/f0;bu; e5: nd; micab; micfi; micnf; mickf1)
\end{align*} \]
!idformsa=4!
nd = SEL(nd/MIC/C1;$micALL2/$calp/92238)
micab = SEL(ab/MIC/C1;$micALL2/$calp/92238)
micfi = SEL(fi/MIC/C1;$micALL2/$calp/92238)
mickf = SEL(kf/MIC/C1;$micALL2/$calp/92238)
micnf = SEL(nf/MIC/C1;$micALL2/$calp/92238)
il = IND(mickf/RAN;;;;1;)
mickf1 = FOR(mickf"il"
'92238' = LIS('/Micro. vs. burnup for Isotope U-238'
/E/f0:bu;e5: nd; micab; micfi; micnf; mickf1)

!idformsa=5!
nd = SEL(nd/MIC/C1;$micALL2/$calp/93239)
micab = SEL(ab/MIC/C1;$micALL2/$calp/93239)
micfi = SEL(fi/MIC/C1;$micALL2/$calp/93239)
mickf = SEL(kf/MIC/C1;$micALL2/$calp/93239)
micnf = SEL(nf/MIC/C1;$micALL2/$calp/93239)
il = IND(mickf/RAN;;;;1;)
mickf1 = FOR(mickf"il"
'93239' = LIS('/Micro. vs. burnup for Isotope Np-239'
/E/f0:bu;e5: nd; micab; micfi; micnf; mickf1)

!idformsa=6!
nd = SEL(nd/MIC/C1;$micALL2/$calp/94240)
micab = SEL(ab/MIC/C1;$micALL2/$calp/94240)
micfi = SEL(fi/MIC/C1;$micALL2/$calp/94240)
mickf = SEL(kf/MIC/C1;$micALL2/$calp/94240)
micnf = SEL(nf/MIC/C1;$micALL2/$calp/94240)
il = IND(mickf/RAN;;;;1;)
mickf1 = FOR(mickf"il"
'94240' = LIS('/Micro. vs. burnup for Isotope Pu-240'
/E/f0:bu;e5: nd; micab; micfi; micnf; mickf1)

!idformsa=7!
nd = SEL(nd/MIC/C1;$micALL2/$calp/94241)
micab = SEL(ab/MIC/C1;$micALL2/$calp/94241)
micfi = SEL(fi/MIC/C1;$micALL2/$calp/94241)
mickf = SEL(kf/MIC/C1;$micALL2/$calp/94241)
micnf = SEL(nf/MIC/C1;$micALL2/$calp/94241)
il = IND(mickf/RAN;;;;1;)
mickf1 = FOR(mickf"il"
'94241' = LIS('/Micro. vs. burnup for Isotope Pu-241'
/E/f0:bu;e5: nd; micab; micfi; micnf; mickf1)

!idformsa=9!
nd = SEL(nd/MIC/Cl;$micALL2/$calp/94242)
micab = SEL(ab/MIC/Cl;$micALL2/$calp/94242)
micfi = SEL(fi/MIC/Cl;$micALL2/$calp/94242)
mickf = SEL(kf/MIC/Cl;$micALL2/$calp/94242)
micnf = SEL(nf/MIC/Cl;$micALL2/$calp/94242)
il = IND(mickf/RAN:;;;;1)
mickf1 = FOR(mickf^il)

'94242' = LIS(/'Micro. vs. burnup for Isotope Pu-242'
 /E/f0:bu; e5: nd; micab; micfi; micnf; mickf1)

!idformsa=10!
nd = SEL(nd/MIC/Cl;$micAbur/$calp/95241)
micab = SEL(ab/MIC/Cl;$micAbur/$calp/95241)
micfi = SEL(fi/MIC/Cl;$micAbur/$calp/95241)
mickf = SEL(kf/MIC/Cl;$micAbur/$calp/95241)
micnf = SEL(nf/MIC/Cl;$micAbur/$calp/95241)
il = IND(mickf/RAN:;;;;1)
mickf1 = FOR(mickf^il)

'95241' = LIS(/'Micro. vs. burnup for Isotope Am-241'/E/
 f0:bu; e5: nd; micab; micfi; micnf; mickf1)

!idformsa=11!
ndx = SEL(nd/MIC/Cl;$micAbur/$calp/5010)
vo = SEL(vo/MIC/Cl;$micALL/$calp)
vox = SEL(vo/MIC/Cl;$micAbur/$calp)
nd = FOR(ndx*vox/vo)
micab = SEL(ab/MIC/Cl;$micAbur/$calp/5010)
micfi = SEL(fi/MIC/Cl;$micAbur/$calp/5010)
mickf = SEL(kf/MIC/Cl;$micAbur/$calp/5010)
micnf = SEL(nf/MIC/Cl;$micAbur/$calp/5010)
il = IND(mickf/RAN:;;;;1)
mickf1 = FOR(mickf^il)

'5010' = LIS(/'Micro. vs. burnup for Boron 10'
 /E/f0:bu; e5: nd; micab; micfi; micnf; mickf1)

!idformsa=12!
ndx = SEL(nd/MIC/Cl;$micAbur/$calp/5011)
vo = SEL(vo/MIC/Cl;$micALL/$calp)
vox = SEL(vo/MIC/Cl;$micAbur/$calp)
nd = FOR(ndx*vox/vo)
micab = SEL(ab/MIC/Cl;$micAbur/$calp/5011)
micfi = SEL(fi/MIC/Cl;$micAbur/$calp/5011)
mickf = SEL(kf/MIC/Cl;$micAbur/$calp/5011)
micnf = SEL(nf/MIC/Cl;$micAbur/$calp/5011)
il = IND(mickf/RAN:;;;;1)
mickf1 = FOR(mickf^il)

'5011' = LIS(/'Micro. vs. burnup for Boron 11'
 /E/f0:bu; e5: nd; micab; micfi; micnf; mickf1)

!<<< End of isotope micro. xs user input

END()
Appendix F. Zenith File: Reflector
(zmhwhref1.inp)

BEGIN ('Output generator for FORCIP-P : Baffle- Reflector Region' / 0.4; 0.4)

!----------------------------- Gustavo Alonso -----------------------------!
!----------------------------- Texas A&M University -----------------------------!
!----------------------------- Westinghouse 17x17 -----------------------------!

!Case # : Descriptions

1 : Base Conditions [Average Conditions @HFP]
2 : Moderator Temperature Increase
3 : Moderator Temperature Decrease
4 : Boron Concentration Increase
5 : Boron Concentration Decrease

---- Enter your case selection --

%'Case#' = 1

!----------------------------- Burnup steps for base case -----------------------------
!----------------------------- Burnup steps for branch case -----------------------------
!----------------------------- Helios case -----------------------------
!----------------------------- Helios output file -----------------------------

$BurnupBase = PAR(0)
$BurnupBranch = PAR(0)
$Hcase = PAR('Vmhwhref')
$Hfile = PAR('Vmhwhref.hrf')
Cl = IMP(HELIOS; $Hcase/$Hfile)

---- For each case, enter the following info.: -----------------------------

Path : $Path
State : $State
Instantaneous fuel temperature : tfuchg
Reference fuel temperature : tfuref
Instantaneous moderator temperature : tmochg
Reference moderator temperature : tmoref
Instantaneous boron concentration : ppmchg
Reference boron concentration : ppmref

%if ('Case#'.eq.1) then
$Path = PAR('Path')
$State = PAR('st')
$Burnup = PAR($BurnupBase)
$calp = PAR($Path:($State)$Burnup)

tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(582.95)
 tmoref = FOR(582.95)
 ppmchg = FOR(1000)
 ppmref = FOR(1000)
CASEPARAM = LIS(96;6/'Parameters'
 /E/f0:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)}
%endif

%if ('Case#'.eq.2) then
 $Path = PAR('HMPath')
 $State = PAR(sthiM)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(599.32)
 tmoref = FOR(582.95)
 ppmchg = FOR(1000)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f0:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#'.eq.3) then
 $Path = PAR('LMPath')
 $State = PAR(stloM)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(564.59)
 tmoref = FOR(582.95)
 ppmchg = FOR(1000)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f0:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#'.eq.4) then
 $Path = PAR('HBPath')
 $State = PAR(sthiB)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(963)
 tfuref = FOR(963)
 tmochg = FOR(582.95)
 tmoref = FOR(582.95)
 ppmchg = FOR(2000)
 ppmref = FOR(1000)
 CASEPARAM = LIS(;;6/'Parameters'
 /E/f0:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

%if ('Case#'.eq.5) then
 $Path = PAR('LBPath')
 $State = PAR(stloB)
 $Burnup = PAR($BurnupBranch)
 $calp = PAR($Path: ($State)$Burnup)
 tfuchg = FOR(963)
%endif

52
tfuref = FOR(963)
tmochg = FOR(582.95)
tmoref = FOR(582.95)
ppmchg = FOR(0)
ppmref = FOR(1000)
CASEPARAM = LIS(;;6/'Parameters'
 /E/f0:tfuchg; tfuref; tmochg; tmoref;ppmchg; ppmref)
%endif

bu = SEL(uburn/MAC/C1;macBARE/$calP)

Geometry

<table>
<thead>
<tr>
<th></th>
<th>baf</th>
<th>Reflector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obtain current here

Homogenize region is bounded by surface a and b

The followings are calculated from HELIOS:

- jpa1: outward current at fuel-baffle interface (fast)
- jpa2: outward current at fuel-baffle interface (thermal)
- jma1: inward current at fuel-baffle interface (fast)
- jma2: inward current at fuel-baffle interface (thermal)
- jpb1: outward current at 1/2 reflector interface (fast)
- jpb2: outward current at 1/2 reflector interface (thermal)
- jmb1: inward current at 1/2 reflector interface (fast)
- jmb2: inward current at 1/2 reflector interface (thermal)
- ab1: absorption xs (fast)
- ab2: absorption xs (thermal)
- s12: downscatter
- d1: diffusion coefficient (fast)
- d2: diffusion coefficient (thermal)

--- USER INPUT ---

- xb: width of the homogenized region
- $macREG: 2-group, macro. XS homogenized over region between a and b
- $micREG: 2-group, micro. XS homogenized over region between a and b
- $Curleft: 2-group currents on surface a
- $Curright: 2-group currents on surface b
xb = FOR(2.8575+7.89432)
$macREG = PAR('macBARE')
$micREG = PAR('micBARE')
$Curlleft = PAR('Cufuba')
$Curight = PAR('Curef')

--- END of USER INPUT --

dr = SEL(dr/MAC/C1;$macREG/$calp)
tr = SEL(tr/MAC/C1;$macREG/$calp)
p0 = SEL(p0/MAC/C1;$macREG/$calp)
abs = SEL(ab/MAC/C1;$macREG/$calp)

flx = SEL(fx/MAC/C1;$macREG/$calp)
il = IND(flx/RAN;;;1;)
i2 = IND(flx/RAN;;;2;)
flxfast = FOR(flx^i1)
flxthm = FOR(flx^i2)
fxrat = FOR((flxfast)/(flxthm))
micabbo10 = SEL(ab/MIC/C1;$micREG/$calp/5010)
ndbo10 = SEL(nd/MIC/C1;$micREG/$calp/5010)
macabbo10 = FOR(micabbo10*ndbo10)
micabbo11 = SEL(ab/MIC/C1;$micREG/$calp/5011)
ndbo11 = SEL(nd/MIC/C1;$micREG/$calp/5011)
macabbo11 = FOR(micabbo11*ndbo11)
micabbo = FOR((macabbo10+macabbo11)/(ndbo10+ndbo11))
macabbo = FOR(macabbo10+macabbo11)

jpa = SEL(jp/CUR/C1;$Curleft/$calp)
jma = SEL(jm/CUR/C1;$Curleft/$calp)
jpb = SEL(jp/CUR/C1;$Curight/$calp)
jmb = SEL(jm/CUR/C1;$Curight/$calp)

i12 = IND(p0/RAN;;;2;1)
i21 = IND(p0/RAN;;;1;2)
il = IND(abs/RAN;;;1;)
i2 = IND(abs/RAN;;;2;)
Diff = FOR(dr/(3.0*tr))
srem = FOR(p0^i12)
s21 = FOR(p0^i21)
abl = FOR(abs^i1)
ab2 = FOR(abs^i2)
D1 = FOR(Diff^i1)
D2 = FOR(Diff^i2)
s12 = FOR(srem-s21/fxrat)

jpal = FOR(jpa^i1)
jpa2 = FOR(jpa^i2)
jma1 = FOR(jma^i1)
jma2 = FOR(jma^i2)
jpb1 = FOR(jpb*i1)
jpb2 = FOR(jpb*i2)
jmb1 = FOR(jmb*i1)
jmb2 = FOR(jmb*i2)
L1 = FOR((D1/(abl+s12))**0.5)
L2 = FOR((D2/ab2)**0.5)
L1L2 = FOR((1/(L1**2)) - (1/(L2**2)))
D12 = FOR(D1*D2)
coshxbL1 = FOR(0.5*((2.71828**((xb/L1)) + (2.71828**(-(xb/L1)))))
sinhxbL1 = FOR(0.5*((2.71828**((xb/L1)) - (2.71828**(-(xb/L1)))))
coshxbL2 = FOR(0.5*((2.71828**((xb/L2)) + (2.71828**(-(xb/L2)))))
sinhxbL2 = FOR(0.5*((2.71828**((xb/L2)) - (2.71828**(-(xb/L2)))))
jal = FOR(jpal-jmal)
ja2 = FOR(jpa2-jma2)
jb1 = FOR(jpb1-jmb1)
jb2 = FOR(jpb2-jmb2)
fxhom1 = FOR((jal*coshxbL1-jbl)/((D1/L1)*sinhxbL1))
term1 = FOR((L2/D2)*(ja2-s12*jal)/(D1*L1L2)*coshxbL2/sinhxbL2)
term2 = FOR((s12*L2/(L1L2*D12*sinhxbL2)) * (-jb1))
term3 = FOR((jb2/(D2*sinhxbL2/L2))
term4 = FOR((-s12*L1/(D12*L1L2*sinhxbL1))*(jal*coshxbL1-jbl))
fxhom2 = FOR(term1+term2+term3+term4)
fxhet = FOR(2*(jpa+jma))
fxhet1 = FOR(fxhet*i1)
fxhet2 = FOR(fxhet*i2)
adf1 = FOR(fxhet1/fxhom1)
adf2 = FOR(fxhet2/fxhom2)
ADFRFH = LIS('/ADF Baffle+Reflector' /E/f0:bu;e5:adf1;adf2)
POLRPFH = LIS('/Macro. Baffle+Ref1' /E/f0:bu;e5:D1:D2;s12;abl;ab2;micabbo; macabbo)
Homogenize region is bounded by surface a and b

--- USER INPUT ---

xb = FOR(10.75182)
$macREG = PAR('MacRE')
$micREG = PAR('MicRE')
$Curleft = PAR('Cubare')
$Curight = PAR('Curef')

--- END of USER INPUT ---

dr = SEL(dr/MAC/C1;$macREG/$calp)
tr = SEL(tr/MAC/C1;$macREG/$calp)
pO = SEL(p0/MAC/C1;$macREG/$calp)
abs = SEL(ab/MAC/C1;$macREG/$calp)

flx = SEL(flx/MAC/C1;$macREG/$calp)
i1 = IND(flx/RAN;;;;1;)
i2 = IND(flx/RAN;;;;2;)
flxfast = FOR(flx'i1)
flxthm = FOR(flx'i2)
fxrat = FOR((flxfast)/(flxthm))

micabbo10 = SEL(ab/MIC/C1;$micREG/$calp/5010)
ndbo10 = SEL(nd/MIC/C1;$micREG/$calp/5010)
macabbo10 = FOR(micabbo10*ndbo10)

micabbo11 = SEL(ab/MIC/C1;$micREG/$calp/5011)
ndbo11 = SEL(nd/MIC/C1;$micREG/$calp/5011)
macabbo11 = FOR(micabbo11*ndbo11)

micabbo = FOR((macabbo10+macabbo11)/(ndbo10+ndbo11))
macabbo = FOR(macabbo10+macabbo11)

cpa = SEL(jp/cur/C1;Curleft/$calp)
cma = SEL(jm/cur/C1;Curleft/$calp)

jpdb = SEL(jp/cur/C1;Curright/$calp)
cmb = SEL(jm/cur/C1;Curright/$calp)

i12 = IND(p0/RAN::;2;1)
i21 = IND(p0/RAN::;1;2)
i1 = IND(abs/RAN::;1;)
i2 = IND(abs/RAN::;2;)
Diff = FOR(dr/[(3.00*tr)])
srem = FOR(p0^i12)
s21 = FOR(p0^i21)
abl = FOR(abs^i1i)
ab2 = FOR(abs^i2)
D1 = FOR(Diff^i1i)
D2 = FOR(Diff^i2i)
s12 = FOR(srem-s21/fxrat)

jp11 = FOR(jp^i1i)
jp21 = FOR(jp^i2i)
jm11 = FOR(jm^i1i)
jm21 = FOR(jm^i2i)

jpbl = FOR(jpb^i1i)
jpb2 = FOR(jpb^i2i)
jmb1 = FOR(jmb^i1i)
jmb2 = FOR(jmb^i2i)

L1 = FOR(((D1/(abl+s12))^0.5))
L2 = FOR(((D2/ab2)^0.5))
L1L2 = FOR((1/(L1**2))-(1/(L2**2)))
D12 = FOR(D1*D2)

coshxbL1 = FOR(0.5*((2.71828**(xb/L1))+(2.71828**(-xb/L1))))
sinhxbL1 = FOR(0.5*((2.71828**(xb/L1))-(2.71828**(-xb/L1))))
coshxbL2 = FOR(0.5*((2.71828**(xb/L2))+(2.71828**(-xb/L2))))
sinhxbL2 = FOR(0.5*((2.71828**(xb/L2))-(2.71828**(-xb/L2))))

ja1 = FOR(jp11-jm11)
ja2 = FOR(jp21-jm21)
jb1 = FOR(jpb1-jmb1)
jb2 = FOR(jpb2-jmb2)

fxhom1 = FOR(((ja1*coshxbL1-jb1)/((D1/L1)*sinhxbL1)))

term1 = FOR(((L2/D2)*((ja1+s12*ja1)/(D1*L1L2))*coshxbL2/sinhxbL2)
term2 = FOR((s12*L2/(L1L2*D12*sinhxbL2))*(-jb1))
term3 = FOR((-jb2/(D2*sinhxbL2/L2))
term4 = FOR((-s12*L1/(D1L2L12*sinhxbL1))*(ja1*coshxbL1-jb1))

fxhom2 = FOR(term1+term2+term3+term4)

fxhet = FOR(2*(jp1+jm1))
fxhet1 = FOR(fxhet^11)
fxhet2 = FOR(fxhet^12)
adf1 = FOR(fxhet1/fxhom1)
adf2 = FOR(fxhet2/fxhom2)
ADPRF2 = LIS('ADF Baffle+Reflector'/E/f0:bu;e5:adf1;adf2)
POLRF2 = LIS('Macro. Baffle+Ref'l/E/f0:bu;e5:D1:D2:s12;ab1;ab2;
 micabbo; macabbo)
END()
INTERNAL DISTRIBUTION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>M. D. DeHart</td>
</tr>
<tr>
<td>2.</td>
<td>R. J. Ellis</td>
</tr>
<tr>
<td>3.</td>
<td>J. C. Gehin</td>
</tr>
<tr>
<td>4.</td>
<td>S. R. Greene</td>
</tr>
<tr>
<td>5.</td>
<td>S. A. Hodge</td>
</tr>
<tr>
<td>6.</td>
<td>D. T. Ingersoll</td>
</tr>
<tr>
<td>7.</td>
<td>M. A. Kulisha</td>
</tr>
<tr>
<td>8.</td>
<td>S. B. Ludwig</td>
</tr>
<tr>
<td>9.</td>
<td>G. E. Michaels</td>
</tr>
<tr>
<td>10.</td>
<td>D. L. Moses</td>
</tr>
<tr>
<td>11.</td>
<td>B. D. Murphy</td>
</tr>
<tr>
<td>12.</td>
<td>D. G. O'Connor</td>
</tr>
<tr>
<td>13-17.</td>
<td>R. T. Primm III</td>
</tr>
<tr>
<td>18.</td>
<td>C. C. Southmayd</td>
</tr>
<tr>
<td>19-23.</td>
<td>D. J. Spellman</td>
</tr>
<tr>
<td>24.</td>
<td>R. M. Westfall</td>
</tr>
<tr>
<td>25.</td>
<td>K. A. Williams</td>
</tr>
<tr>
<td>26.</td>
<td>B. A. Worley</td>
</tr>
<tr>
<td>27.</td>
<td>Central Research Library</td>
</tr>
<tr>
<td>28.</td>
<td>FMDP Library</td>
</tr>
<tr>
<td>29-30.</td>
<td>ORNL Laboratory Records (OSTI)</td>
</tr>
<tr>
<td>31.</td>
<td>ORNL Laboratory Records–RC</td>
</tr>
</tbody>
</table>

EXTERNAL DISTRIBUTION

32. M. L. Adams, Department of Nuclear Engineering, Texas A&M University, Zachry 129, College Station, TX 77843
33. Dave Alberstein, LANL, P.O. Box 1663, MS-K575, Los Alamos, NM 87545
34. G. Alonszo, Department of Nuclear Engineering, Texas A&M University, Zachry 129, College Station, TX 77843
35. Richard D. Ankney, Westinghouse Electric Company, P.O. Box 355, Pittsburgh, PA 15230-0355
36. Imelda Ariani, Department of Nuclear Engineering, P.O. Box 7909, North Carolina State University, Raleigh, North Carolina 27695-7909
37. Tim Barr, U.S. Department of Energy, Chicago Operations Office, 9700 S. Cass Avenue, Chicago, IL 60439
39. G. S. Chang, INEEL, P.O. Box 1625, MS-3885, Idaho Falls, ID 83415-3885
41. L. Groves, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551
42. D. Harrison, U.S. Department of Energy, 101 Convention Center Drive, Suite P200, Las Vegas, NV 89109
43. G. Holman, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551
44. C. Jaeger, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0759
45. Frank Motley, LANL, P.O. Box 1663, MS-K575, Los Alamos, NM 87545

46-50. Office of the ORNL Site Manager, U.S. Department of Energy, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831
54. J. M. Ryskamp, INEEL, P.O. Box 1625, MS-3885, Idaho Falls, ID 83415-3885
57. Dr. Paul Turinsky, Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695-7909

58-78. Angela L. Woods, Technical Editor, Amarillo National Resource Center for Plutonium, 600 S. Tyler, Suite 800, Amarillo, Texas 79101