
corresponding author addresshequest for reprints: 

Dr. Stacy-Ann Barshick 

Oak Ridge National Lab 

P.O. Box 2008 

Oak Ridge, TN 3783 1-6120 

prepared for submission to: 

Journal of Forensic Sciences 

January 17, 1997 

Analysis of Accelerants and Fire Debris using Aroma Detection Technology 

Stncy-Ann Barshick, ' Ph. D 

Staff Scientist, Oak Ridge National Laboratory* 

Phone: 423-576-6691 

Fax: 423-576-7956 

e-mail: barshicks@ornl.gov 

* Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp., U.S. 

Department of Energy under contract DE-AC05-960R22464. 

Running head or foot line: Aroma Detection Technology for Arson 

mailto:barshicks@ornl.gov




DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or implied, or i ~~sumes  any legal liabili- 
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa- 
ratus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commem'al product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessar- 
ily state or reflect those of the United States Government or a n y  agency thereof. 





Portions of this document may be illegiile 
in electronic image products. b a g s  are 
produced h m  the best available original 
dOCUI!leI& 





ABSTRACT: The purpose of this work was to investigate the utility of electronic aroma 

detection technologies for the detection and identification of accelerant residues in suspected 

arson debris. Through the analysis of known accelerant residues, a trained neural network was 

developed for classifjling suspected arson samples. Three unknown fire debris samples were 

classified using this neural network. The item corresponding to diesel fuel was correctly identified 

every time. For the other two items, wide variations in sample concentration and excessive water 

content, producing high sample humidities, were shown to influence the sensor response. Sorbent 

sampling prior to aroma detection was demonstrated to reduce these problems and to allow 

proper neural network classification of the remaining items corresponding to kerosene and 

gasoline. 

KEYWORDS: forensic science, accelerants, fire debris, arson, aroma detection, gas sensor 

arrays, artificial neural network 
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Arson is defined as the malicious burning of or attempt to burn property. The goal of 

arson investigations is to determine whether there is evidence at the scene to indicate that the 

fire was deliberately set. Of primary interest to the investigation is the cause (nature of the 

accelerant and source of ignition used) and origin of the fire. Suspicious fires are those that 

have multiple origins, suspicious burn patterns, an unusually high rate of spreading, or visible 

remnants of an ignition device (1). When such evidence points toward a fire deliberately set, 

the investigator must then search through the fire debris for physical evidence to support their 

suspicions. 

A variety of analytical methods have been used for the chemical analysis of fire debris. 

The analytical challenge in analyzing fire debris is establishing the presence of trace accelerant 

residues in a background of pyrolyzed material. The main areas of concern to the analyst include: 

sample preparation, analysis, and data interpretation. Sample preparation techniques for the 

chemical analysis of suspected arson debris have recently been reviewed (2). Generally, these 

methods can be divided into the following categories: direct (or static) headspace (3), passive 

(43) and dynamic (6,7)] headspace, distillation, and solvent extraction (8). Several of these 

techniques have been adopted by the American Society for Testing and Materials (ASTM). A 

new sampling method, solid phase microextraction (SPME), has also recently been introduced 

(9,lO). This is a passive headspace extraction method that incorporates a sorbent-coated silica 

fiber as the sampling medium and utilizes thermal desorption elution. 

Sample analysis is typically performed using gas chromatography. The ASTM method 

uses gas chromatography and allows for a variety of detectors including flame ionization, 

photoionization, and mass spectrometric (1 I) .  The reported detection levels are 0.1 to 10 pL for 

3 



petroleum products and liquid residues. The major problems associated with chromatographic 

methods are the complexity of the chromatograms, the interference of pyrolysates from 

petroleum-based products, and change in chromatographic profiles due to sample evaporation. 

Mass spectrometric methods have been employed to simplifjl chromatograms and to discriminate 

against pyrolytic interferences (12- 16). These methods use extracted ion profiling (mass 

chromatography) to display the characteristic ions for known classes of compounds as a hnction 

of time. The incorporation of macro-programming and expert systems has been investigated to 

categorize chromatographic profiles automatically ( I  7,18). Despite the widespread use of 

GC/MS-based methods, intolerably long sample turn-around times are often reported due to 

lengthy sample preparation, analysis, and data interpretation requirements. 

As an alternative to these methods, the ability to classify different accelerants using aroma 

detection technology was investigated. Aromas are mixtures of volatile organic chemicals; each 

vapor sample may contain hundreds of volatile components. The key to aroma detection is not to 

monitor individual chemicals but to have an array of sensors able to respond to a large number of 

different chemicals. The goal of an aroma detector is to ensure that every component in a vapor 

is detected by at least one sensor so that each vapor sample gives a characteristic fingerprint from 

the sensor array. This is the basic operating principle behind some recently developed devices 

called “electronic noses” (19.20). The detection mechanism of the electronic devices mimics the 

main aspects of the canine olfactory system: sensing, signal processing, and recognition (19-2 1) 

Because canines have been trained and used for accelerant detection (22), it is our belief that the 

electronic devices may equally be applicable to the challenge. 

The theory for scent detection is based on a “lock and key”mechanism where each scent 
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molecule has a different shape that must fit within a scenting cell of the corresponding shape to be 

registered by the brain. After a scent molecule is accepted by a scenting cell, the impulse is sent 

to the brain for identification. Likewise, a vapor sample is introduced across an array of sensors 

where each sensor within the array exhibits.a change in electrical resistance upon interaction with 

the volatile components. Recognition and identification can then be achieved using an artificial 

neural network trained on known vapor samples. As in training canines for scent discrimination, 

identification by the neural network is only as good as the training set (Le. the more data that is 

presented, the more discriminating the instrument becomes). Despite the similarities between 

trained police dogs and the electronic noses, aroma detection technologies have not been 

investigated seriously by the forensic or law enforcement communities. It is this author’s belief 

that hrther experimental data will convince these communities of the utility of this technology and 

how it can play a complementary role to canine detection programs. 

Experimental 

Sanlples - The accelerants used in this study were gasoline, kerosene, mineral spirits, motor oil, 

diesel &el, and lacquer thinner. Known accelerant residues and fire debris samples were collected 

from a controlled burn of an abandoned house. Aliquots of neat accelerant ( 1-2 L) were spread 

across a 1-2 ft area of carpeting and ignited. After a burn period, the fire was extinguished and 

carpet fjagments were collected in sample pouches (for use as known accelerant residues) and in 

paint cans (for use as unknown fire debris samples). Neat accelerants (1 00 pL), accelerant 

residues (- 10 g), and fire debris samples (- 10 g) were placed into sample pouches prior to 

analysis. Accelerants and samples were analyzed using the equilibration method. In this 
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technique, the sample was placed in the disposable sealed pouch (capacity -500 mL), filled with 

reference air, and allowed to equilibrate for 30 minutes at 35°C. The reference air humidity was 

set to -7.0 g/m’. 

Sensor array analysis - The instrument used in this study was the Aromascanner (Aromascan, 

Inc.,Hollis, NH). The device operates using an array of sensors that respond to different volatiie 

(and semi-volatile) chemicals to yield a unique “fingerprint” for each vapor sample. The 

Aromascanner detects the composition of an aroma using an array of 32 electrically conducting, 

organic polymer sensors. Adsorption and subsequent desorption of volatile chemicals at the 

polymer surface causes temporary changes in electrical resistance. The kinetics of the reversible 

adsorption and desorption processes occur rapidly at room temperature. 

The method used for analysis was reference air (0.5 rnin), sample (2 min), wash (1 min), 

and reference air (1.5 min). Each step in this sequence represents a change in valve state that 

controls the flow of air across the sensors. In the first step, reference air was sampled to give a 

stable baseline reading. During the equilibration period, the volatiles accumulated in the 

headspace which was then drawn from the pouch and pulled across the sensors in the second step. 

A sampling time was chosen such that the sensor response had equilibrated during that interval. 

Volatiles were removed from the sensors during the wash step. A wash solution of 2% butanol in 

water was used. The final step, reference air, was used to remove any remaining wash vapors and 

to allow the sensors to re-stabilize. 

Data manipzrlation - M e r  acquisition of the raw data, data manipulation software (supplied 
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with the instrument) was used to develop databases characteristic of the specific accelerant and 

sample aromas. This was done by selecting the region of data with the smallest deviation in 

pattern. The regions of greatest instability were those at the start and end of the runs. The 

selected region was added to the database in slices representing segments of five seconds each 

over the time interval selected. The databases were then mapped to provide a pictorial 

representation, or AromaMap, of pattern similarity or difference. Databases were then used to 

train the artificial neural network software so that specific aromas could be identified. The 

training process used by the software was supervised feed-forward using a three-layer network. 

The pattern recognition technique used was fbzzy-back propagation. The neural network was 

trained using selected descriptor databases based on known aroma samples (neat accelerants or 

accelerant residues). Once trained and validated, the neural network was used to provide 

classification of database files for the unknown fire debris samples. 

Results and Discussion 

The ability to differentiate liquid fbels (automotive and aviation) using a simplified 

chemical sensor array in a neural network-based instrument has previously been reported (23, 24). 

In this work, only three metal oxide sensors were needed to classify aviation fbels and seven 

sensors to classify gasoline as to octane rating and the presence of alcohol. Although these were 

only preliminary findings, the results suggested that the methodology could be used to address 

other real-world problems. We have investigated the application of an electronic aroma detection 

device to the real-world problem of arson. 

The ability to discriminate accelerants commonly used in arson cases (e.g. gasoline, 
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kerosene, mineral spirits, lacquer thinner, motor oil, and diesel fuel) was determined initially by 

analyzing the neat chemicals prior to ignition. Fingerprint patterns, based on two replicate 

analyses, for each of the accelerants are shown in the plots of normalized response versus sensor 

element number in Figure 1. These data were then used to develop databases for each of the 

accelerant aromas. The resulting databases are shown in the AromaMap, Figure 2. An 

AromaMap is a multi-dimensional compression of the fingerprint data into a 2-dimensional plot 

defining the magnitude of the sample aroma differences by distance and direction. The statistical 

technique is based on Sammon Mapping (25). Measurement of the Euclidian distance between 

aroma patterns of two aromas can be used to provide a quantifiable indication of the difference 

between them. The Euclidian distances between each of the accelerants are shown in Table 1. 

The larger the Euclidian distance, the greater the difference in aromas. Based on this data, most 

of the neat chemicals were distinguishable with the exception of mineral spirits and kerosene. 

These two accelerants showed some overlap in the AromaMap, had the most similar fingerprint 

patterns, and had the lowest Euclidian distance. This problem may be overcome by using 

alternate sampling conditions. For example, sensor response can be affected by humidity and the 

intensity of the sensor response can be correlated with temperature, sample concentration, and 

equilibration time. Additionally, the uniqueness of the fingerprint pattern can be optimized by 

choosing different regions of the data to assure the most distinct pattern has been selected. 

To determine the effect of burning on the fingerprint pattern, accelerant residues (carpet 

samples containing gasoline, kerosene, and diesel fbel) were obtained from a controlled burn of an 

abandoned house. Distinguishable fingerprint patterns were obtained for the three residues tested 

and the control carpet sample. The fingerprint patterns for these samples are shown in Figure 3 
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and represent eight multiple analyses of each sample. The patterns for the residues were also 

found to be different from those of the neat accelerants (Figure 1). When graphed 2- 

dimensionally in an AromaMap, Figure 4, no significant overlap was visible for the control, weak 

and strong residue samples, and the neat accelerants. Some variability in reproducibility, 

identified by the loose clustering in the AromaMap, was observed for kerosene in both the neat 

and strong residue samples. This may be related to inconsistent sampling conditions. 

An artificial neural network was set up using the databases created for the neat accelerants 

and known residues. The databases shown in Figure 4 were used to train the neural network for 

use in classifjing the fire debris samples collected from the controlled house fire. Each of the 

accelerants (gasoline, kerosene, and diesel &el) and the control were used as global classifiers. 

The subclasses were identified as either neat, strong residue, or weak residue. Eight replicate 

analyses of each sample were used in the training set. The neural network was validated by then 

re-analyzing the strong residue samples used in the training set and classifLing the resulting 

databases using the neural network. The samples were re-analyzed seven times over a period of 1 

to 15 days from the time the neural network training set was originally analyzed. The results are 

shown in Table 2. The diesel fuel residue sample was classified with the correct global and sub- 

class for all seven analyses. The gasoline residue was classified with the correct sub-class each 

time, but incorrectly identified with diesel fuel as the global class 6 out of seven times. It is 

unclear at this time why these results were obtained. Further training of the neural network may 

eliminate or minimize this problem. The kerosene residue was classified for both global and sub- 

class correctly four out of seven times. Only one analysis was mis-identified as unknown for both 

the global and sub-classes. Six of the seven analyses had kerosene correctly identified as the 
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global class, but two of these had neat rather than strong residue as the sub-class. This is 

probably a result of a concentration effect that will be discussed hrther in a following section. 

The neural network was fbrther tested by analyzing the unknown fire debris samples from 

the controlled house fire. Three fire debris samples were collected in paint cans at the site and 

labeled as items 1, item 3, and item 5. Each paint can or item should have contained one of the 

three different accelerants used in igniting the fire. Samples were removed from the paint cans 

and transferred to sample pouches. Two pouches (labeled a and b) per item were prepared, 

analyzed, and classified using the trained neural network. Eight replicate analyses were performed 

for each sample. Curiously, all three items (6  samples in total) were predominantly identified by 

the neural network as diesel fbel. Only item 5b gave an occasional hit as kerosene. Based on the 

sample humidities monitored during sample acquisition, it was noted that two of the three items 

had excessively high humidities (2 12.0 g/m’). The humidities of the reference samples used to 

train the neural network were kept below -10.0 g/m3. It is speculated that the excessively high 

humidities interfered with the sensor response for the analysis of items 1 and 5 .  With average 

sample humidities in the correct range, item 3a and 3b were identified as diesel fuel for all eight 

replicate analyses. This can be seen in the fingerprint patterns shown in Figure 5 .  Both items 3a 

and 3b were always classified with the correct global class, diesel &el, with fits 291 .O for each 

analysis. The sub-class for these samples varied between weak and strong diesel &el residue with 

fits ranging fiom 70.0 to 99.0. 

Because item 5 was classified as kerosene for two of the eight analyses, it was speculated 

that other variables besides humidity may have contributed to the missed identifications. Other 

factors that can influence sensor response are temperature, concentration, and equilibration time. 
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It is possible that sample 5b produced a hit for kerosene only when sufficient concentrations were 

present in the headspace or after extensive equilibration times (e.g. after sitting overnight). To 

investigate these variables, a sorbent material, Drieriteo, was added in a vial to the sample 

pouches containing items 1 and 5. One possible effect of the added Drieriteo might be the 

reduction of the sample humidity by removal of water. The other effect that may be expected 

from the addition of DrieriteB is the concentration of the accelerant vapors on the sorbent 

material. Activated charcoal strips, for example, are often used in fire debris extractions for 

passive concentration of accelerant vapors (26). After sitting overnight, the drierite was removed 

and the samples were re-analyzed. Re-analysis of these two samples showed no decrease in 

sample humidity and no change in sample classification. Based on these results it appears that the 

Drieriteo was ineffective in removing water from the sample. 

The Drierit& itself was then placed in a separate sample pouch, allowed to equilibrate, 

analyzed and classified using the neural network. Both items 5a and 5b were correctly identified 

as kerosene. Global class fits for triplicate analyses of these samples were 295.8. The sub-class 

was always identified as a weak kerosene residue with fits 296.0. The superimposed fingerprint 

patterns for kerosene as the neat accelerant, residue, and unknown (item 5 ) ,  Figure 6a, show 

good correlation. When the patterns are shown using relative intensities, Figure 6b, the effect of 

sample concentration can be seen where the neat accelerant is most intense and the unknown, 

being a weak residue, has the lowest intensity. Although item la was correctly classified as 

gasoline, even with the Drierit& sorbent, item 1 b was still occasionally mis-identified by the 

neural network as either unknown or kerosene. Global class fits for item la were 86.1 based on 

duplicate analyses and for item lb ranged from 95.3 - 99.8 for correct assignments. The sub- 
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classifications for these samples were even more ambiguous ranging from unknown to neat 

gasoline. Shown in Figure 7 are the fingerprint patterns for item 1 b (7c) and the Drieritea used 

to sample item lb (7d). These patterns can be compared ta those for neat gasoline (7b) and the 

gasoline residue (7a). Although the neural network had some difficulty in classifjing the fire 

debris corresponding to gasoline (item 1 b), the identification of item 1 b as gasoline is clearly 

apparent if the fingerprints for neat gasoline (7b) and the DrieriteB sample (7d) are compared. 

The problems associated with the neural network may reflect the fact that the training set did not 

include vapors concentrated on a Drieriteo sorbent and, therefore, reflect a change in sampling 

conditions. Since the sorbent results were so promising, f h r e  work will include such reference 

samples in the training set. 

Conclusions 

The use of aroma detection technology for arson investigation was shown to be feasible. It 

was determined that the variables affecting a change in sensor response, temperature and 

humidity, need to be precisely controlled to achieve consistent results. For reference samples, this 

was accomplished by adjusting the temperature and humidity of the reference air and conditioning 

the sample at these settings prior to analysis. For actual fire debris samples, however, wide 

variations in water content were shown to alter the sample humidity and variations in sample 

concentrations were shown to influence the sensor response. Neural network classifications were 

often affected because reference and fire debris sampling conditions and sample concentrations 

were inconsistent. Sorbent sampling prior to aroma detection was demonstrated to reduce these 

problems and to allow proper neural network classification in some cases. Although the 
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preliminary results were promising, more work remains to be done to understand the relationship 

between the accelerant, the potential substrate materials, the effect of the fire, and the method of 

extinguishing the fire and the effects they may have on sampling and sensor response. Further 

work is necessary to determine the utility of sorbent sampling in conjunction with aroma detection 

for eliminating the issues of humidity and concentration. 
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Table 1 .  Euclidian Distances for Neat Accelerants Prior to Ignition 

Accelerant Gasoline Kerosene Diesel fuel Mineral spirits Lacquer thinner Motor oil 

Gasoline 1.298* 2.882 5.266 3.708 2.655 6.752 

Kerosene 

Diesel fuel 

2.882 1.218 

5.266 7.5 12 

Mineral spirits 3.708 1.208 

Lacquer thinner 2.655 2.459 

7.5 12 

1.847 

8.46 1 

7.448 

1.208 

8.46 1 

1.139 

2.739 

2.459 

7.448 

2.739 

0.797 

4.429 

11.502 

3.592 

4.824 

Motor oil 6.752 4.429 11.502 3.592 4.824 1.355 

* numbers in bold indicate Euclidian distances between replicate analyses of same sample 
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Table 2. Validation of the Neural Network using the Strong Residue Samples 

Gasoline Kerosene Diesel fuel 

Analysis Global Sub-class Global Sub-class Global Sub-class 

3 

4 '  

1 diesel fuel 
(96.5)* 

2 gasoline 
(93.5) 

diesel fuel 
(93.6) 

diesel fuel 
(99.4) 

(99.4) 

(99.0) 

5 diesel fuel 

6 diesel fuel 

7 diesel fuel 
(96.0) 

gas. res. str. 
(90.7) 

gas.res.str. 
(96.5) 

gas. res. slr. 
(95.5) 

(97.4) 
gas. res. str. 

gas.res.str. 
(85.6) 

gas.res.s tr. 
(87.9) 

gas. res. str. 
(92.7) 

kerosene 
(99.9) 

kerosene 
(82.3) 

kerosene 
(91.0) 

kerosene 
(99.9) 

UnknOWVIl 
( 100.0) 

kerosene 
(98.9) 

kerosene 
(96.7) 

ker. neat 
(95.5) 

ker.res.str. 
(77. I )  

ker . res.s tr. 
(86.9) 

ker. neat 
(91.6) 

UnknOWVIl 
(100.0) 

ker.res.str. 
(86.0) 

ker.res.str. 
(91.1) 

diesel fuel 
(99.9) 

diesel fuel 
(99.9) 

diesel fuel 
(99.9) 

diesel fuel 
( 1  00.0) 

diesel fuel 
(99.9) 

diesel fuel 
(90.9) 

diesel fuel 
(99.9) 

dies. res .str. 
(95.6) 

dies.res.str. 
(98.7) 

dies.res.str. 
(99.0) 

dies.res.str. 
(99.1) 

dies. res. s tr. 
(94.8) 

dies.res. str. 
(94.5) 

dies. res.s tr. 
(82.5) 

* numbers in ( ) indicate fit 
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Figure captions 

Figure 1. Replicate fingerprint patterns showing normalized response versus sensor element 

number for six different accelerants: (a) motor oil, (b) kerosene, (c) mineral spirits, (d) diesel fuel, 

(e) gasoline, and ( f )  lacquer thinner. Normalized sensor response is equal to AR each sensor / AR 

all sensors (where R is the resistance). 

Figure 2. A multi-dimensional compression of the neat accelerant fingerprint data into a 2- 

dimensional plot,. or AromaMap, defining the magnitude of the sample aroma differences by 

distance and direction. 

Figure 3. Fingerprint patterns for a control sample (a) and the accelerant residues (b) kerosene, 

(c) diesel &el, and (d) gasoline. Residue aromas were obtained from burnt carpeting, padding, 

wood flooring or combinations of these materials. 

Figure 4. AromaMap of the different samples (neat accelerants and residues) used to train the 

artificial neural network for classifjhg unknown fire debris. 

Figure 5 .  Fingerprint patterns for the fire debris corresponding to item 3 .  Both samples 3a (b) 

and 3b (c) were identified by the neural network as a diesel fuel residue (a). 
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Figure 6 .  Superimposed fingerprint patterns for neat kerosene, kerosene residue, and item 5a as 

normalized data (a) and intensity* data (b). Intensities are determined by AR sensor / original R 

sensor (where R is the resistance). 

Figure 7. Fingerprint patterns for gasoline as the (a) residue, (b) neat accelerant, ( c )  unknown fire 

debris item Ib, and (d) the DrieriteB used to sample item Ib. 
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