APT target/blanket design and thermal hydraulics

PDF Version Also Available for Download.

Description

The Accelerator Production of Tritium (APT) Target/Blanket (T/B) system is comprised of an assembly of tritium producing modules supported by control, heat removal, shielding and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and {sup 3}He gas as the tritium producing feedstock. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded using a raster/expansion system to illuminate a 0.19m by 1.9m beam spot on the front face of a ... continued below

Physical Description

4 p.

Creation Information

Cappiello, M.; Pitcher, E. & Pasamehmetoglu, K. April 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Accelerator Production of Tritium (APT) Target/Blanket (T/B) system is comprised of an assembly of tritium producing modules supported by control, heat removal, shielding and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and {sup 3}He gas as the tritium producing feedstock. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded using a raster/expansion system to illuminate a 0.19m by 1.9m beam spot on the front face of a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. The tungsten neutron source consists of nested, Inconel-718 clad tungsten cylinders assembled in horizontal Inconel-718 tubes. Each tube contains up to 6 cylinders with annular flow channel gaps of 0.102 cm. These horizontal tubes are manifolded into larger diameter vertical inlet and outlet pipes, which provide coolant. The horizontal and vertical tubes make up a structure similar to that of rungs on a ladder. The entire tungsten neutron source consists of 11 such ladders separated into two modules, one containing five ladders and the other six. Ladders are separated by a 0.3 m void region to increase nucleon leakage. The peak thermal-hydraulic conditions in the tungsten neutron source occur in the second ladder from the front. Because tungsten neutron source design has a significant number of parallel flow channels, the limiting thermal-hydraulic parameter is the onset of significant void (OSV) rather than critical heat flux (CHF). A blanket region surrounds the tungsten neutron source. The lateral blanket region is approximately 120 cm thick and 400 cm high. Blanket material consists of lead, {sup 3}He gas, aluminum, and light-water coolant. The blanket region is subdivided into rows based on the local power density in the lead. The rows immediately surrounding the tungsten neutron source receive the highest particle fluxes, and therefore experience the highest power densities. Moving outward from the tungsten neutron source, the lead power density drops steeply. To accommodate this variation, the amount of lead and coolant is tailored to the power density to maximize tritium production.

Physical Description

4 p.

Notes

INIS; OSTI as DE99002416

Source

  • 1999 annual meeting of the American Nuclear Society (ANS), Boston, MA (United States), 6-10 Jun 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99002416
  • Report No.: LA-UR--99-742
  • Report No.: CONF-990605--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 353448
  • Archival Resource Key: ark:/67531/metadc674239

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1999

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • May 5, 2016, 6:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cappiello, M.; Pitcher, E. & Pasamehmetoglu, K. APT target/blanket design and thermal hydraulics, article, April 1, 1999; New Mexico. (digital.library.unt.edu/ark:/67531/metadc674239/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.