Application of the metal compression forming process for the production of an aluminum alloy component

PDF Version Also Available for Download.

Description

Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. MCF applies pressure on the entire mold face, thereby directing pressure on all regions of the casting. It also enhances the solidification rate of the metal, promoting a very fine grain structure which results in improved properties. Consequently, the process is capable of producing parts with properties close to that of forgings, while retaining the near net shape, complex geometry, and relatively low cost of the casting process.

Physical Description

8 p.

Creation Information

Viswanathan, S.; Porter, W.D.; Ren, W. & Purgert, R.M. January 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. MCF applies pressure on the entire mold face, thereby directing pressure on all regions of the casting. It also enhances the solidification rate of the metal, promoting a very fine grain structure which results in improved properties. Consequently, the process is capable of producing parts with properties close to that of forgings, while retaining the near net shape, complex geometry, and relatively low cost of the casting process.

Physical Description

8 p.

Notes

OSTI as DE97001654

Source

  • 126. annual meeting of the Minerals, Metals and Materials Society, Orlando, FL (United States), 9-13 Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97001654
  • Report No.: CONF-970201--2
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 434403
  • Archival Resource Key: ark:/67531/metadc674751

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Jan. 25, 2016, 6:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Viswanathan, S.; Porter, W.D.; Ren, W. & Purgert, R.M. Application of the metal compression forming process for the production of an aluminum alloy component, article, January 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc674751/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.