Confined combustion of TNT explosion products in air

PDF Version Also Available for Download.

Description

Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m<sup>3</sup> chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C<sub>7</sub>H<sub>5</sub>N<sub>3</sub>O<sub>6</sub>) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolves into a turbulent mixing layer-a … continued below

Physical Description

2.9 Mbytes

Creation Information

Chandler, J; Ferguson, R E; Forbes, J; Kuhl, A L; Oppenheim, A K & Spektor, R August 31, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 589 times, with 5 in the last month. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m<sup>3</sup> chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C<sub>7</sub>H<sub>5</sub>N<sub>3</sub>O<sub>6</sub>) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolves into a turbulent mixing layer-a process enhanced by shock reflections from the walls. Under such circumstances rapid combustion takes place where the expanded detonation products play the role of fuel. Its dynamic effect is manifested by the experimental measurement of ~3 bar pressure increase in the chamber, in contrast to ~1bar attained by a corresponding TNT explosion in nitrogen. The experiments were modeled as a turbulent combustion in an unmixed system at infinite Reynolds, Peclet and DamkGhler numbers. The CFD solution was obtained by a high-order Godunov scheme using an AMR (Adaptive Mesh Refinement) to trace the turbulent mixing on the computational grid in as much detail as possible. The evolution of the mass fraction of fuel consumed by combustion thus determined exhibited the properties of an exponential decay following a sharp initiation. The results reveal all the dynamic features of the exothermic process of combustion controlled by fluid mechanic transport in a highly turbulent field, in contrast to those elucidated by the conventional reaction-diffusion model.

Physical Description

2.9 Mbytes

Source

  • 8th international Colloquium on Dust Explosions, Schaumburg, IL, September 21-25, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00003648
  • Report No.: UCRL-JC-131748
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 3648
  • Archival Resource Key: ark:/67531/metadc674149

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 31, 1998

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • Feb. 24, 2016, 3:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 589

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chandler, J; Ferguson, R E; Forbes, J; Kuhl, A L; Oppenheim, A K & Spektor, R. Confined combustion of TNT explosion products in air, article, August 31, 1998; Livermore, California. (https://digital.library.unt.edu/ark:/67531/metadc674149/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen