We developed a field screening method for rapid analysis of Hg in water, soil, and sediment, which can be applied cost-effectively at Hg-contaminated sites. Samples are chemically pretreated in ordinary containers, followed by analysis of the sample headspace Hg vapor using a portable commercial analyzer. Hg in water samples is reduced directly by the addition of stannous chloride, while solids are first digested with aqua regia or piranha solution to liberate the Hg from the solids. Aided by vigorous agitation after adding the reductant, the elemental Hg partitions between solution and headspace according to Henry`s Law. The method requires about ...
continued below
Publisher Info:
Oak Ridge National Lab., TN (United States)
Place of Publication:
Tennessee
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
We developed a field screening method for rapid analysis of Hg in water, soil, and sediment, which can be applied cost-effectively at Hg-contaminated sites. Samples are chemically pretreated in ordinary containers, followed by analysis of the sample headspace Hg vapor using a portable commercial analyzer. Hg in water samples is reduced directly by the addition of stannous chloride, while solids are first digested with aqua regia or piranha solution to liberate the Hg from the solids. Aided by vigorous agitation after adding the reductant, the elemental Hg partitions between solution and headspace according to Henry`s Law. The method requires about 2 and 15 minutes to complete for water and solids, respectively. The method provides very useful detection limits for water (0.1 {mu}g/L) and solids (2-3{mu}g/g). Intercomparisons with laboratory-analyzed environmental samples show good agreement.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Kriger, A.A. & Turner, R.R.Field analysis of mercury in water, sediment and soil using static headspace analysis,
article,
December 31, 1994;
Tennessee.
(digital.library.unt.edu/ark:/67531/metadc673250/:
accessed February 16, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.