LLNL's program on multiscale modeling of polycrystal plasticity

PDF Version Also Available for Download.

Description

At LLNL a multiscale modeling program based on information-passing has been established for modeling the strength properties of a body-centered-cubic metal (tantalum) ,. under conditions of extreme plastic deformation. The plastic deformation experienced by an explosively-formed shaped-charge jet is an example of �extreme deformation�. The shaped charge liner material undergoes high strain rate deformation at high hydrostatic pressure. The constitutive model for flow stress, which describes the deformation, is highly dependent on pressure, temperature, and strain-rate. Current material models can not be extrapolated to these extreme conditions because the underlying mechanisms of plastic deformation are poorly reflected in the models ... continued below

Physical Description

1.8 Megabytes

Creation Information

Diaz De La Rubia, T.; Holmes, N. H.; King, W. E.; Lassila, D. H.; Moriarty, J. A. & Nikkel, D. J. April 27, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

At LLNL a multiscale modeling program based on information-passing has been established for modeling the strength properties of a body-centered-cubic metal (tantalum) ,. under conditions of extreme plastic deformation. The plastic deformation experienced by an explosively-formed shaped-charge jet is an example of �extreme deformation�. The shaped charge liner material undergoes high strain rate deformation at high hydrostatic pressure. The constitutive model for flow stress, which describes the deformation, is highly dependent on pressure, temperature, and strain-rate. Current material models can not be extrapolated to these extreme conditions because the underlying mechanisms of plastic deformation are poorly reflected in the models and laboratory experiments are limited to pressures orders of magnitude less than actual pressures. This disparity between actual deformation conditions and those that can be attained in laboratory experiments is the principle motivation behind the multiscale modeling program. The fundamental elements of LLNL� s multiscale modeling program are distinct models at the atomistic, microscale and mesoscale/continuum length scales. The information that needs to be passed from the lower to higher length scales has been carefully defined to bound the levels of effort required to ''bridge'' length scales. Information that needs to be generated by the different simulations has been specified by a multidisciplinary steering group comprised of physicists, materials scientists and engineers. The ultimate goal of the program is to provide critical information on strength properties to be used in continuum computer code simulations. The technical work-plan involves three principle areas which are highly coupled: 1) simulation development, 2) deformation experiments and 3) characterizations of deformed crystals. The three work areas are presented which provide examples of the progress of LLNL's program.

Physical Description

1.8 Megabytes

Subjects

Keywords

STI Subject Categories

Source

  • 7th International Symposium on Plasticity, Cancun, Mexcio, January 5-13, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00003394
  • Report No.: UCRL-JC-131096
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 3394
  • Archival Resource Key: ark:/67531/metadc674789

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 27, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 24, 2016, 3:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Diaz De La Rubia, T.; Holmes, N. H.; King, W. E.; Lassila, D. H.; Moriarty, J. A. & Nikkel, D. J. LLNL's program on multiscale modeling of polycrystal plasticity, article, April 27, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc674789/: accessed October 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.