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Abstract 

In models with an anomalous abelian symmetry broken at a very large scale, 
we study which requirements to impose on the anomalous charges in order to 
prevent standard model fields from acquiring large vacuum expectation values. 
The use of holomorphic invariants to study D-flat directions for the anoma- 
lous symmetry, proves to be a very powerful tool. We find that in order to 
forbid unphysical vacuum configurations at that scale, the superpotential must 
contain many interaction terms, including the usual Yukawa terms. Our analy- 
sis suggests that the anomalous charge of the p-term is zero. It is remarkable 
that, together with the seesaw mechanism, and mass hierarchies, this implies a 
natural conservation of R-parity. 

u Berkeley - 
CT93-0132. 

ER40272. 

2Supported in part by the Human Capital and Mobility Programme, contract CHRX- 

3Supported in part by the United States Department of Energy under grant DE-FG0586 

4Laboratoire associC au CNRS-URA-DOO63. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document, 



1 Introduction 
Many effective superstring models have an anomalous Abelian gauge symmetry. 
Its anomalies are cancelled through the four-dimensional field theory remnant [l] 
of the Green-Schwarz mechanism [2], and it is naturally broken at a scale 5, a 
small computable factor times the Planck scale. 

This anomalous symmetry may d a y  a role in various domains of relevance 
for the low energy world [3]-[9]. For example, if one considers an Abelian family 
symmetry [lo, 111 to try and explain the mass hierarchies observed in the quark 
and charged lepton sector, this symmetry is most probably anomalous [12, 51. 
By naturally providing a small expansion parameter, [/Mpl, this symmetry 
is suited to the analysis of lepton and quark mass hierarchies [13]. The same 
symmetry might also trigger supersymmetry breaking [14, 15, 161. Its role has 
also been advocated in predicting neutrino mixing patterns [17, 18, 191, and as 
possible solutions to the doublet-triplet splitting in grand unified models [20,21]. 

In this context, it is especially important to characterize the flat directions 
along which the breaking of this anomalous symmetry occurs. In this letter, 
we wish to show that there are simple and powerful methods to undertake 
this task. Since t, the scale of breaking of this U(l)x symmetry is close to the 
Planck scale, there are severe constraints from phenomenology: Supersymmetry 
and the gauge symmetries of the standard model must remain unbroken. This 
means that all D and F terms must vanish, and that no field of the standard 
model can get a vacuum expectation value (vev) along these directions, since 
t is much larger than the electroweak scale. This remains true even if the 
anomalous symmetry plays a role in supersymmetry breaking. Indeed, in the 
work of Ref. [14] where such a role is emphasized, it is found that < D x  >< E2 
which indicates that the analysis which follows is perfectly relevant to this case. 

In a classic paper [22], the correspondance between D-flat directions (i.e. 
field codigurations for which D-terms vanish) and extrema of holomorphic in- 
variant polynomials was established. These ideas were recently applied to the 
anomalous U(1) by Dudas et a2 [23]. Following these authors, we also base our 
analysis on the construction of holomorphic invariants: invariants of the stan- 
dard model [24], and then, in order to discuss Dx-flatness (and F-flatness), 
invariants under the anomalous U(l)x symmetry. 

The requirement that no standard model fields charged under the anomalous 
Symmetry acquire vev’s of order 5 give powerful constraints on their anomalous 
charges, which in turn yield valuable information on several outstanding prob- 
lems of low energy supersymmetry: the mu-problem, the origin of R-parity [25] 
or the order of magnitude of its violations (and more generally of baryon and 
lepton number), and the neutrino mass generation through the seesaw mecha- 
nism [26]. About the latter, we will see that right-handed neutrino superfields 
(in our discussion those are standard model singlets which do not get a vev 
at.the scale Q play an important role in the discussion of the U(1)x-breaking 
directions. 
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We will start in the next Section by describing the method used and illus- 
trating it on some examples, with only one anomalous U(l)x broken at the 
scale 5. We then turn in Section 3 to a discussion of the possible solutions for 
the mu-term. In Section 4, we show how these considerations naturally suggest 
R-parity conservation. Finally in Section 5 ,  we discuss the relevance of this to 
more complicated situations, such as complete models of mass hierarchies. 

2 The power of D-flatness and holomorphy 
We study in what follows the directions along which occurs the breaking of an 
anomalous U(l)x symmetry. The U(1)x D-term DX is of the form: 

Dx - C X i 1 0 i 1 2  - c2 (1) 
i 

where Xi is the X-charge of a generic scalar field Oi and 5 is the anomalous 
Fayet-Iliopoulos term. We consider three types of fields: 

0 fields which acquire a vacuum expectation value of order 5 when the U(l)x 
symmetry is broken: we denote them generically by 8. 

0 fields charged under SU(3) x SU(2) x U ( l ) ,  typically the fields found in the 
MSSM; these fields should not acquire vacuum expectation values. They 
appear in invariants which form the building blocks used to construct 
terms in the superpotential. Typically for the supefields in the MSSM: 

HdHu , ,LiHdEk 2 QiEkHu , 
LiHu , Qi&Lj ,LiLjEk ,EJj& , (2) 

where i, j, k are family indices. We do not list the higher oder invariants 
which can be found in the literature [24]. We will denote these invariants 
generically by S. 

0 scalar fields, singlet under the standard model gauge group, which do not 
receive vacuum expectation values of order 5. These fields are natural 
candidates for the right-handed neutrinos and we will denote them by m. 
Typically, for these fields to be interpreted as right-handed n6utrinos, one 
needs terms in the superpotential to generate Majorana mass terms: 

wM - M ~ V ~  (3) 

W D  - sm (8/M)’ (4) 

and terms to generate Dirac mass terms for the neutrino: 

where S is the invariant S = LH,. The presence of both terms (3) and 
(4) is necessary to implement the seesaw mechanism [26]. . 
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Finally, we will denote by < 91, 9 2 , - . - ,  an > the direction in scalar field pa- 
rameter space where the fields 91, 9 2 ,  -. -, Gn acquire a common vacuum expec- 
tation value of order t. Our basic requirement is to choose the X-charges and 
the superpotential so as to forbid all solutions to the vacuum equations except 
those corresponding to < 81,82,. - -, 8, >. 

Since we work in the context of global supersymmetry unbroken at the 
scale E,  directions in the scalar field parameter space will be determined by 
the conditions DX = 0 and Fi = dW/d9i = 0. For instance, the assump- 
tion of Dx-flatness (Dx = 0 in (1)) automatically takes care of the directions 
< 91, 9 2 ,  - .  . , a,., > where Xi  < 0 for i E {1,--- ln}. 

There is necessarily some gauge symmetry other than the anomalous U( l)x, 
for example the symmetries of the standard model. D-flatness for these sym- 
metries plays an important role for S invariants: it tends to align the fields 
present in S. Take for example S = 9 1 9 2 .  Invariance under U(1)y implies 
that the hypercharges of and 9 2  are opposite: Y1 = -Yz. Then the cor- 
responding D-term reads: D y  - q(J91J2 - I@2l2) + - -. And D y  = 0 implies 
< 91 >=< 9 2  >E vs. The contribution to D x  from these fields is Z S I V ~ ~ ~ ,  
where IS is the total X-charge of S. Hence a positive ZS wilI allow a vacuum 
with the flat direction < @lap2 >. 

On more general grounds, it has been shown [22] that there is a systematic 
classification of the solutions to vanishing D-terms using holomorphic invariant 
polynomials. We will assume in what follows that there are enough gauge sym- 
metries to align the fields in each of the invariants S that we consider. We now 
proceed with different examples with an increasing number of fields. 

Models with 2 fields. 

Model with 8 (X-charge x) and 3 (X-charge x ~ ) .  With these fields the U(1)x 
D-term is: 

There are three different flat directions to consider: the desired < 8 >, and 
< E >l and < 8,Z > which we wish to avoid. The direction < 8 > is favored 
by choosing x > 0, and < 3 > is forbidden if x r  < 0. The third direction 
is allowed by Dx = 0. However since z s r  < 0, we can form a holomorphic 
invariant involving and 8. 

The simplest possible invariant in the superpotential is Fen but the come- 
sponding F-terms forbid < 8 > and < 8 , s  >. Thus we lose the possibility of 
a Dx-flat direction with < 8 >- E. Since all possible flat directions are lifted, 
supersymmetry is spontaneously broken. 

We must therefore require the presence of an invariant ?On with p _> 2 and 
n # 0 mod@) to forbid only the direction < 3, 8 >. The case p = 2 corresponds 
precisely to a Majorana mass term for the right-handed neutrino 3, once 8 is 
dowed a vev. In this case, n = 2k+ 1 and there must be the following relation 

- 
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between the X-charges: 
“w=-- 2 k + 1  
2 2 ’  

so that is l i e  a spinor, and 8 a vector. C. 

Model with 8 (X-charge x > 0 )  and S (X-charge xs < 0).  With one field and 
one invariant, we have 

Dx = XlS12 +xsI.s12 - p . (7) 

As previously, Dx-flatness kills the direction < S > and allows < 0 >. The 
main difference is that S being a composite field, S = nLl @?, the F-terms 
corresponding to the invariant Steu are Fj = tnj(nizj @?)@F-lSt-lP and 
Fg = uSteU-l; they therefore only forbid the direction < S, 8 >, even for t = 1. 

One is therefore left with a vev of order along the single direction < 8 >. It 
is certainly encouraging that linear terms in S can appear in the superpotential. 
Terms such as Q&H,(8/M)n are needed to implement hierarchies among the 
Yukawa couplings. Conversely, requiring that 

with n integer # 0, is sufficient to insure the linear appearance of the invariant 
S. In this case, the vacuum structure is inexorably related to the Yukawa 
hierarchies. However if xs = 0, there is no danger associated with S, and the 
above discussion does not apply. 

Models with 3 fields. 

Model with 8 (x > 0), fi (XT) and S (xs). Its analysis depends on the sign of 
the X-charges of R and S. 

A-) Let us first discuss the case XT,XS < 0. The vanishing of the DX term 

D~ = .lei2 + xTlZ12 + ~ ~ l ~ ~ 1 ~  - s2 (9) 

forbids the directions < >, < S > and < m,S >, but allows the directions 
< 8,m >, < 8,s > and 
forbids the desired direction < 8 >. We must require the presence of an invariant 
N en with q 2 2 and n # 0 mod(q), to disallow the directions < 8,m > and 
< 8,X’,S > (p = 2 generates masses for m). The last direction < S,8 > 
is disposed of by adding an invariant of the form StP ,  which is ’also allowed 
given the signs of the charges. Consider this model for two different choices of 
invariants. 

8,m,S >. We saw earlier that an invariant 

-Q 
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Y a-) Suppose S = LH, and search for charges which allow for the couplings 
(3) and (4) of the seesaw mechanism. One can easily show that necessarily: 

where k and k' are integers. This assignment automatically forbids a term S9q 
which would break R-parity. One obtains 

W 3 E2g2k+l lxLHUek+k'+l (LH,)2f12kf+l . . . (11) 

where the last term does not break R-parity and gives an extra contribution to 
neutrino masses. 

b-) Take S = HdH,, the so-called p-term, the mass term which plays a cen- 
tral role in all supersymmetric extensions of the Standard Model. Phenomenol- 
ogy requires in the low energy theory a term linear in S with a mass of the order 
of the electroweak scale. If this term comes from a supersymmetric term in the 
superpotential, one is left with two possibilities: 

0 the invariant HdHueP which disposes of the unwanted direction < S, 9 >. 
The corresponding p-parameter is 

P - M ( $ ) p ,  

as long as xs/z = -p, and phenomenology requires p to be an extremely 
large integer. 

0 - the only other invariant linear in S which kills the direction < S, 9 > is 
N S P .  One recovers the invariants of the previous example: eq. (11) or 
more generally if we assume a coupling 36qk+' (0 < T < q and q 3 2): 

where k + k' + 1 = p .  The p-parameter reads: 

k+k'+l 

p = < X > ( & )  . 

This is somewhat a more hopeful situation since we expe t in ny case 
that <w>< M and < 0 > / M <  1. But it requires < E  ># 0 and the 
coupling xS9P breaks R-invariance if is to be interpreted as a right- 
handed neutrino ( i e .  if it has a non-zero Dirac-type coupling). If q = 2, 
then m mixes with the right-handed neutrinos and has R-parity equal to 
-1. 
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Alternatively if there is no term in the superpotential linear in HdH,, 
there may be a non-holornorphic one in the Kiihler potential [27]. The 
only possible choice is 

K 3 HdHURgp + h.c. , 
but in this case. 

P 
p = m 3 / 2  (7) <R* > i 

and since we know that < >< M ,  we obtain p 
probably too small for phenomenological applications. 

B-) We now turn to the case XF < 0 and zs > 0. The vanishing of D x  
avoids only < R >. The need to dispose of the < S > direction imposes an 
invariant R S  (hence XF = -zs) which forbids the directions < R >, < S >, 
< R , S  >, and < R , S , 8  >. The last direction < R 1 8  > is taken care of by an 
invariant T e n  (n # 0 mod(q)), which in the simplest case is R282k+1. 

a-) When S = LH,, the Dirac neutrino mass term ( R S )  appears here with 
no suppression factor < 8 > / M .  

b-) When S is the p-term, it cannot appear by itself in the superpotential, 
although it is allowed in the K a e r  potential [27] as 

K 3 HdHu8*q + h.c. . 
- But since the X-charge of HdH, must be half-odd integer (to forbid the invariant 
Nem that would suppress the direction < 8 >), this term cannot appear in the 
Kiihler potential either. Hence the presence of a singlet with charge XZ < 0 
is enough to forbid this interesting possibility for generating a low-energy mu- 
Fkrm [SI. One can still generate a p-term through the invariant RHdH, in the 
superpotential, with 

(17) 

p - < R > .  (18) 

Model with one field 8 (x > 0), and two composites, SI (XI) and S2 (x2). 

If one of the S has a positive-charge (say 21 > 0), we are left with the 
corresponding direction (< SI >) since no F-term can kill a single < S > and 
the Dx-term only forbids the other < S > (< S2 >). 

We therefore require both . X I ,  2 2  < 0, in which case Dx-flatness deals with 

< S1,&,8 >, and the invariant S;eU with the remaining < S2,8 >. When 
1z11/z and I x ~ ~ / x  are integers, this can be used to generate mass hierarchies in 
the quark sector [4]-[9] with 

< Si >, < 5'2 > and < Sl1S2 >, the invariant S ; P  with < Sile > and 

Si = Q-Wd , Sz = Q-iiu . (19) 
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We come to the important conclusion that the mere determination of the 5- 
vacuum requires Yukawa terms in the superpotential. Alternatively, their ab- 
sence from the superpotential (supersymmetric zeros) can unleash unwanted flat 
directions in the [-vacuum. 

Models with 0 (x > 0) ,  E1 ( X I )  and x2 (x2). 

If x1,x2 < 0,  Dx-flatness excludes < El >, < 7 7 2  > and < N1, N2 >. 
Requiring Majorana mass terms imposes as seen above that Ix11/x = (2k+ 1)/2 
and Ix21/x = (21 + 1)/2. The Majorana mass matrix then reads: 

- -  

If XI < 0 and 2 2  > 0, only the direction < 3 1  > is disposed of by Dx. 
We need an invariant of the form to kill the direction < E2 > and an 
invariant n:02k+1 to deal with < El, 0 >. This in turn imposes constraints on 
the X-char&: 

2 1  2 k + l  2 2  2k+1  
X 2 ,  X 21 I 

-=-- -=- 

If I = m(2k + l) ,  the lowest invariants in the superpotential are 

w E;92k+ll x l ~ ( k + l ) m  1 - N1N2 - 8 k - (22) 

These three invariants obey a polynomial constraint and do not sate to elim- 
inate <.N2,0 >, along which F7iil can vanish, as two invariants are linear in 
Nl . 

A case of interest is m = 1 for which one obtains a mixed Majorana mass 
term E1E20k. For m # 1, one of the E stays massless after [-breaking. 

- 

3 Mu-term 
We will not continue a general study adding fields one by one. The analysis 
becomes more and more involved as the number of fields increases but one 
can always restrict to a subset of fields and the previoys examples with two or 
three fields may provide good insights to treat the more complicated cases. Let 
us illustrate this on an example which makes heavy use of models a-) and b-) 
discussed above, in which additional constraints on the charges emerge naturally. 

It is well-known that the gauge symmetries of the supersymmetric stan- 
dard model do not make any distinction between the invariants So G HdH, 
and Si LiH, (i being a family index). The first one appears in the p-term 
whereas the others correspond to R-parity violating terms in the superpotential. 
As discussed in model a-), they also appear in the seesaw mechanism in conjunc- 
tion with a Standard Model singlet Fi which plays the role of a right-handed 
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neutrino. Sidarly,  the discussion of model b-) leads to the conclusion that a 
possible solution to the p-problem involves another standard model singlet Ro. 
We therefore consider the following set of fields and X-charges 

- - 
(23) 

e N~ so Ni si x/x = 1 3ko+l 3kh+2 2ki+l  2k:+1 
3 3 2 2 

The superpotential then includes the terms 

w 3 p i S j e k ; + k i + l ,  r i z . e k i + k j + l  3 ~ o S O e k o + k b + l  , o  z 3 e 3 k o + l  . . . (24) 

(terms mixing no and Pi are highly non-renormalisable). It is invariant under 
a Rp parity defined as +1 for TO and SO and -1 for pi and Si. This is why 
we have not chosen half-odd charges for ZO (and thus SO): mixed terms NoNi 
would have led to Rp violations. 

There are no supersymmetric mass term for no; it is therefore induced by 
supersymmetry breaking and it is of the order of the scale of supersymmetry 
breaking 5. Assuming that renormalisation group evolution turns the corre- 
sponding scalar mass-squared term negative, the potential for the TO scalar 
field has the form: 

-- 

- (&)2(3k0+1)  (25) v = -m2)No)2 + Z ~ ~ o ) 4  

Its minimization leads to the following value for the p-term: 

The terms involving Rj and Si in (24) are precisely the ones necessary to im- 
plement the seesaw mechanism. 

and 
so:  

Let us note here that if we had taken the more general charges for 

xso _ _  (2p  + l)kk + 7-0 -=- XF0 (2p  + 1)(h + 1) - 7-0 -- 
2 2 p + l  ’ X 2p+  1 

with p 2 1 and 0 < TO < 2p + 1, we would have obtained a mu-term of order: 

* M 2 ( p - 1 )  M 2 P - l )  [kh ( 2 p - l ) - Z k o + r 0 - 2 ] / ( 2 ~ - 1 )  

p - (  6 ) (3 - (27) 

If we take M to be of the order of the Planck scale, the first factor is a scale 
intermediate between 5 and Mpl (unless p = 1) and the suppression due to the 
second factor can only be minor. We conclude that we must take p = 1 in order 
to have a low energy mu-term. We are thus led to the choice (23) of quantum 
numbers. The corresponding model with the superpotential terms (24)  leads at 
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low energy to the so-called (M+l)SSM model (minimal supersymmetric model 
plus an extra singlet), with the important difference that the field FO is not 
a complete gauge singlet: it is charged at least under the anomalous U(l)x 
symmetry. 

We discussed in detail the previous case because it-is illustrative of the power 
of the method and how far one can take it. Let us now summarize for further 
use the different scenarios that we have encountered, depending on the value of 
the charge 

. 

x‘” XH, + XH, (28) 

and possibly the charge of the associated singlet X x o .  We only consider sce- 
narios which do not lead to an obvious breaking of R-parity (for example if we 
need < ZO ># 0, then ZO has R-parity +1). 

if X[pI/z = -po with po integer, then 
PO 

p = M ( & )  (29) 

if X[~’]]/Z = + To)/3 and Xxo//5 = - ( 3 b  + 3 - To)/3 with ko and 
kh integers and TO = 1 or 2, then 

This is the case just discussed. 

if X [ d / z  = -Xxo/z = ( 3 b   TO)/^ with ko integer and TO = 1 or 2, then 

p=<Zo> .  

0 fisally, if XIPI = 0, the HdH, term is unseen by the anomalous symmetry 
and therefore not likely to lead to vevs of order e for the Eggs doublets, in 
the direction where the U ( l ) x  is broken: indeed the direction < H,, Hd > 
is taken care of by the requirement of Dx-flatness. If the p-term does not 
appear in the superpotential, supersymmetry breaking can then lift the 
remaining flat direction (1 < 8 > [ = e/&, [ < H, > I = I < Hd > I = 
V I  1231. 

We will see below that anomaly cancellation conditions tend to give integer 
values for X [ p l ,  which disfavours the second and third possibilities. And the 
first one requires too large values of po if M is of the order of the PIanck scale. 
The last solution (X[’1 = 0), together with the absence of the p-term in the 
superpotential, seems to us favoured. We offer no reason for this absence, except 
by deferring to string lore according to which there are no mass terms in the 
superpotential. 
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4 R-parity 
We now show that the constraints discussed above on the U(1)x quantum num- 
bers of the low-energy fields may naturally lead to conserved R-parity. The pres- 
ence of standard model singlets Fi necessary to implement the seesaw mecha- 
nism plays in this respect a key role. 

We assume the seesaw mechanism requiring the presence of the invariants: 

f l i f l j & j  + LiNjH,enrj (32) 

We saw that, in order not to spoil the (-vacuum, the powers n:i must be odd 
integers, or equivalently the X-charges XE~ of the fields fli must be, in units 
of x, half-odd integers: 

XFi - 2ki + 1 
X 2 

where ki is an integer. Henceforth we set 2 = 1. The last term in (32) determines 
the R-parity of the right-handed neutrino superfields to be negative. 

Let us study the X-charges of possible standard model invariant operators 
made up of the basic fields Q i ,  iii, &, Li, Ei (i being a family index) and of the 
Eggs fields H,, and H d .  

The cubic standard model invariants that respect baryon and lepton numbers 
are, in presence of the gauge singlets zi, 

(33) - - -- 

QidjHd Qii i jHu,  LiEjHd,  LilVjHu, (34) 

with charges Xj?, X$], XI:] and Xi;] respectively. To avoid undesirable flat 
directions, all must appear in the superpotential, restricting their X-charges to 
be of the form 

X!u’d.e’”l = - nu,d,e,v 

where n2d*e*v are all positive integers or zero. 
We now turn to the invariants which break R-parity. We have already en- 

countered the quadratic invariants LiH, whose charges are determined by the 
seesaw couplings (32) to be half odd integers 

(35) 31 i j  , 

2 (kj  - nrj) + 1 
2 X L ~ H ,  = 

Consider the cubic R-parity violating operators, LiLjEk, LiQj& and f i i a j d k -  
The charges of the first two, which violate lepton number, satisfy the relations: 

X L i L j Z k  = xg + xy - x[p’l - x- Nr 

= x$ + xi;] - x[pI - x- Nr 

(37) 

(38) 

where the index 1 can be chosen arbitrarily. 
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As a consequence, if X[P] is integer, -PO, both charges are half-odd integers 
and there is no R-parity violation from these operators. However they can still 
appear as 

in the superpotential. A similar conclusion is reached if X[P] is a multiple of 
one third, in which case one needs to include also apropriate powers of 3 0 .  

To determine the charges of the operators ii.iaj& in terms of the charges of 
the parity-conserving invariants, one must use the Green-Schwarz condition on 
mixed anomalies Cweak = Ccolor which reads: 

i i 

One obtains: 

1-nf 
nf 

+-Xbl-Xz m , 

true for any 
which we will 
obtained will 

two family indices p,m, and where nf is the number of families 
take to be three. In a large class of models, the charge X , J ~ ,  thus 
be such as to forbid not only a term fi.idj& in the superpotential 

or 

Let us consider for illustrative purpose an anomalous symmetry which is 

- but also any term obtained from it by multiplying by any powers of 8, 
No. 

family independent. Then (41) simplifies to: 

Remember that XT is half-odd integer and nf = 3. If X[P] is integer not 
proportional to nf = 3, then the charge Xaaa is such that no term ii&iernT 
can be invariant. If X b ]  is non-integer and a multiple of one third, then similarly 
no term N N ,  can be made invariant. In the low energy theory, baryon m"' 

" 
number violation becomes negligible. 

If we restrict our attention to models 
Schwarz condition 5CWe& = 3Cy reads: 

which yield sin2 Ow = 318, the Green- 

+ X &  + 3X,-,) + X[P] = 0. (43) 
i a 

One infers from (40) and (43) the following relation: 
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which tends to favor models with integer X[P] (proportional to nf in the case 
of a family-independent symmetry). 

If X[P] = 0 or more generally if Xbl is proportional to nf (X[P] = n f z P ) ,  the 
charge in (42) is half-odd integer; it can only be compensated by odd powers of 
fl?invariance under X means conservation of R-parity. For instance, the above 
allows the interaction: 

(45) fiaa$j 8[nd+nY+zp(nl-l)] . 
This term allows baryon number violation, but preserves both B - L and R- 
parity. 

A very similar discussion can obviously be given for the general case of a 
family dependent anomalous symmetry. 

To conclude, in a large class of models, there are no R-parity violating op- 
erators, whatever their dimensions: through the right-handed neutrinos for ex- 
ample, R-parity is linked to half-odd integer charges, so that U(l)x charge 
invariance results in R-parity invariance. Thus none of the operators that vio- 
late R-parity can appear in holomorphic invariants: even after breaking of the 
anomalous X symmetry, the remaining interactions all respect R-parity, leading 
to an absolutely stable superpartner. 

5 Conclusion 
The purpose of this work was to show that the breaking of an anomalous Abelian 
gauge symmetry at a very large scale imposes some very stringent constraints 
on the anomalous charges of the low energy fields. This is indeed the situation 
in many superstring models (see for example refs. [28, 291). Holomorphy and 
D-flatness, especially for the anomalous symmetry, are the tools that we used 
to derive these constraints. This in turn puts some restrictions on the dynamics 
of the model. We illustrated this fact on the generation of a mu-term. If we 
consider a model with a single extra U(1) and a single field (e) which acquires 
a uev when the anomalous symmetry is broken, it tends to exclude most of the 
scenarios proposed to generate a mu-term. The preferred scenario seems to be 
a mu-term invariant under the anomalous symmetry. It is an open question 
why such a term does not appear in the superpotential but rather in the KZhler 
potential. In our discussion, we tried to impose conditions which lift most of the 
dangerous flat directions. Some of them might however require supersymmetry 
breaking and it remains to be seen whether, there also, the anomalous U(1) 
symmetry plays a role [14, 151. 

The most interesting result is that, once these constraints are taken into 
account, the couplings which respect the anomalous symmetry also respect R- 
parity. This remains true at low energy since we made the supposition that the 
field 8 which breaks this symmetry has R-parity +l. We derived this result 
in the restricted class of models discussed in this paper but we believe that 
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it is rather general. It makes use of the right-handed neutrinos necessary to 
generate neutrino masses through the seesaw mechanism. This should lead to 
an interesting phenomenology of lepton number or baryon number violations. 

Of course, although we tried to be more general in this paper, it is tempting 
to apply these constraints to models of quark and lepton mass hierarchies. It was 
found [5] that, among models using an Abelian gauge symmetry, the observed 
hierarchies favor a model with non-zero mixed anomalies satisfying the relation 
5Cweak = 3Ci (if we assume Cweak = Ccolot and the charge Of the anomdous 
mu-term to be zero [6]). From the discussion of the last section, this seems 
in complete agreement with what is required by the constraints discussed in 
this paper. Of course, if we want to obtain a realistic quark and lepton mass 
spectrum, we need to introduce several extra U(1) (a single combination of 
which is anomalous) and several 0 fields [9]. The discussion then becomes more 
involved but the simple case discussed in the present work leads us to expect 
possible rewards such as R-parity. And it is a fact, often neglected, that any 
theory of mass has to come up with solutions for R-parity or to explain why its 
violations are mild. 
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