Development of a high-rate, rechargeable bipolar LiAl/FeS{sub 2} battery

PDF Version Also Available for Download.

Description

Materials refinements have improved bipolar Li-Al/FeS{sub 2} batteries for power-demand applications. Current technology uses a two-phase Li-alloy cathode, LiCl-LiBr-KBr electrolyte, and an upper-plateau (UP) FeS{sub 2} anode for a battery operated at 440 C; the battery is in sealed bipolar form. The two-phase Li alloy ({alpha}+{beta} Li-Al and Li{sub 5}Al{sub 5}Fe{sub 2}) cathode provides in situ overcharge tolerance that makes the bipolar design viable. The use of LiCl-rich LiCl-LiBr-KBr electrolyte in ``electrolyte-starved`` cells achieves low-burdened cells with low area-specific impedance, with MgO powder separator. Combining dense UP FeS{sub 2} electrodes with a CuFeS{sub 2} additive and a LiI-modified electrolyte produces ... continued below

Physical Description

4 p.

Creation Information

Kaun, T.D.; Jansen, A.N.; Hash, M.C.; Prakash, J.; Turner, R.L. & Henriksen, G.L. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Materials refinements have improved bipolar Li-Al/FeS{sub 2} batteries for power-demand applications. Current technology uses a two-phase Li-alloy cathode, LiCl-LiBr-KBr electrolyte, and an upper-plateau (UP) FeS{sub 2} anode for a battery operated at 440 C; the battery is in sealed bipolar form. The two-phase Li alloy ({alpha}+{beta} Li-Al and Li{sub 5}Al{sub 5}Fe{sub 2}) cathode provides in situ overcharge tolerance that makes the bipolar design viable. The use of LiCl-rich LiCl-LiBr-KBr electrolyte in ``electrolyte-starved`` cells achieves low-burdened cells with low area-specific impedance, with MgO powder separator. Combining dense UP FeS{sub 2} electrodes with a CuFeS{sub 2} additive and a LiI-modified electrolyte produces a stable and reversible couple, with high power capabilities. Long cycle life depends on peripheral seals for each cell in the bipolar stack. Seal composition is based on stable sulfide ceramic/sealant materials that produce strong bonds between metals and ceramics. Using these seals, bipolar Li-Al/FeS{sub 2} cells and four-cell stacks are being built and tested (25 Ah, 13-cm dia). Adding 5 mol% LiI to the electrolyte increased specific energy by 50% under a 140 W/kg, constant power C/1 rate and a 544 W/kg power pulse (8-s) schedule. Cell capacity under the high-power pulse-demand approximates the C/3 rate discharge capacity. Cell specific energy is 155 Wh/kg at the C/3 rate.

Physical Description

4 p.

Notes

OSTI as DE96011902

Source

  • 37. power sources conference, Cherry Hill, NJ (United States), 17-20 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96011902
  • Report No.: ANL/CMT/CP--88378
  • Report No.: CONF-9606161--7
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 242619
  • Archival Resource Key: ark:/67531/metadc673364

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 27, 2016, 12:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kaun, T.D.; Jansen, A.N.; Hash, M.C.; Prakash, J.; Turner, R.L. & Henriksen, G.L. Development of a high-rate, rechargeable bipolar LiAl/FeS{sub 2} battery, article, June 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc673364/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.