Coherent electromagnetic field imaging through Fourier transform heterodyne

PDF Version Also Available for Download.

Description

The authors present a detection process capable of directly imaging the transverse amplitude, phase, and if desired, Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LIDAR systems, Fourier Transform Heterodyne (FTH) incorporates transverse spatial encoding of the local oscillator for image capture. Appropriate selection of spatial encoding functions, or basis set, allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging is accomplished on a single element detector requiring no additional scanning or moving components, and (2) a wide variety of appropriate spatial encoding functions exist that may be adaptively ... continued below

Physical Description

22 p.

Creation Information

Cooke, B. J.; Laubscher, B. E.; Olivas, N. L.; Goeller, R. M.; Cafferty, M.; Briles, S. D. et al. December 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The authors present a detection process capable of directly imaging the transverse amplitude, phase, and if desired, Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LIDAR systems, Fourier Transform Heterodyne (FTH) incorporates transverse spatial encoding of the local oscillator for image capture. Appropriate selection of spatial encoding functions, or basis set, allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging is accomplished on a single element detector requiring no additional scanning or moving components, and (2) a wide variety of appropriate spatial encoding functions exist that may be adaptively configured in real-time for applications requiring optimal detection. In this paper, they introduce the underlying principles governing FTH imaging, followed by demonstration of concept via a simple experimental setup based on a HeNe laser and a 69 element spatial phase modulator.

Physical Description

22 p.

Notes

OSTI as DE99002490

Source

  • Other Information: PBD: [1998]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99002490
  • Report No.: LA-UR--98-3464
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/348913 | External Link
  • Office of Scientific & Technical Information Report Number: 348913
  • Archival Resource Key: ark:/67531/metadc674534

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 29, 2016, 1:31 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cooke, B. J.; Laubscher, B. E.; Olivas, N. L.; Goeller, R. M.; Cafferty, M.; Briles, S. D. et al. Coherent electromagnetic field imaging through Fourier transform heterodyne, report, December 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc674534/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.