Wide-Band Heterodyne Receiver Development for Effluent Measurements

D.P. Hutchinson
R.K. Richards
M.L. Simpson

Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6004
(423) 574-4730

194th Electro-Chemical Society
10 South Main Street
Pennington, NJ 08534-2896
November 1-3, 1998

"The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes."
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ABSTRACT

Oak Ridge National Laboratory (ORNL) has been developing heterodyne receivers for plasma diagnostic applications for over 20 years. One area of this work has been the development of a diagnostic system for the measurement of the energy of alpha particles created in a thermonuclear fusion reactor. These particles originate with an energy of 3.5 MeV and cool to the thermal energy of the plasma (around 15 keV) after several seconds. To measure the velocity distribution of these alpha particles, a Thomson scattering diagnostic is under development based on a high power CO₂ laser at 10 microns with a heterodyne receiver. The Doppler shift generated by Thomson scattering of the alpha particles requires a wideband heterodyne receiver (greater than 10 GHz). Because Mercury-Cadmium-Telluride (MCT) detectors are limited to a bandwidth of approximately 2 GHz, a Quantum Well Infrared Photodetector (QWIP) detector was obtained from the National Research Council of Canada (NRC) and evaluated for its heterodyne performance using the heterodyne testing facility developed at ORNL.
INTRODUCTION

ORNL has been developing heterodyne receivers for plasma diagnostic applications for over 20 years. One area of this work has been the development of a diagnostic system for the measurement of the energy of alpha particles created in a thermonuclear fusion reactor. These particles originate with an energy of 3.5 MeV and cool to the thermal energy of the plasma (around 15 keV) after several seconds. It is this energy transfer between the alpha particles and the fuel which is needed to maintain ignition. The shape of the alpha particle velocity distribution gives an indication of this transfer. To measure the velocity distribution of these alpha particles, a Thomson scattering diagnostic is under development based on a high power CO\textsubscript{2} laser at 10 microns with a heterodyne receiver. Making use of the coupling between the ions and the electrons in a plasma, in collective Thomson scattering the Doppler shift in the scattered spectrum yields the ion velocity distribution. Because of the initial high energy alpha particles, the Doppler shift generated by Thomson scattering requires a wideband heterodyne receiver (greater than 10 GHz). This width is set by the expected Doppler spectrum of the scattered CO\textsubscript{2} laser radiation. An example of this spectrum expected in the proposed ignited fusion device the International Thermonuclear Experimental Reactor (ITER)\textsuperscript{2} is given in Fig. 1. Note

![Scattered Power Spectrum for ITER](image)

- **ALPHAS**: $n_a = 1.8 \times 10^{14} \text{ cm}^{-3}$
- **ELECTRONS**: $T_e = 15 \text{ keV}$
- **BULK IONS**: $T_i = 15 \text{ keV}$
- **TOTAL**: $n_a/n_e = 0.6\%$, $P_{\text{LASER}} = 20 \text{ MW}$

Fig. 1. Expected scattered power spectrum for the ITER tokamak.
that the contribution to the spectrum is dominated by the alpha particles for frequency shifts between 2 and 10 GHz (this is a double sided spectrum symmetric about the CO$_2$ laser line at 28,306 GHz.) Because MCT detectors are limited to a bandwidth of approximately 2 GHz, much less than the 10 GHz required for this measurement, the characteristically wideband QWIPs$^3$ have been considered for detecting this radiation.

In addition to the bandwidth, the detector must have sufficient sensitivity to perform these small signal scattering measurements. The sensitivity of the detector is quantified by the signal-to-noise ratio (S/N). For a heterodyne receiver, this S/N is given by:

\[
\frac{S}{N} = \frac{P_s}{P_s + \text{NEP}} \sqrt{B \tau + 1}
\]  

where $P_s$ is the scattered power, NEP is the noise equivalent power, $B$ is the receiver bandwidth, and $\tau$ is the integration time of the measurement for this application limited to the pulse length of the source laser. Note that for a large scattered power, the factor $P_s/(P_s + \text{NEP})$ approaches unity producing little improvement in the S/N ratio. Under some conditions, the value of the scattered power may have an optimum for maximizing the S/N ratio. For a laser source of fixed energy, the trade off between the laser power and pulse length produces an optimum value when this factor is $\frac{1}{2}$ i.e. $P_s = \text{NEP}$. With reasonable sized pulsed CO$_2$ lasers it is possible to generate a scattered power for the alpha portion of the ITER spectrum around $10^{-19}$ W/Hz as illustrated in Fig. 1 for the case of a 20 MW source. Under these conditions (i.e. $P_s = \text{NEP}$) and with a 1 GHz bandwidth and a 1 microsecond laser pulse, then the S/N ratio has a value of 15.8.

**RECEIVER TESTS**

A QWIP detector has been obtained from the NRC for the evaluation of its heterodyne receiver performance. This detector consists of 32 GaAs wells. Its size is 40x40 microns and when tilted at 45° has an effective area of 40x28 microns. This testing was performed using the heterodyne testing facility developed at ORNL.$^4$ This test facility makes use of the known emission from a blackbody source and compares the measured signal to the receiver noise in determining the noise spectrum. Fast f/1 optics are used to focus the combination of local oscillator and blackbody signals onto the detector. The local oscillator consists of a grating tuned waveguide CO$_2$ laser set on the 10P(20) line at 10.6 microns (28,306 GHz). The optimum local oscillator power has been determined to be approximately 10 milliwatts. The signal generated from the detector is amplified using a combination of broadband low noise pre-amplifiers followed by power amplifiers (several were needed to cover this bandwidth) and the resulting signal is measured with a spectrum analyzer. Using the output from the spectrum analyzer to select a frequency shift, the results were recorded as an AC signal (giving the contribution from the blackbody source) and a DC signal (giving the noise). Results from that test are shown in Fig. 2 indicating a flat heterodyne response over 7 GHz and a heterodyne noise level below $1 \times 10^{-18}$ W/Hz.
Fig. 2. Measured heterodyne noise spectrum for a QWIP detector. The different curves are for combinations of amplifiers and spectrum analyzers indicating the detector noise is below $10^{-18}$ W/Hz.

CONCLUSIONS AND FUTURE WORK

Although this noise level is sufficient for testing, the low density of alpha particles in an ignited fusion reactor will require a much lower noise, approaching the quantum limit of $4 \times 10^{-20}$ W/Hz. Work has begun with the NRC in developing a lower noise heterodyne receiver. Improvements are expected from three areas. First, an anti-reflection coating will be added to the detector. With the high index of refraction, an anti-reflection coating should provide a nearly 30% reduction in the NEP. The second step is to increase the number of wells to improve the photon absorption, and the third is to increase the doping in the detector wells to also increase the absorption, which happens to increase the dark current. Normally, the increase in dark current is associated with a decrease in sensitivity, however, for heterodyne detection where the dominant form of detector current is generated by the local oscillator, increasing the detectors’ dark current does not degrade the sensitivity.

At present the receiver system is being design to perform Thomson scattering measurements on the JT-60U tokamak. Although this is not an ignited plasma experiment producing the energetic alpha particles at 3.5 MeV, high energy neutral beams are used in testing the heating of the plasma. With particle energies approaching
500 keV and particle fluxes near 10 amperes, this beam heating produces an energetic ion tail which can be used to simulate the general shape of the expected alpha particle spectrum. The expected scattered spectrum for JT-60U is shown in Fig. 3. Note the contribution to the total signal is dominated by the ion tail from approximately 2 to 5 GHz. However, to measure this part of the spectrum will again require a detector with a low noise level, in this case approaching the noise limit of $4 \times 10^{-20}$ W/Hz. With higher receiver noise, the S/N ratio will be reduced. For example, setting a minimum level for S/N at 5 to perform these measurements and taking the expected value of the scattered power to be $2 \times 10^{-20}$ W/Hz, requires a value of NEP to be less than $1.07 \times 10^{-19}$ W/Hz. Although this is nearly an order of magnitude lower than $10^{-18}$ W/Hz, the noise for the first detector tested, it is still well above the noise limit and the three modifications are expected to yield the next version with this required noise level.

Fig. 3. Expected scattered power spectrum for the JT-60U tokamak.

This work was performed for the U. S. Department of Energy under contract number DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation.
REFERENCES


