Superconducting muon collider concepts

PDF Version Also Available for Download.

Description

High energy colliding beam machines for elementary particle research have grown so costly that funding for them has become problematical. The physics they would explore, however, remains compelling, so that new methods must be found to reach high energy if this physics is to be studied. One such new approach is the muon collider. This machine could reach multi-TeV collision energies with good luminosity at an affordable cost. The scenario for producing {mu}{sup +}{mu}{sup {minus}} collisions is shown schematically in a figure. A high intensity proton synchrotron delivers protons in sharply defined bunches onto a stationary target with an energy ... continued below

Physical Description

9 p.

Creation Information

Willen, E. September 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High energy colliding beam machines for elementary particle research have grown so costly that funding for them has become problematical. The physics they would explore, however, remains compelling, so that new methods must be found to reach high energy if this physics is to be studied. One such new approach is the muon collider. This machine could reach multi-TeV collision energies with good luminosity at an affordable cost. The scenario for producing {mu}{sup +}{mu}{sup {minus}} collisions is shown schematically in a figure. A high intensity proton synchrotron delivers protons in sharply defined bunches onto a stationary target with an energy of 30 GeV. Many pions are produced that decay into muons; both are collected in a solenoid magnet system with useful energies in the range 0.1--1.0 GeV. The muons are then cooled, i.e. their transverse momentum as well as the spread in their longitudinal momentum is reduced. In this way, a bunch of protons is turned into a bunch of positive or negative muons suitable for acceleration and collision. The energy of the muons at this stage is only 0.02 GeV. Acceleration is accomplished in a series of recirculating linac accelerators, similar to the approach used in CEBAF. Upon reaching 2,000 GeV (2 TeV) of energy, the muons are transferred into a ring where positive and negative muons, transferred in successive bunches, collide and the collisions studied in a suitable detector. About 25% of the muons originally collected survive into the collider ring, and here they live for an average of {approximately} 1,000 revolutions. At this point, the surviving muons are dumped and new bunches are injected. This paper describes in abbreviated form the main features and parameters of the presently envisioned muon collider, most of it taken from the latter two reports.

Physical Description

9 p.

Notes

INIS; OSTI as DE96013471

Source

  • Educational Institute for Superconductivity meeting, Washington, DC (United States), 13-14 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96013471
  • Report No.: BNL--63246
  • Report No.: CONF-9606264--1
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 286289
  • Archival Resource Key: ark:/67531/metadc672918

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 1, 2016, 2:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Willen, E. Superconducting muon collider concepts, article, September 1, 1996; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc672918/: accessed July 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.