Heterogeneous catalytic process for alcohol fuels from syngas. Fourteenth quarterly technical progress report, April--June 1995

PDF Version Also Available for Download.

Description

The project objectives are: (1) To discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. In particular, novel heterogeneous catalysts will be studied and optimized for the production of: (a) C{sub 1}-C{sub 5} alcohols using conventional methanol synthesis conditions, and (b) methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. (2) To explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (3) To develop on the bench scale the best combination ... continued below

Physical Description

25 p.

Creation Information

Creator: Unknown. December 31, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The project objectives are: (1) To discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. In particular, novel heterogeneous catalysts will be studied and optimized for the production of: (a) C{sub 1}-C{sub 5} alcohols using conventional methanol synthesis conditions, and (b) methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. (2) To explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (3) To develop on the bench scale the best combination of chemistry, catalyst, reactor, and total process configuration to achieve the minimum product cost for the conversion of syngas to liquid products. The authors have prepared a comparative Zn/Cr spinel oxide support that contains excess ZnO and have looked at the catalytic performance of (a) the bare support, (b) a potassium traverse on the bare support to determine the effect of alkali addition in the absence of Pd and (c) a potassium traverse on the support impregnated with 6 wt% Pd. The bare support is an inefficient methanol catalyst. Alkali addition results in an increase in selectivity to total alcohols vs. the bare support and a dramatic increase higher alcohol synthesis. Pd addition results in further improvements in performance. Selectivities increase with K loading. The 5 wt% K, 5.9 wt% Pd catalyst produces > 100 g/kg-hr of isobutanol at 440 C and 1,000 psi, with 85% selectivity to total alcohols and with a methanol/isobutanol mole ratio of <2. The authors intend to continue formulation screening using K/Pd formulations on ZnO and ZnCr{sub 2}O{sub 4} prepared conventionally and via controlled pH precipitation. They will also examine the effect of Cs in place of K as the alkali promoter and the use of Rh instead of Pd as a promoter.

Physical Description

25 p.

Notes

OSTI as DE96012593

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96012593
  • Report No.: DOE/PC/90046--T16
  • Grant Number: AC22-91PC90046
  • DOI: 10.2172/257319 | External Link
  • Office of Scientific & Technical Information Report Number: 257319
  • Archival Resource Key: ark:/67531/metadc672906

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 20, 2015, 8:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Heterogeneous catalytic process for alcohol fuels from syngas. Fourteenth quarterly technical progress report, April--June 1995, report, December 31, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc672906/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.