The Second-Order Tune Shift with Amplitude
for Octupole-induced Resonances in Storage Ring

The purpose of this note is to analyze the octupole-induced resonances, to lowest order, in a synchrotron and storage ring. When the Hamiltonian with octupole term is transformed to action-angle variables, it is found that the amplitude-dependent tune shift terms are composed of two types: terms of second-order in betatron oscillation amplitude of a particle and terms of fourth-order in oscillation amplitude. Obtaining fourth-order terms requires complicated analysis even with the first-order perturbation theory employed. Treatment of this analysis will be the subject of a subsequent note. Second-order terms are straightforward and simple to calculate, and therefore we treat them here first.

The Hamiltonian for a general octupole field in a storage ring is given by:

$$H_1 = \frac{eA_s}{c} = \frac{1}{4!B\rho} \text{Re}[\left(\frac{\partial^3 B_y}{\partial x^3} + i \frac{\partial^3 B_z}{\partial y^3}\right)(x + iy)^4],$$

where A_s is the vector potential and $B\rho$ is the magnetic rigidity.

Normal octupole component:

$$H_1 = \frac{1}{24B\rho} \frac{\partial^3 B_y}{\partial x^3} (x^4 - 6x^2y^2 + y^4).$$

Skew octupole component:

$$H_1 = \frac{1}{6B\rho} \frac{\partial^3 B_z}{\partial y^3} (x^3y - xy^3).$$

Total scaled Hamiltonian, including both quadrupole and normal octupole terms,
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
is then given by:

\[H = \frac{p_z^2}{2} + \frac{K_xx^2}{2} + \frac{p_y^2}{2} + \frac{K_yy^2}{2} + \frac{B'''}{24B\rho}(x^4 - 6x^2y^2 + y^4), \]

(4)

where \(B''' = \partial^3 B_y/\partial x^3 \).

The equations of motion corresponding to the octupole term are:

\[\Delta x' = -\frac{B'''_l}{6B\rho}(x^3 - 3xy^2) \]

(5)

\[\Delta y' = \frac{B'''_l}{6B\rho}(3x^2y - y^3). \]

We now perform the canonical transformation to action-angle variables via the generating function:

\[F(x, y, \phi_x, \phi_y; s) = -\frac{x^2}{2\beta_x}(\tan \phi_x + \alpha_x) - \frac{y^2}{2\beta_y}(\tan \phi_y + \alpha_y), \]

(6)

where \(\alpha \) and \(\beta \) are the usual Twiss parameters:

\[\alpha_x = -\frac{1}{2}\frac{d\beta_x}{ds}, \quad \frac{d\alpha_x}{ds} = \beta_x K_x - \gamma_x \quad ; z = x, y. \]

(7)

The old variables can then be expressed in terms of action and angle variables,

\[z = \sqrt{2\beta_x J_z} \cos \phi_x, \]

\[p_z = -\frac{z}{\beta_x}(\tan \phi_x + \alpha_x) = -\frac{\sqrt{2\beta_x J_z}}{\beta_x} \cos \phi_x(\tan \phi_x + \alpha_x). \]

(8)

It is easy to see that the actions \(J_x \) and \(J_y \) are constants of the motion for the unperturbed Hamiltonian. They are given by:

\[J_x = \frac{(\beta_x p_x + \alpha_x z)^2 + z^2}{2\beta_x} = \frac{\epsilon_x}{2}, \]

(9)

where \(\epsilon_x \) is the emittance of a beam in the \(x \)-plane. The new Hamiltonian is then
determined from
\[h = H + \frac{\partial F(x, y, \phi_x, \phi_y)}{\partial s}. \]

As a result, the linear term of the new Hamiltonian is
\[h_0 = \frac{J_x}{\beta_x} + \frac{J_y}{\beta_y}. \]

and the octupole term is
\[h_1 = \frac{B'''}{24 B \rho} (x^4 - 6x^2y^2 + y^4) \]
\[= \frac{B'''}{24 B \rho} \left[(2\beta_x J_x)^2 \cos^4 \phi_x - 6(2\beta_x J_x)(2\beta_y J_y) \cos^2 \phi_x \cos^2 \phi_y \right. \]
\[+ \left. (2\beta_y J_y)^2 \cos^4 \phi_y \right] \equiv V(J_x, J_y, \phi_x, \phi_y; s). \]

By using
\[\cos^4 \phi_x = \frac{\cos 4\phi_x}{8} + \frac{\cos 2\phi_x}{2} + \frac{3}{8} \]
\[\cos^2 \phi_x = \frac{\cos 2\phi_x + 1}{2} \]
and
\[\cos 2\phi_x \cos 2\phi_y = \frac{1}{2} [\cos 2(\phi_x + \phi_y) + \cos 2(\phi_x - \phi_y)] \] ,

\[V \] can be rewritten as:
\[V(J_x, \phi; s) = \frac{B'''}{48 B \rho} \left[\beta_x^2 J_x^2 (\cos 4\phi + 4 \cos 2\phi + 3) \right. \]
\[- 6\beta_x \beta_y J_x J_y \{ \cos 2(\phi_x + \phi_y) + \cos 2(\phi_x - \phi_y) + 2 \cos 2\phi_x \}
\[+ 2 \cos \phi_y + 2 \} + \beta_y^2 J_y^2 (\cos 4\phi_y + 4 \cos 2\phi_y + 3)]]. \]

In the above equation, the terms that are independent of \(\phi \) introduce the lowest-order tune shift with amplitude (which is the second-order in oscillation
amplitude). The ϕ-dependent terms are then the object of the canonical perturbation theory, which leads to the fourth-order tune shift with amplitude. This will be described in a subsequent note. Here we consider the ϕ-independent terms only.

$$V_0 = \frac{B'''_{zz}}{16B\rho} \beta_z^2 J_z^2 - \frac{B'''_{zy}}{4B\rho} \beta_z \beta_y J_z J_y + \frac{B'''_{yy}}{16B\rho} \beta_y^2 J_y^2.$$ \hfill (16)

From this we can directly extract the tune shifts, which are given by

$$2\pi \Delta \nu_x = \frac{\partial V_0}{\partial J_z} = \frac{B'''_{zz}}{8B\rho} \beta_z^2 J_z - \frac{B'''_{zy}}{4B\rho} \beta_z \beta_y J_y$$

$$2\pi \Delta \nu_y = \frac{\partial V_0}{\partial J_y} = -\frac{B'''_{zy}}{4B\rho} \beta_z \beta_y J_z + \frac{B'''_{yy}}{8B\rho} \beta_y^2 J_y.$$ \hfill (17)

In order to relate the above expressions to those given by Collins [1], who reached the same formula by a different approach, we define:

$$m \equiv \frac{B'''_{zz}}{6B\rho} \beta_z^2 = \frac{B'''_{zz}}{6B\rho} \delta(s-s_k)\beta_z^2$$

$$\tilde{m} \equiv \frac{B'''_{zz}}{6B\rho} \beta_y^2 = \frac{B'''_{zz}}{6B\rho} \delta(s-s_k)\beta_y^2$$

and

$$a^2 = 2J_z, \quad b^2 = 2J_y.$$ \hfill (19)

Finally, summing over all the octupoles around the ring, we have:

$$2\pi \Delta \nu_x = a^2 (3/8) \Sigma m - b^2 (3/4) \Sigma m$$

$$2\pi \Delta \nu_y = -a^2 (3/4) \Sigma m + b^2 (3/8) \Sigma \tilde{m}.$$ \hfill (20)
Reference