Evaluation of an eastern shale oil residue as an asphalt additive

PDF Version Also Available for Download.

Description

An evaluation of eastern shale oil (ESO) residue as an asphalt additive to reduce oxidative age hardening and moisture susceptibility was conducted by Western Research Institute (WRI). The ESO residue, have a viscosity of 23.9 Pa{lg_bullet}s at 60{degree}C (140{degree}F), was blended with three different petroleum-derived asphalts, ASD-1, AAK-1, and AAM-1, which are known to be very susceptible to oxidative aging. Rheological and infrared analyses of the unaged and aged asphalts and the blends were then conducted to evaluate oxidative age hardening. In addition, the petroleum-derived asphalts and the blends were coated onto three different aggregates, Lithonia granite (RA), a low-absorption ... continued below

Physical Description

21 p.

Creation Information

Thomas, K.P. & Harnsberger, P.M. September 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An evaluation of eastern shale oil (ESO) residue as an asphalt additive to reduce oxidative age hardening and moisture susceptibility was conducted by Western Research Institute (WRI). The ESO residue, have a viscosity of 23.9 Pa{lg_bullet}s at 60{degree}C (140{degree}F), was blended with three different petroleum-derived asphalts, ASD-1, AAK-1, and AAM-1, which are known to be very susceptible to oxidative aging. Rheological and infrared analyses of the unaged and aged asphalts and the blends were then conducted to evaluate oxidative age hardening. In addition, the petroleum-derived asphalts and the blends were coated onto three different aggregates, Lithonia granite (RA), a low-absorption limestone (RD), and a siliceous Gulf Coast gravel (RL), and compacted into briquettes. Successive freeze-thaw cycling was then conducted to evaluate the moisture susceptibility of the prepared briquettes. The rheological analyses of the unaged petroleum-derived asphalts and their respective blends indicate that the samples satisfy the rutting requirement. However, the aging indexes for the rolling thin film oven (RTFO)-aged and RTFO/pressure aging vessel (PAV)-aged samples indicate that the blends are stiffer than the petroleum-derived asphalts. This means that when in service the blends will be more prone to pavement embrittlement and fatigue cracking than the petroleum-derived asphalts. Infrared analyses were also conducted on the three petroleum-derived asphalts and the blends before and after RTFO/PAV aging. In general, upon RTFO/PAV aging, the amounts of carbonyls and sulfoxides in the samples increase, indicating that the addition of the ESO residue does not mitigate the chemical aging (oxidation) of the petroleum-derived asphalts. This information correlates with the rheological data and the aging indexes that were calculated for the petroleum-derived asphalts and the blends.

Physical Description

21 p.

Notes

OSTI as DE96000648

Source

  • Other Information: PBD: Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96000648
  • Report No.: DOE/MC/30126--5128
  • Grant Number: FC21-93MC30126
  • DOI: 10.2172/211285 | External Link
  • Office of Scientific & Technical Information Report Number: 211285
  • Archival Resource Key: ark:/67531/metadc672975

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 20, 2017, 7:45 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Thomas, K.P. & Harnsberger, P.M. Evaluation of an eastern shale oil residue as an asphalt additive, report, September 1, 1995; Laramie, Wyoming. (digital.library.unt.edu/ark:/67531/metadc672975/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.