Light weight cellular structures based on aluminium

PDF Version Also Available for Download.

Description

An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

Physical Description

10 p.

Creation Information

Prakash, O.; Embury, J.D.; Sinclair, C.; Sang, H. & Silvetti, P. February 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

Physical Description

10 p.

Notes

OSTI as DE97003129

Source

  • Minerals, Metals, and Materials Society conference, Orlando, FL (United States), 9-13 Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97003129
  • Report No.: LA-UR--96-4083
  • Report No.: CONF-970248--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 459320
  • Archival Resource Key: ark:/67531/metadc674508

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1997

Added to The UNT Digital Library

  • July 25, 2015, 2:21 a.m.

Description Last Updated

  • Feb. 25, 2016, 8:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Prakash, O.; Embury, J.D.; Sinclair, C.; Sang, H. & Silvetti, P. Light weight cellular structures based on aluminium, article, February 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc674508/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.