The scanning Compton polarimeter for the SLD experiment

M. Woods
Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309
Representing
The SLD Collaboration*

Abstract. For the 1994/95 run of the SLD experiment [1] at SLAC, a Compton polarimeter measured the luminosity-weighted electron beam polarization to be $(77.2 \pm 0.5)\%$. This excellent accuracy is achieved by measuring the rate asymmetry of Compton-scattered electrons near the kinematic endpoint. The polarimeter takes data continuously while the electron and positron beams are in collision and achieves a statistical precision of better than 1\% in a three minute run. To calibrate the polarimeter and demonstrate its accuracy, many scans are frequently done. These include scans of the laser polarization, the detector position with respect to the kinematic edge, and the laser power.

Presented at the Workshop on High Energy Polarimeters
NIKHEF, Amsterdam, The Netherlands
September 9, 1996

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
This polarimeter [2] detects Compton-scattered electrons from the collision of the longitudinally polarized 45.6 GeV electron beam [3] with a circularly polarized photon beam. The photon beam is produced from a pulsed Nd:YAG laser with a wavelength of 532 nm. After the Compton Interaction Point (CIP), the electrons pass through a dipole spectrometer; a nine-channel Cherenkov detector then measures electrons in the range 17 to 30 GeV. Figure 1 shows the location of the Cherenkov detector with respect to the Compton spectrum; the response function for channel 6 (as determined from an EGS simulation) is indicated as well.

The counting rates in each Cherenkov channel are measured for parallel and antiparallel combinations of the photon and electron beam helicities. The asymmetry formed from these rates is given by

\[A(E) = \frac{R(\rightarrow \rightarrow) - R(\rightarrow \leftarrow)}{R(\rightarrow \rightarrow) + R(\rightarrow \leftarrow)} = \mathcal{P}_e \mathcal{P}_\gamma A_C(E) \]

where \(\mathcal{P}_e \) is the longitudinal polarization of the electron beam at the CIP, \(\mathcal{P}_\gamma \) is the circular polarization of the laser beam at the CIP, and \(A_C(E) \) is the Compton asymmetry function.

The laser (Spectra Physics GCR130) has a nominal repetition rate of 17 Hz. It fires on every 7th electron pulse; the electron pulse rate is 120 Hz. Every 7 seconds the laser fires on the 6th pulse rather than the 7th to avoid any synchronization of the laser firing with instabilities in the electron beam. Laser off pulses are used for determining backgrounds. The typical Compton collision rate is approximately 1000 Compton scatters per collision pulse, with approximately 100 Compton scattered electrons detected by each of the 7 Cherenkov channels spanning the Compton spectrum. Typical signal to background ratio in Channel 7 is about 5:1.

The laser is polarized with a linear polarizer and two Pockels cells as shown in Figure 2. The axes of the linear polarizer and the PS Pockels cell are along the \(x,y \) axes, while the axes of the CP Pockels cell are along \(u,v \) (\(u,v \) axes are rotated by 45° with respect to \(x,y \)). This configuration can generate arbitrary elliptical polarization, and can compensate for phase shifts in the laser transport optics. Measurements of \(\mathcal{P}_\gamma \) are made before and after the CIP (see Figure 2). An harmonic beam sampler (Gen- tec HBS-532-100-1C-10) transmits 98% of the laser power and generates two 1% beams at forward angles of 10°, which preserve the circular polarization, \(\mathcal{P}_\gamma \), of the main beam to better than 0.1%. \(\mathcal{P}_\gamma \) is determined from photodiode measurements of the amount of left-polarized and right-polarized light, where the Right and Left

![Figure 1: Compton kinematics](image-url)
photodiodes follow an helicity filter. The helicity filter is formed from a quarter waveplate and a calcite prism. The calcite prism has different indices of refraction for x and y linear polarized light and splits these components by 5°.

The Right (PD^+) and Left (PD^-) photodiode signals and the measured Compton asymmetry in Cherenkov channel 7 (A_7), are well-approximated by the following formulae:

$$PD^\pm = \frac{G^\pm}{2} [1 \pm \sin\left(\frac{V_{CP} - V_{CP}^T}{V_{CP}^T / \lambda/4} \cdot \frac{\pi}{2}\right)\cos\left(\frac{V_{PS} - V_{PS}^T}{V_{PS}^T / \lambda/4} \cdot \frac{\pi}{2}\right)]$$

$$A_7 = P_e (A_C^\gamma)[\sin\left(\frac{V_{CP} - V_{CP}^{CIP}}{V_{CP}^{CIP} / \lambda/4} \cdot \frac{\pi}{2}\right)\cos\left(\frac{V_{PS} - V_{PS}^{CIP}}{V_{PS}^{CIP} / \lambda/4} \cdot \frac{\pi}{2}\right)]$$

where G is the photodiode gain; V_{CP} and V_{PS} are the Pockels cell voltages; $V_{\lambda/4}$ is the Pockels cell quarterwave voltage; V_{CP}^T and V_{PS}^T are the laser transport phase shifts to the photodiode diagnostics; A_C^γ is the analyzing power for Cherenkov channel 7; and V_{CP}^{CIP} and V_{PS}^{CIP} are the laser transport phase shifts to the Compton IP. Measurements of PD^+, PD^- and A_7 are made at different Pockels cell voltages (Pockels cell scans) to monitor the laser transport phase shifts and the Pockels cell quarterwave voltages. From these scans we determined that averaged over the 1994/95 SLD run, $<P_e> = 99.6 \pm 0.2\%$ (syst) at the CIP.

The Compton spectrum is characterized (see Figure 1) by a kinematic edge at 17.4 GeV (180° backscatter in the center of mass frame) where $A_C = 0.754$, and the zero-asymmetry point at 25.2 GeV (90° backscatter in the center of mass frame). $A_C(E)$ is modified from the theoretical asymmetry function [4] by detector resolution effects. This effect is about 1% for Cherenkov channel 7 at the Compton edge. The Compton edge position is accurately determined from Cherenkov detector measurements at different detector positions (detector position scans). The Compton edge is in channel 7, and we use this channel to accurately determine P_e. The asymmetry spectrum observed in channels 1-6 is used as a cross-check.

Polarimeter data are acquired continually during SLC operation and SLD data logging. The absolute statistical precision attained in a 3 minute interval is typically $\delta P_e < 1.0\%$. Two-thirds of the polarimeter data are taken at off-nominal operating conditions (Pockels cell scans, table scans, laser power scans for linearity tests) for polarimeter calibration and systematics studies. The systematic uncertainties that affect the polarization measurement are summarized in Table I for the 1994/95 run.
The average luminosity-weighted electron beam polarization at the SLC IP for this run was found to be $<P_{\text{e}}^{\text{IP}}>= (77.2 \pm 0.5)%$.

Table I: Systematic Uncertainties for the SLD Compton Polarimeter

<table>
<thead>
<tr>
<th>Systematic Uncertainty</th>
<th>$\delta P_e/P_e$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Polarization</td>
<td>0.20</td>
</tr>
<tr>
<td>Spectrometer Calibration</td>
<td>0.29</td>
</tr>
<tr>
<td>Detector Linearity</td>
<td>0.50</td>
</tr>
<tr>
<td>Electronics Noise</td>
<td>0.20</td>
</tr>
<tr>
<td>SLC IP [5]</td>
<td>0.17</td>
</tr>
<tr>
<td>Total</td>
<td>0.67</td>
</tr>
</tbody>
</table>

[2] Descriptions of the Compton polarimeter system can be found in the thesis by R. King, SLAC-Report-452 (1994); and in the thesis by A. Lath, SLAC-Report-454 (1994). New additions to the polarimeter not described in these theses include a higher repetition rate laser, improved laser polarization diagnostics, and modification of the spectrometer magnets to include a quadrupole.

[3] The polarized electron beam for the SLAC Linear Collider (SLC) is described in a contribution to these proceedings by M. Woods, SLAC-PUB-7320 (1996).

[5] There is a small difference between the luminosity-weighted electron beam polarization relevant for Z bosons detected by the SLD, and the average electron beam polarization measured by the Compton polarimeter (see reference [3]).
"The SLD Collaboration

(1) Adelphi University, Garden City, New York 11530
(2) INFN Sezione di Bologna, I-40126 Bologna, Italy
(3) Boston University, Boston, Massachusetts 02215
(4) Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
(5) University of California at Santa Barbara, Santa Barbara, California 93106
(6) University of California at Santa Cruz, Santa Cruz, California 95064
(7) University of Cincinnati, Cincinnati, Ohio 45221
(8) Colorado State University, Fort Collins, Colorado 80523
(9) University of Colorado, Boulder, Colorado 80309
(10) Columbia University, New York, New York 10027
(11) INFN Sezione di Ferrara and Università di Ferrara, I-44100 Ferrara, Italy
(12) INFN Lab. Nazionali di Frascati, I-00044 Frascati, Italy
(13) University of Illinois, Urbana, Illinois 61801
(14) Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
(15) Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(16) University of Massachusetts, Amherst, Massachusetts 01003
(17) University of Mississippi, University, Mississippi 38677
(18) Moscow State University, Institute of Nuclear Physics, 119899 Moscow, Russia
(19) Nagoya University, Chikusa-ku, Nagoya 464 Japan
(20) University of Oregon, Eugene, Oregon 97403
(21) INFN Sezione di Padova and Università di Padova, I-35100 Padova, Italy
(22) INFN Sezione di Perugia and Università di Perugia, I-06100 Perugia, Italy
(23) INFN Sezione di Pisa and Università di Pisa, I-56100 Pisa, Italy
(24) Rutgers University, Piscataway, New Jersey 08855
(25) Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX United Kingdom
(26) Sogang University, Seoul, Korea
(27) Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
(28) University of Tennessee, Knoxville, Tennessee 37996
(29) Tohoku University, Sendai 980 Japan
(30) Vanderbilt University, Nashville, Tennessee 37235
(31) University of Washington, Seattle, Washington 98195
(32) University of Wisconsin, Madison, Wisconsin 53706
(33) Yale University, New Haven, Connecticut 06511
†Deceased
(a) Also at the Università di Genova
(b) Also at the Università di Perugia