Superacid catalysis of light hydrocarbon conversion. DOE PETC seventh quarterly progress report, April 1, 1995--July 31, 1995

PDF Version Also Available for Download.

Description

Iron- and manganese-promoted sulfated zirconia is a catalyst for the conversion of propane, but the rate of conversion of propane is much less than the rate of conversion of butane. Whereas this catalyst appears to be a good candidate for practical, industrial conversion of butane, it appears to lack sufficient activity for practical conversion of propane. The propane conversion data reported here provide excellent insights into the chemistry of the catalytic conversion. Solid and catalysts, namely, sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and USY zeolite, were tested for conversion of propane at 1 atm, 200-450{degrees}C, and propane partial pressures ... continued below

Physical Description

27 p.

Creation Information

Gates, B.C. February 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

  • Gates, B.C. Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Iron- and manganese-promoted sulfated zirconia is a catalyst for the conversion of propane, but the rate of conversion of propane is much less than the rate of conversion of butane. Whereas this catalyst appears to be a good candidate for practical, industrial conversion of butane, it appears to lack sufficient activity for practical conversion of propane. The propane conversion data reported here provide excellent insights into the chemistry of the catalytic conversion. Solid and catalysts, namely, sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and USY zeolite, were tested for conversion of propane at 1 atm, 200-450{degrees}C, and propane partial pressures in the range of 0.01-0.05 atm. Both promoted and unpromoted sulfated zirconia were found to be active for conversion of propane into butanes, pentanes, methane, ethane, ethylene, and propylene in the temperature range of 200-350{degrees}C, but catalyst deactivation was rapid. At the higher temperatures, only cracking and dehydrogenation products were observed. In contrast to the zirconia-supported catalysts, USY zeolite was observed to convert propane (into propylene, methane, and ethylene) only at temperatures {ge}400{degrees}C. The initial (5 min on stream) rates of propane conversion in the presence of iron- and manganese-promoted sulfated zirconia, sulfated zirconia, and USY zeolite at 450{degrees}C and 0.01 atm propane partial pressure were 3.3 x 10{sup -8}, 0.3 x 10{sup -8}, and 0.06 x 10{sup -8} mol/(s{center_dot}g), respectively. The product distributions in the temperature range 200-450{degrees}C are those of acid-base catalysis, being similar to what has been observed in superacid solution chemistry at temperatures <0{degrees}C. If propane conversion at 450{degrees}C can be considered as a probe of acid strength of the catalyst, the activity comparison suggests that the promoted sulfated zirconia is a stronger acid than sulfated zirconia, which is a stronger acid than USY zeolite.

Physical Description

27 p.

Notes

OSTI as DE96005022

Source

  • Other Information: PBD: [1996]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96005022
  • Report No.: DOE/PC/92116--T7
  • Grant Number: AC22-93PC92116
  • DOI: 10.2172/181489 | External Link
  • Office of Scientific & Technical Information Report Number: 181489
  • Archival Resource Key: ark:/67531/metadc673001

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 25, 2015, 4:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gates, B.C. Superacid catalysis of light hydrocarbon conversion. DOE PETC seventh quarterly progress report, April 1, 1995--July 31, 1995, report, February 1, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc673001/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.