Advanced separation technology for flue gas cleanup. Quarterly technical report No. 14

PDF Version Also Available for Download.

Description

The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (a) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (b) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized ... continued below

Physical Description

29 p.

Creation Information

Bhown, A.S.; Pakala, N.; Riggs, T.; Tagg, T.; Kirkar, K.K.; Majumdar, S. et al. November 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (a) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (b) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). During the third quarter of 1995, we continued work on Task 8, integrated NO{sub x} life tests. We also obtained some mass transfer data on Task 9, performance of scalable modules. In Task 8, we gathered additional 400 hours of NO{sub x} absorption/desorption data. We also presented the data on NO{sub x} absorption/desorption behavior over cumulative time to date. the performance indicates unchanged reversible characteristics of Co(II) phthalocyanine solution. Therefore, we believe that NO{sub x} absorption/desorption chemistry is robust. In Task 9, we experimentally observed the channeling of liquid flow due to poor design of previous rectangular modules. Newly obtained welded rectangular modules out-performed previous modules. We also presented SO{sub 2} absorption data using different Na{sub 2}SO{sub 3} concentrations. The SO{sub 2} absorption seem to be dependent on liquid flow rate, a rather surprising result compared to earlier results. Apparatus for combined absorption/desorption of SO{sub 2} in rectangular modules is also given in this report.

Physical Description

29 p.

Notes

OSTI as DE96009291

Source

  • Other Information: PBD: Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96009291
  • Report No.: DOE/PC/91344--T15
  • Grant Number: AC22-92PC91344
  • DOI: 10.2172/225025 | External Link
  • Office of Scientific & Technical Information Report Number: 225025
  • Archival Resource Key: ark:/67531/metadc672809

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 18, 2015, 11:53 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bhown, A.S.; Pakala, N.; Riggs, T.; Tagg, T.; Kirkar, K.K.; Majumdar, S. et al. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 14, report, November 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc672809/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.