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Abstract 
The research summarized in this report is the result of a two-year effort 

that has focused on evaluating the viability of wavelet bases for the solu- 
tion of partial differential equations. The primary objective for this work 
has been to establish a foundation for hierarchical/wavelet simulation meth- 
ods based upon numerical performance, computational efficiency, and the 
ability to  exploit the hierarchical adaptive nature of wavelets. This work 
has demonstrated that hierarchical bases can be effective for problems with 
a dominant elliptic character. However, the strict enforcement of orthog- 
onality was found to be less desirable than weaker semi-orthogonality or 
bi-orthogonality for solving partial differential equations. This conclusion 
has led to the development of a multi-scale linear finite element based on 
a hierarchical change of basis. The reproducing kernel particle method has 
been found to yield extremely accurate phase characteristics for hyperbolic 
problems while providing a convenient framework for multi-scale analyses. 



3 

Acknow1edgme:nt s 

The authors of this manuscript would like to acknowledge the contributions of 
Prof. Wing Kam Liu at Northwestern University, Prof. Douglas P. Hardin 
at Vanderbilt University, and Prof. Peter M. Massopust at Sam Houston 
University. In particular, the contributions by Prof. Hardin on the semi- 
orthogonal wavelets and Schauder basis were significant and his hard work is 
greatly appreciated. The1 principal investigator also wishes to thank Philip 
M. Gresho at Lawrence Livermore National Laboratory for his helpful sug- 
gestions. Special thanks go to Thomas M. Smith and Allen C. Robinson for 
reading the preliminary version of this manuscript. In addition, the princi- 
pal investigator would like to acknowledge the support of the Computation, 
Computers and Math Center at Sandia National Laboratories in this en- 
deavor. 



4 



Contents 

1 Introduction 13 
1.1 Multi-Resolution Analysis and Wavelets . . . . . . . . . . . .  14 
1.2 Historical Perspective . . . . . . . . . . . . . . . . . . . . . . .  19 

1.2.1 Finite Difference and Collocation Methods . . . . . . .  20 
1.2.2 Wavelet-Galerkin Methods . . . . . . . . . . . . . . . .  21 
1.2.3 Reproducing Kernel Methods . . . . . . . . . . . . . .  24 
1.2.4 Multi-Level Methods . . . . . . . . . . . . . . . . . . .  25 
1.2.5 Fast Wa\.elet Algorithms and Nonstandard Forms . . .  26 

1.3 Technical Issues . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
1.3.1 Numerical Performance . . . . . . . . . . . . . . . . . .  28 
1.3.2 Computaiional Performance . . . . . . . . . . . . . . .  29 

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

2 The DGHM Multi-wavelet 31 
2.1 A Scaling Funct. ion Galerkin Formulation . . . . . . . . . . . .  32 
2.2 A Multi-Scale Algorithm . . . . . . . . . . . . . . . . . . . . .  36 
2.3 Numerical Performance . . . . . . . . . . . . . . . . . . . . . .  41 

2.3.1 A Finite Difference Interpretation . . . . . . . . . . . .  41 
2.3.2 Dispersi1.e Behavior . . . . . . . . . . . . . . . . . . . .  43 

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

3 The “Semi-hat” Basis 49 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
3.2 Multi-Scale Trailsformations . . . . . . . . . . . . . . . . . . .  51 
3.3 Wavelet Construction . . . . . . . . . . . . . . . . . . . . . . .  52 

3.3.1 Hierarchical Schauder Basis . . . . . . . . . . . . . . .  53 
3.3.2 Semi-Orthogonal Sombrero Wavelets . . . . . . . . . .  54 

3.4 Uniform Discretization . . . . . . . . . . . . . . . . . . . . . .  57 

5 



6 CONTENTS 

3.4.1 Unbounded Domain: Riesz bounds and Battle-Lemari6 
Type Wavelets . . . . . . . . . . . . . . . . . . . . . .  59 

3.4.2 Hybrid Basis . . . . . . . . . . . . . . . . . . . . . . .  61 
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

4 The Schauder Basis 65 
4.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 
4.2 Wavelet-Galerkin Method . . . . . . . . . . . . . . . . . . . .  71 

4.2.1 The Model Problem . . . . . . . . . . . . . . . . . . .  72 
4.2.2 1-D Con&parison: Schauder vs . Linear Finite Element . 73 
4.2.3 2-D Comparison: Schauder vs . Linear Finite Element . 78 

4.3 The Multi-Scale Finite Element . . . . . . . . . . . . . . . . .  87 
4.3.1 Multi-Scale Transformations Revisited . . . . . . . . .  87 
4.3.2 One-Dimensional Element . . . . . . . . . . . . . . . .  90 
4.3.3 A Multi-Scale Algorithm . . . . . . . . . . . . . . . . .  94 
4.3.4 Example 1-D Calculation . . . . . . . . . . . . . . . . .  95 
4.3.5 Two-Dimensional Element . . . . . . . . . . . . . . . .  97 

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

5 Reproducing Kernel Methods 103 
5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 

5.1.1 Reproducing Kernel Particle Formulation . . . . . . . .  104 
5.1.2 RKPM Two-Scale Decomposition . . . . . . . . . . . .  106 
5.1.3 von Neumann Analysis . . . . . . . . . . . . . . . . . .  108 

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 
5.2.1 1-D Hyperbolic Equations . . . . . . . . . . . . . . . .  115 
5.2.2 2-D Hyperbolic Equations . . . . . . . . . . . . . . . .  119 
5.2.3 Parabolic Equation . . . . . . . . . . . . . . . . . . . .  124 

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 

6 Summary and Conclusions 127 

Bibliography 129 



List, of Fig,ures 

1.1 
1.2 
1.3 

Translation and dilation of the box function and hat function. 16 
Box function an13 the corresponding Haar wavelet. . . . . . . .  17 
Multi-scale projection of f(x) = sin(7rx) onto Vj ,  for j = 
0) 1,2 ,3 ,4 .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

2.1 

2.2 
2.3 

2.4 

Donovan-Geronimo-Hardin-Massopust (DGHM) multi-wavelet 
element showing (a) the DGHM “shape” functions (4 ) )  (b) the 
element view of the multi-wavelet shape functions (+), (c) an 
assembly of two DGHM multi-wavelet elements, and (d) the 
corresponding wavelets. . . . . . . . . . . . . . . . . . . . . .  32 
DGHM multi-wavelet multi-scale solution. . . . . . . . . . . .  39 
Non-dimensional circular frequency for the quadratic finite el- 
ement and the DGHM multi-wavelet element. . . . . . . . . .  45 
Non-dimensional phase speed for the quadratic finite element 
and the DGHM multi-wavelet element. . . . . . . . . . . . .  45 

3.1 

3.2 

3.3 

3.4 

3.5 

Schauder basis !P2 = (y$ @; $T)T with dimension 7 on a 
uniform discretization. . . . . . . . . . . . . . . . . . . . . . .  53 
Vo, VI @ WI, and V2 W2 bases respectively for the semi- 
orthogonal wavdets with a non-uniform discretization and ar- 
bitrary refinement. . . . . . . . . . . . . . . . . . . . . . . . .  58 
Semi-orthogonal Sombrero for a) E = 0, b) E = 0.3, c) E = 0.5, 
d) E: = 3, and e) 0 5 E 5 3 on a uniform grid with 0 5 x 5 3. . 60 
Battle-Lemari4 type wavelets for a) e = 0, b) E = 1, c )  E = fi, 
and d) E = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 
Non-zero entries in Ash’K with 4 levels and the semi-orthogonal 
basis combined with 2 additional levels with the Schauder basis. 63 

7 



8 LIST OF FIGURES 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 
4.7 

4.8 

4.9 

The linear finite element basis for level j = 3 with 8 elements 
and 9 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 
The hierarchical Schauder basis for level j = 3 showing a) 
the composite basis for 8 elements and 9 nodes, b) the basis 
functions for scale 2, c) the basis functions for scale 1, and d) 
the basis functions for scale 0. . . . . . . . . . . . . . . . . . .  70 
The nonzero entries in the mass and stiffness matrices for both 
the Schauder and linear finite element bases for a mesh with 
64 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 
Solutions, u, on 0 5 x 5 2 using the Schauder basis with mass- 
lumping and a) no corrections and b) 3 wavelet coefficient 
corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 
The nonzero entries in the mass and stiffness matrices gener- 
ated with the Schauder and linear finite element bases in 2-D 
for a 32 x 32 mesh. . . . . . . . . . . . . . . . . . . . . . . .  79 
Number of unknowns versus number of flops . . . . . . . . . .  85 
The exact and approximate solutions using the lumping pro- 
cedure with and without wavelet correction for a 32 x 32 2-D 
mesh. (u" is the interpolant of the exact solution, and uh is 
the discrete solution.) . . . . . . . . . . . . . . . . . . . . . . .  86 
One dimensional two-scale decomposition of the finite element 
nodal basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 
Basis elements and their piecewise derivatives for the one di- 
mensional multi-scale element with three refinement scales. 
The derivatives have been scaled by l / k  for scales k = I, 2,3. 91 

4.10 Finger diagonal structure of element mass matrix. . . . . . . .  94 
4.11 Exact solution and scale solutions for k = 0,1 ,2 .  (Node num- 

bers correspond to the insertion of multi-scale DOF). . . . . .  96 
99 4.12 Four-patch of bilinear elements with multi-scale DOF. . . . . .  

4.13 Parent element and multi-scale DOF for k = 1. a) reference 
element and basis elements for multi-scale DOF with IC = 1, 
b) $;, c) yf, d) $1, e) $!, and f )  $:. . . . . . . . . . . . . . .  100 

5.1 One-dimensional two-scale decomposition based on dilation of 
the window function. . . . . . . . . . . . . . . . . . . . . . . .  107 



LIST OF FIGURES 9 

5.2 One-dimensional phase (a) and group (b) speed results for the 
first-order wave equation, linear finite element semi-discretization 
employing fully integrated, consistent (CF), lumped (LF) mass 
and higher-order (HF) matrix formulations. 

5.3 One-dimensional phase (a) and group (b) speed results for 
the first-order wave equation, Reproducing Kernel Particle 
semi-discretization employing full-integration consistent (CF) , 
lumped (LF) , higher-order (HF) and trapezoidal integration 
consistent (CT) mass matrix formulations. . . . . . . . . . . .  117 

5.4 One-dimensional phase (a) and group (b) speed results for 
the second-order wave equation, linear finite element semi- 
discretization employing full-integration consistent (CF) , lumped 
(LF) and higher-order (HF) mass matrix formulations. . . . .  118 

5.5 One-dimensional. phase (a) and group (b) speed results for 
the second-order wave equation, Reproducing Kernel Particle 
semi-discretization employing the full-integration, consistent 
(CF), lumped (LF), higher-order (HF) and trapezoidal inte- 
gration consistent (CT) mass matrix formulations. . . . . . . .  119 

5.6 Polar (a) and Cartesian (b) plots of the phase speed for the 
FE semi-discreti zation of the two-dimensional, first-order wave 
equation employing a full-integration, consistent mass matrix 
formulation (CF). . . . . . . . . . . . . . . . . . . . . . . . . .  120 

5.7 Polar (a) and Cartesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, first-order 
wave equation with full-integration, and a consistent mass ma- 
trix (CF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 
Polar (a) and Cartesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, first-order 
wave equation with a consistent mass matrix and trapezoidal 
integration (CT). . . . . . . . . . . . . . . . . . . . . . . . . .  121 

5.9 Polar (a) and Cartesian (b) plots of the phase speed for the 
FE semi-discretization of the two-dimensional, second-order 
wave equation using a full-integration, consistent mass matrix 
formulation (CF'). . . . . . . . . . . . . . . . . . . . . . . . . .  122 

5.10 Polar (a) and C'artesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, second-order 
wave equation using full-integration and a consistent mass ma- 
trix (CF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 

. . . . . . . . . .  116 

5.8 



10 LIST OF FIGURES 

5.11 Polar (a) and Cartesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, second-order 
wave equation using a consistent mass matrix and trapezoidal 
integration (CT). . . . . . . . . . . . . . . . . . . . . . . . . . 123 

5.12 Parabolic PDE apparent diffusivity for the (a) fully integrated 
consistent mass (b) trapezoidal integration consistent mass 
(c) fully-integrated higher order mass and (d) fully-integrated 
lumped mass RKPM semi-discretizations. . . . . . . . . . . . 125 



List of Tables 

2.1 Condition numbers of the stiffness matrix K:@ at scale k for 
the linear and quadratic finite elements and DGHM multi- 
scaling function elements. . . . . . . . . . . . . . . . . . . . .  34 

2.2 Condition numbers for the matrix (IT:* - K:@T'f') for scale 
0 through 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

2.3 Spectral radii for for Jacobi and Gauss-Seidel iteration matri- 
ces associated with AI, = (K;* - Kf@T'f') for the DGHM 
and piecewise-quadratic elements. . . . . . . . . . . . . . . . .  40 

2.4 Condition numhers for the diagonally scaled I?" and K" 
operators for multiple mesh scales, 0 5 k 5 8, and 0 5 E 5 oc). 41 

2.5 Finite difference stencils and leading order of truncation error 
for u". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

4.1 Formulas for the number of non-zeros in the 1-D mass and 
stiffness matrices where N = 2k+1 - 1. . . . . . . . . . . . . .  75 

4.2 Condition numbers for the 1-D mass and stiffness matrices 
after diagonal preconditioning. . . . . . . . . . . . . . . . . . .  76 

4.3 Comparison of If1 error for equivalent conjugate gradient method 
unknowns for the consistent and lumpcorrected solutions for 
the model problem with E = 1. . . . . . . . . . . . . . . . . . .  80 

4.4 Formulae for the number of non zeros in 2-D mass and stiffness 
matrices where N = 2"l - 1. . . . . . . . . . . . . . . . . . .  80 

4.5 Condition numbers for the 2-D mass and stiffness matrices 
after diagonal scaling. . . . . . . . . . . . . . . . . . . . . . . .  81 

4.6 Jacobi precondj tioned conjugate gradient iterations required 
for the Schauder and linear finite element bases in 2-D. . . . .  82 

4.7 Storage requirements and Jacobi preconditioned conjugate it- 
erations for "purely" elliptic model problem. . . . . . . . . . .  82 

11 



12 LIST OF TABLES 

4.8 

4.9 

Computational comparison between the linear finite element 
and the hierarchical Schauder basis where N = 2k. . . . . . . . 84 
Number of PCG iterations using the lumped approximation 
as an initial guess. . . . . . . . . . . . . . . . . . . . . . . . . 84 



Chapter 1 

Introduction 

Wavelets are a relatively new mathematical tool that dissect data, functions, 
and differential operators into components of different frequency with a reso- 
lution (in space or time) that is simultaneously matched to  the scale of each 
component. The use of wavelet bases for the solution of partial differential 
equations (PDEs) has promised to deliver hierarchical solutions matched to 
the scales of the physical problem. The application of wavelet bases to the 
solution of partial differential equations has evolved to the point where there 
are a number of competing formulations that include, but are not limited to 
wavelet-Galerkin, wavelet-collocation, and reproducing kernel methods. 

Despite the growing number of formulations and solution algorithms that 
use wavelets, the field is still relatively new, and many technical issues remain. 
The state of wavelet base,: for solving partial differential equations is roughly 
that of finite element technology 20 years ago. That is to say there is great 
promise in this approach but there is a clear need for fundamental research 
that characterizes the nuinerical and computational performance of wavelets 
for the solution of partial differential equations. Before proceeding with a 
historical perspective on wavelets and their application to partial differential 
equations, a brief introduction to wavelets is presented first in words and 
then using the mathematical formalisms of the wavelet community. 

The objective for wavelet decompositions is to represent a function in 
terms of multiple scales of resolution - particularly functions that are local 
in both time and frequency (or space and wave number). A precise definition 
of wavelets is somewhat elusive, but one of the best overall definitions is given 
by Chui:20 

13 



14 CHAPTER 1 - INTRODUCTION 

The term “wavelets” has a very broad meaning, ranging from sin- 
gular integral operators of the Calderbn type in harmonic analysis 
to sub-band coding algorithms in signal processing,’ from coher- 
ent states in quantum physics to spline analysis in approximation 
theory, from multi-resolution transform in computer vision to  a 
multilevel approach in the numerical solution of partial differen- 
tial equations, and so on. 

To be a bit more precise, wavelets permit the representation of functions 
in terms of a family of wavelet basis functions and their associated wavelet 
coefficients, i.e., f(z) = uj,k$(2jx - I C ) ,  where $(2jx - I C )  are the wavelets 
and a j , k  are the coefficients. Wavelets are based on the application of trans- 
lation ($(x) -+ $(x - k)), and dilation ($(.) + $( jz ) ) .  Here, j is the 
dilation parameter and is understood to range over all the scales of interest, 
while IC indicates the translation and ranges over all possible integer trans- 
lates (shifts). The construction of a wavelet begins with a dilation equation, 
that is, a two-scale difference equation, and its solution which is typically 
referred to as the scaling function, 4. The wavelet at a given scale can be 
expressed in terms of differences of scaling functions. With the definition of 
wavelets in “words” out of the way, attention is turned to the mathematical 
foundation for wavelets and multi-resolution analysis. 

1.1 Multi-Resolution Analysis and Wavelets 
The relationship between the scaling function or “mother” wavelet and the 
wavelets themselves was suggested above, but the details of this relationship 
were not made precise in a mathematical sense. The basic idea behind the 
relationship hinges on a multi-resolution analysis whose goal is to break down 
the original L2(IR) space into a sequence of nested subspaces. The multi- 
scale representation of a function in L2(R) (see D a ~ b a c h i e s ~ ~ )  relies upon a 
sequence of nested subspaces, Vj such that 

The nested subspaces have the following properties. 

(a) The closure of the subspaces is dense in L2(R), UjEzVj = L2(R), 
where Z is the set of integers. 



I .I. MULTI-RESOLUTj‘ON ANALYSIS AND WAVELETS 15 

(b) The intersection of the subspaces is the trivial space, nj,z Yj = (0). 

(c) The embedded spaces in a multi-resolution analysis are related by a 
scaling law where 

(d) There exists a refinable function whose integer translates form an or- 
thogonal basis for the central space, VO,  Le., 

VO = span{+(x - IC), k E 2). (1.3) 

This refinable function is referred to as the scaling function. 

In the nested sequencie of spaces, the Vo subspace lies in the VI subspace, 
and so, any function in MI may be expressed in terms of the scaling functions 
in VI. That is, 

03 

where IC E Z, and ak are coefficients that must be computed for the two- 
scale difference relation. Equation (1.4) is the dilation equation, and it is 
sometimes referred to as the refinement equation. 

In the more general case, for a given scale, j ,  

where IC represents the integer translates of the scaling function. In the 
subsequent chapters, the dilation parameter, j, will be referred to  frequently 
as the “scale”. 

Example 1 Translation and Dilation 
Two examples of translation and dilation are shown in Figure 1.1 for  

the box and hat functions. Here, the box function is the piecewise constant 
function, 
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Figure 1.1: Translation and dilation of the box function and hat function. 

and satisfies #(x) = #(2x) + #(2x + 1). Similarly, the hat function is 

1 - 1x1, i f 0  5 1x1 5 1, 
otherwise, (1-7) 

and satisfies #(x) = $4(2x + 1) + #(2x) + $#(2a: - 1) as its dilation equation. 
Unlike the constant function, the hat function is not orthogonal to its integer 
translates and requires an orthogonalization procedure for use as a scaling 
function in the linear spline Battle-Lemarie ' construction .36 

Attention is now turned to the wavelets and their subspaces. The dif- 
ference between subspaces at different scales is key in the construction of 
the wavelets and in multi-resolution analysis. For every scale, j ,  the wavelet 
subspace, Wj, is defined to be the orthogonal complement of Vj in Vj+l as 

where @ indicates an orthogonal direct sum, Vj I Wj, and Wjr I Wj for 
j' # j. From this, it follows that the wavelet spaces provide an orthogonal 
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Figure 1.2: Box function and the corresponding Haar wavelet. 

decomposition of L2 (R) , 
@ wj = L2(IR). 
jGZ 

Like the scaling functions, the wavelets can be defined in terms of a two-. 
scale difference equation as 

where 

As an example of this re:lationship, the wavelet that corresponds to the box 
function in Figure 1.1 is the Haar wavelet shown in Figure 1.2. 

With the basics for the relationship between the wavelet and scaling func- 
tion defined, attention is turned to  the projection of a function onto a wavelet 
basis. Here, Pj f represents the projection of a function, f onto the space V j ,  

and Qj f represents the projection of f onto the wavelet space, Wj. Making 
use of the orthogonality between Vj and Wj, 

Wj == ~pan(2j/~$(2jx - k ) ,  k E Z}. (1.11) 

Here, the projection operators are idempotent and orthogonal, i.e., P; = Pj, 
Q: = Qj, and PjQj = QjFj = 0. In Eq. (1.12), the projection onto the 
wavelet basis, Qj-If constitutes the detail in the projected function that is 
required to move from a coarse level to a level with higher resolution. From 
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this point of view, multi-resolution decomposition breaks L2(IR) into a series 
of orthogonal subspaces at varying resolution. At each level of resolution, j ,  
a function in L2(IR,) may be represented in terms of the scaling functions at 
scale j ,  or in terms of scaling functions and wavelets at scale j - 1. 

Example 2 Projections 
As a simple example, consider the projection off (2) = sin(.;irx) onto Vo 

with the scaling function being the “box” function defined by  Eq. (1 .6), and 
0 5 x 5 1. The projection onto this function is simply 

(1.13) 

and is shown in Figure 1.3 as the Scale4  projection. The amplitude of the 
constant function, Po f (x) is n/2 which is the area under the half-sine wave. 

Similarly, the result of projecting onto the next finer grid associated with 
V I  yields PI f (x) = 3 ( 2 x )  + 3 ( 2 x  - 1). This is  shown as the Scale-1 
projection in Figure 1.3, and again the area is preserved in the orthogonal 
projection onto V I .  Note that both the Scale4 and Scale-I projections yield a 
“top-hat” representation of the half-sine wave, albeit a top-hat representation 
with the area equal to  that under the half-sine wave. 

Subsequent projections onto increasingly larger spaces yields more accu- 
rate representations of the original sine function. Between any two scales, the 
diference between the discrete functions is  clearly seen to be the projection 
onto the space associated with the Haar wavejet at a given scale. For exam- 
ple, to  move from Scale-2 to  Scale-3, the & f (x) projection may be computed 
directly using the Haar wavelet rather than the box functions at Scale-3, i.e., 
P3f(x) = F2f (4 + Q a f  (2). 

This brief overview of scaling functions, wavelets and multi-resolution 
analysis has been presented as background for the chapters that follow in 
this report. Additional details on wavelet construction and multi-resolution 
analysis may be found in Strang,88>89 D a u b e ~ h i e s , ~ ~ ? ~ ~  Mallat ,74 M e ~ e r , ~ ~  
st rich art^,^^ M a s s o p ~ s t , ~ ~ ? ~ ~  Williams,107 Graphs,44 J a ~ e r t h , ~ ~  and Chui.20 
Attention is now turned to a review of the salient literature on the solution 
of partial differential equations using wavelet bases. 
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Figure 1.3: Multi-scale projection of f(z) = sin(nz) onto V’, for j = 
0,1,2,3,4.  

1.2 Historical. Perspective 
The name “wavelet” or “ondelette” was coined in the early 1980s by French 
researchers Morlet, Areris, Fourgeua, Giard and G r ~ s s m a n . ~ ~ ~ ~ ~ ~ ~ ~  However, 
functions with the attributes of wavelets have been known for airnost 100 
years. M e ~ e r ~ ~  points out that there are seven primary origins for wavelets 
that date from around 1930 with the Haar wavelet dating back to 1909. 
However, the literature from this era does not use the term “wavelet”, and 
it has been asserted that this work did not explicitly include the concepts of 
mu1 t i-resolu t ion analysis. 

A brief overview of some of the current literature on wavelet based a p  
proaches to  solving is presented in the subsequent sections. For a recent 
survey of the current state of wavelets and multi-scale methods for solving 
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partial differential equations, see Dahmen et al.30 and Dahmen.33 As a cau- 
tionary word, the literature survey presented here is undoubtedly incomplete. 
The rate at which publications on wavelets for partial differential equations 
have appeared in the last two years has made it difficult to present all of the 
recent work in this area. 

1.2.1 Finite Difference and Collocation Methods 

There has been a variety of work with wavelets in both finite difference and 
in collocation methods. In 1994, J a r n e ~ o n ~ ~  introduced a finite difference 
scheme that used Daubachies wavelets. The use of Daubachies wavelets was 
shown to yield a method that is equivalent to a finite difference scheme 
with adaptive grid refinement where local refinement is based upon the de- 
composition of the local solution. In 1995, Harten49 demonstrated the use 
of wavelets and multi-resolution analysis in the computation of the time- 
evolution of hyperbolic conservation laws where the solution at  each time 
level was represented in terms of the wavelet coefficients. This representa- 
tion yielded a numerical solution strategy where data compression was built 
into the method. In this work, the computational complexity of the time- 
integration scheme was shown to be directly dependent on the rate of data 
compression. 

Cai and Wang13>14 (1996, 1993) used a cubic spline wavelet with a dis- 
crete wavelet transform and collocation in their method for solving PDEs. 
Adaptivity was introduced in the solution procedure by examination of the 
amplitude of the wavelet coefficients at a given time step. A similar ap- 
proach has been taken by Vasilyev and Paolucci98~99 (1996,1997) where the 
computational cost of their method has been demonstrated to be on the or- 
der of the total number of collocation points and independent of the spatial 
dimension of the problem. Ho lm~t rOm~~ (1996) introduced an interpolating 
wavelet transform and used a threshold on the amplitude of the wavelet co- 
efficients to obtain adaptive solutions for hyperbolic PDEs. Holmstrom also 
demonstrated that the order of accuracy of the underlying finite difference 
discretization is preserved with the interpolating wavelet transform. More 
recently, work by Cai and Zhang15 (1997) has extended the adaptive spline 
wavelet method in order to treat reaction-diffusion equations for reacting 
flows. 
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1.2.2 Wavelet-Gallerkin Met hods 
The wavelet-Galerkin method has received a great deal of attention over the 
past 7-8 years. This is undoubtedly due to the generality that the Galerkin 
method provides, and the ease with which alternative bases may be imple- 
mented and tested. In this section, only a subset of the past work is reviewed, 
beginning in 1990. 

Glowinski et aL4I (1990) investigated the use of Daubechies wavelets to 
both linear and nonlinear elliptic, parabolic and hyperbolic PDEs in one 
space dimension. In this work, they concluded that wavelet bases compared 
favorably with both traditional finite elements and finite difference methods, 
combining aspects of botk. finite element and spectral methods. In addition, it 
was suggested that wavelet bases lend themselves naturally to  multi-level so- 
lution methods, but that the extension to multiple dimensions is non-trivial. 
Although a multi-level approach is outlined, scaling functions are used for 
the test and trial functions, and no direct use of the wavelets in the solution 
algorithm is apparent. 

Latto and TenenbauniG1 (1990) also used Daubachies wavelets (D636) in 
the solution of equation with a Galerkin procedure. In this work, only the 
Daubechies scaling funct:ions were used in the solution method. 

Glowinski et al.42 (1992) used a Galerkin procedure to solve an elliptic 
PDE in two space dimemions with a “fictitious domain” treatment for the 
boundary, i.e., a unifornn grid imposed over an irregular domain. Again, 
Daubachies scaling functions were used as the basis, and it was determined 
that the wavelet-Galerkin method is “comparable” to the classical finite ele- 
ment method. Also in 19!32, Wells and Zhoulo4 considered the use of wavelets 
to represent domains and boundary data for the solution of elliptic partial 
differential equations. In 1993, Wells et al.lo5 introduced a penalty method 
in conjunction with a fictitious domain using the wavelet boundary represen- 
t at ion. 

Xu and Shannlos (1992) also used Daubachies wavelets in the solution of 
one-dimensional elliptic problems using orthogonality of the wavelets in the 
construction of an iterative solution strategy. Here, only Dirichlet boundary 
conditions were consideIed and a change of basis was used to reduce the 
operations count during the iterative solution procedure. The relationship 
between the change of basis and a hierarchical basis (see Yserentantlog) is 
illustrated in this paper. 

In 1993, Dahlke and W e i n r e i ~ h ~ ~  adapted biorthogonal wavelets to a 
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Galerkin procedure for the solution of integral and partial differential equa- 
tions. Biorthogonality refers to the fact that a scaling function and its dual 
are used as generators for the multi-resolution analysis with orthogonality 
between the primary and dual basis. More precisely, the orthogonality be- 
tween Ym and W, is relaxed with the requirement that Vm n W, = (0) 
imposed instead. A wavelet-Galerkin procedure was considered, and it was 
demonstrated that the biorthogonal wavelet bases yield stiffness matrices 
with uniformly bounded condition numbers. Dahlke and Kunoth,22 also in 
1993, formulated a Galerkin method using biorthogonal wavelets and a two- 
grid solution strategy that made use of the wavelets for the construction of 
the restriction and prolongation operations. 

Qian and we is^^^ (1993) used Daubachies scaling functions to solve a 
Helmholtz equation in two dimensions. Here, the wavelet-Galerkin method 
was demonstrated to converge when their finite difference schemes failed to 
do so. 

The use of wavelets has also emerged in multi-level schemes and pre- 
conditioners. An early example of this is demonstrated by Rieder et al.85 
(1993) in the construction of a wavelet based version of Hackbusch’s fre- 
quency decomposition multi-grid method.48 A later paper by Rieder et a1.% 
(1994) considers the application of the wavelet-based frequency decompo- 
sition multi-grid scheme and demonstrates that the wavelet reconstruction 
yields a robust multi-level algorithm. Work by Glowinski et al.,43 also in 
1994, used a wavelet multi-grid preconditioner with a wavelet-Galerkin dis- 
cretization of Dirichlet boundary-value problems with the penalty/fictitious 
domain approach. 

The work by Amaratunga and Williams’ (1994) used Daubachies D6, 
D8, D10, and D12 scaling functions with a Galerkin procedure to generate 
solutions to a Helmholtz equation on a periodic domain in one spatial domain. 
Comparisons with finite difference solutions illustrated that the “wavelet” 
(actually scaling function) solutions converged more rapidly, albeit with an 
additional cost for the boundary treatment. 

In 1994, KO and his c o - ~ o r k e r s ~ ~  developed triangular wavelet-based finite 
elements. In this work application to elliptic problems in a unit square is 
demonstrated. However, no assessment of the computational complexity or 
numerical performance of these elements was made. 

Also in 1994, Urbang7 demonstrated the construction and application 
of divergence-free refinable functions for incompressible flow. The use of 
multi-level preconditioning yielded uniformly bounded condition numbers 
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for Stokes flow in a lid-driven cavity. Later work by Dahmen, Kunoth 
and Urban29 (1995) demonstrated that wavelet-Galerkin methods with shift- 
invariant refinable spaces yield trial spaces that satisfy the LBB (Ladysenkaya- 
Babuska-Brezzi), i.e., the div-stability, condition. Here, a multi-scale decom- 
position of the Schur complement of the discrete system is suggested for 
time-dependent problems. 

In related work, Kuno thS9 (1994) developed a class of multi-level precondi- 
tioners for elliptic boundary value problems. In 1995, Perrier and Charton82 
demonstrated the solution of the incompressible, time-dependent , Navier- 
Stokes equations using a wavelet-Galerkin method. A subsequent effort by 
Charton and Perrier’‘ irL 1996 used collocation for the non-linear advective 
terms, and presented comparisons with calculations using a spectral code. 
Identical results were obtained with both the wavelet and spectral approaches 
although the computational effort for the wavelet code was higher. More re- 
cently, Weisslo3 (1997) has used the wavelet-Galerkin method for the study 
of enstrophy transfers in two-dimensional turbulence in simple geometries. 

Strela and Stranggl ( 1995) have constructed finite element multi-wavelets 
that have local support on “two intervals” with the wavelet subspace spanned 
by wavelets with support over “three intervals”. Simple examples of these el- 
ements consist of the linear hat-function and its associated sombrero wavelet. 
In their construction, the resulting finite elements are orthogonal to the 
wavelets and their tranislates, but the wavelets are only semi-orthogonal, 
i.e., orthogonal across scales. 

The treatment of boundary conditions - especially for more traditional 
wavelets, i.e., Daubachies wavelets - has proven somewhat problematic. The 
work by Monasse and Perrier78 (1995) is one of the few efforts that has explic- 
itly considered the imp1 ications of boundary conditions on multi-resolution 
analysis in the context of solving partial differential equations. 

In 1997, Walterlo2 extended the work of Strela and Strang by proposing a 
Sobolev inner product to make the scaling functions orthogonal to their trans- 
lates yielding simplified decomposition - reconstruction algorithms. Later 
work by Strela and Straiigg2 (1997) proposed a pseudo-biorthogonal comple- 
tion of Hermite cubics for finite elements as a means to obtain wavelets that 
are “quick” to evaluate in a Galerkin procedure. 

As an aside, Latto, Flesnikoff and TenenbaumG0 (1996) present a method 
for evaluating “connect ion coefficients” for wavelet-Galerkin applications. 
Dahmen and Micchelli3’ in 1993 also considered the evaluation of Galerkin 
integrals that involve derivatives of wavelets and demonstrated that the eval- 
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uation of the Galerkin integrals reduces to an eigenvector-moment problem. 
The application of wavelets that are constructed to be biorthogonal in 

the sense of a weighted inner product was demonstrated by Sweldensg4 in 
1996. For an inner product of the form < Lu,v >, it was shown that the 
biorthogonal wavelets can diagonalize the operator. In Sweldens work, it was 
suggested that a similar idea could be used for more general operators such 
as the weak-form of the Helmholtz equation. ( Chapters 3 and 4 follow this 
general line of reasoning.) 

Work on element-by-element construction methods has been reported by 
Dahmen and Stevenson34 (1997) with a focus on wavelets for unstructured 
grids that yield uniformly bounded condition numbers for elliptic operators. 
Here, the construction procedure relies strictly on a uniform refinement of 
the initial elements - a small penalty in the mesh generation process. 

wavelets with a discrete wavelet transform and semi-implicit time integration 
to yield a Petrov-Galerkin method with a diagonalized stiffness operator. 
These authors refers to this method as a “adaptive inversion scheme” since 
there is no linear system to be solved at  each time step. 

As evidenced by the brief review of this wavelet-Galerkin literature, the 
work in the early 1990s relied heavily on Daubechies wavelets. However, the 
trend in recent years has been away from Daubachies wavelets and towards 
wavelets that are constructed to yield specific algorithmic properties, e.g., 
diagonalize the stiffness operator for elliptic problems. The strict use of 
orthogonality has been relaxed32 yielding biorthogonal and semi-orthogonal 
wavelets. This approach has led to the idea that wavelets may be most useful 
for solving PDEs if they are used to simply “complete” a space, i.e., moving 
from V,-l to V,. These ideas have been used in the work reported on in the 
subsequent chapters. 

Frohlich and Schneider3’ (1997) have used operator-adapted biorthogonal . 

1.2.3 Reproducing Kernel Methods 
An alternative to traditional grid-based approaches is the class of methods 
based on moving least-squares, reproducing kernels, and partitions of unity. 
An overview of the development of these methods is presented by Belytschko, 
et aL3 The methods based upon reproducing kernels are of interest here 
because they promise to deliver enhanced numerical performance on a broad 
range of physical problems and provide a framework for incorporating multi- 
resolution analysis in PDE solution algorithms. 
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Liu and his co-workers have been developing Reproducing Kernel Par- 
ticle Methods (RKPM) for a number of years and have demonstrated a p  
plications ranging from structural acoustics to large deformation mechanics 

71 In addit ion, Liu et a1.65973 have combined reproducing kernel 
ideas with multi-resolution analysis using wavelets, permitting the decompo- 
sition of discrete solutions into multiple scales. The application of RKPM 
to structural dynamics has been demonstrated by Liu et al.70 in addition to 
showing that the reprodulcing kernel interpolation functions satisfy necessary 
consistency conditions. Uras et aLg6 have applied RKPM to acoustics prob- 
lems demonstrating that the dilation parameter in the window function may 
be used to perform the RXPM analogue of “h-p adaptivity”. 

In a series of papers by Liu, Li and Belytschko62T64~72 moving least squares 
reproducing kernel methods are developed beginning with the basic formu- 
lation and continuing through a Fourier analysis and the incorporation of 
wavelet packets. The possibility for RKPM to deliver equivalent rates of 
convergence for the discrete functions and their derivatives has also been 
explored by Li and L ~ u . ~ ~  The term “synchronized convergence” has been 
coined for the situation when convergence rates for the functions and their 
derivatives are of equal order. The application of RKPM to nearly incom- 
pressible, hyper-elastic solids was considered by Chen et al. ,17 while the treat- 
ment of large deformation problems has been explored by Liu et a1.55369 The 
enrichment of finite element computations with RKPM has also been ad- 
dressed permitting local regions of the computational domain to be treated 
with RKPM while the global problem is treated with a standard finite ele- 
ment formulation.l8 

1.2.4 Multi-Level Methods 
A topic closely related to the use of wavelets in the solution of partial differ- 
ential equations is the USE’ of wavelets for multi-level preconditioners. The use 
of multi-level splitting of finite element spaces is discussed in Chapters 3 and 
4 below. A brief and incomplete historical review of the relevant literature 
is presented here. 

In 1986, Y~eren tan t~”~  introduced the use of multi-level splitting of fi- 
nite element spaces in the solution of elliptic partial differential equations. 
Here, the principal idea was to replace the usual finite element nodal basis 
by an equivalent hierarchical basis. The effect of the change of basis is a 
preconditioning of the discrete operator that results in uniformly bounded 
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condition number in one-dimension, and a condition number that grows as 
O(log(l/h2)) in two-dimensions. Later work by Yserentantlll (1990) com- 
pared the hierarchical basis preconditioner to the Bramble, Pasciak and Xu12 
(BPX) preconditioner and demonstrated that there is a close relationship be- 
tween the two approaches. 

The work by Tong, Chan and Kuog5 in 1991 used a nodal change of 
basis as a preconditioner and demonstrated that their method yields condi- 
tion numbers that grow as O(log2(l/h)) in two dimensions with condition 
numbers of O(1) for their model Poisson problem. In 1992, Dahmen and 
KunothZ8 derived general estimates for condition numbers for elliptic prob- 
lems where a multi-level preconditioning is used. These estimates were used 
to demonstrate that the BPX preconditioner yields uniformly bounded condi- 
tion numbers. Jaffard52 has also considered the use of wavelets that provide, 
in effect, preconditioning for an elliptic PDE in the context of a Galerkin pro- 
cedure. Here, diagonal preconditioning of the wavelet-based elliptic operator 
is used to yield a uniformly bounded condition number. 

A detailed theoretical treatment of finite element multi-level methods may 
be found in Oswaldsl (1994). More recent work by Dahmen et aL30 (1997) 
considers the relationship between multi-grid and multi-scale decompositions 
and the use of multi-scale methods for physical problems with strong material 
anisotropy. 

1.2.5 Fast Wavelet Algorithms and Nonstandard Forms 
Since about 1990, Beylkin and his colleagues have been developing wavelet 
centric algorithms for a broad range of applications. A review of this work 
is presented in a separate context because it is not easily categorized with 
wavelet-Galerkin, wavelet-collocation, finite differences, or multi-level meth- 
ods. 

In the early 199Os, Beylkin et al.’O introduced a new class of numerical 
algorithms designed to achieve fast wavelet transforms. The importance of 
orthogonality, vanishing moments and recursion in terms of fast algorithms 
for multi-resolution analysis was presented by Beylkin5 in 1991. In 1992 - 
1993, fast wavelet algorithms were developed for point-wise function multi- 
plication: as well as for the representation of operators in terms of wavelet 
bases with compact s ~ p p o r t . ~ , ~  

In 1995, Beylkin and Keiser8 reported on the application of the “fast” 
wavelet algorithms to the adaptive solution of nonlinear partial differential 
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equations where the sparse representation of operators was used to obtain 
algorithms with O ( N )  complexity in the the wavelet coefficients. The Ph.D. 
thesis of K e i ~ e r ~ ~  provides a detailed presentation of nonstandard operator 
representation and adaptive PDE solution strategies. Averbuch, Beylkin, et 
aL2 (1995) addressed the solution of elliptic PDEs using the 'Lfast'' wavelet 
algorithms and nonstand 3rd operator representation. Recently, Beylkin and 
Coult" (1998) have foculjed on multi-resolution methods for the solution of 
elliptic PDEs and eigenvalue problems. 

1.3 Technical Issues 
With the historical review of wavelets and PDEs in place, attention is turned 
to some of the technical issues involved in applying discrete solution tech- 
niques to PDEs. The accurate simulation of physical problems using grid- 
based numerical schemes for wave propagation, advection and diffusion hinges 
upon having a clear understanding of the constraining numerical errors, the 
requisite grid resolution t 3 minimize such errors, and sufficient computational 
resources to effect solutions with the required grid scale. Examples of this 
may be seen when attempting to simulate wave propagation in an acoustic 
medium, or compute turbulent flow fields via direct numerical simulation 
(DNS) or large eddy simulation (LES). 

In wave propagation (or pure advection) , controlling the dispersive errors, 
Le., phase and group velocity errors, to within 5% requires a minimum of 8 
to 10 grid points per wavelength for most numerical methods. Thus, the 
computation of wave propagation problems is limited by the wavelength, or 
frequency, that the grid can accurately represent. A failure to respect the 
so-called Nyquist limit of the grid introduces deleterious aliasing effects that 
corrupt the fidelity of the simulation. Similarly, the calculation of turbulent 
flows via DNS and LES is limited by the range of length scales that the 
grid can accurately resolve. Simple turbulent channel flow requires a grid 
resolution approximately proportional to the square of the Reynolds num- 
ber,lo6 i.e., the attainable Reynolds number is limited by the resolving power 
of the grid. The application of graded meshes is appropriate in boundary 
layers or in regions of steep gradients (shocks) in compressible flow fields 
that are known a-priori. However, for problems with complex geometry and 
coupled physics, graded, unstructured meshes ( or alternatively non-uniform 
particle distributions) are limited by the conservative estimates made for the 



28 CHAPTER 1. INTRODUCTION 

wavelengths that can be resolved. 
In principle, the many variants of grid-based spatial adaptivity provide 

an alternative to the conservative approach described above. However, cur- 
rent approaches to  adaptivity introduce many difficulties associated with 
unstructured grids, error estimates, and dynamic load balancing for parallel 
computations (particularly for distributed memory machines with large num- 
bers of processors). In contrast, wavelets have the capability of decomposing 
solutions into a set of coefficients that depend upon scale and location, and 
have properties that enable the automatic detection of regions where the so- 
lution is non-smooth, i.e., built-in adaptivity. Wavelet bases for grid-based 
simulation have promised the capability to compute multi-scale solutions 
with potentially higher convergence rates than conventional finite difference 
and finite element methods. However, the application of wavelet bases to  
the grid-based solution of physical problems involving wave propagation, ad- 
vection and diffusion is quite new, and there remain questions about the 
numerical and computational performance of this approach. 

1.3.1 Numerical Performance 
Numerical performance is a broad term, and is defined here to include the 
following: truncation error, consistency and stability, rate of convergence, 
dispersive character, and spatial adaptivity. At this point in time, the nu- 
merical performance of wavelet based methods, as defined here, has not been 
rigorously established, although there has been some preliminary work sug- 
gesting that the rate of convergence is comparable to both finite difference 
(FD) and finite element (FE) methods.84 

In this effort, the evaluation of the numerical performance was initiated 
by attempting to collect baseline data for the performance of FD and FE 
methods on the suite of model problems representative of the three classes 
of problems of interest, i.e., wave propagation, advection and diffusion. Note 
that these problems have been selected because they constitute the primary 
components required to assemble more complicated solution methods for 
nonlinear problems such as high-rate Lagrangian deformation problems or 
high-Reynolds number, time-dependent , incompressible viscous flow. 

Phase, group and amplitude errors constitute some of the most constrain- 
ing numerical errors for simulating wave propagation and advection domi- 
nated flows. A reduction in the number of grid points per wavelength can 
provide a significant computational advantage and permit the exploration of 
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problems containing shorter wavelengths and higher frequencies, e.g.? higher 
Reynolds numbers. An example of this has been demonstrated by Chris- 
tonlg where an optimized mass matrix leads to a factor of 4 reduction in 
the required 1-D grid resolution for acoustic wave propagation - a factor of 
64 in 3-D. The promise of wavelets is to deliver an even greater advantage 
in terms of accuracy. However, the characterization of the dispersive errors 
for wavelet formulations is virtually nonexistent in the literature. Therefore, 
attention has been placed on characterizing the phase and group errors and 
their source. This is a necessary step in evaluating wavelet formulations in 
terms of accuracy, and ultimately assessing their grid resolution requirements. 

1.3.2 Computational Performance 
One of the goals for this effort was to develop the framework for applying 
wavelets to the computation of complex, multi-scale, multi-physics problems. 
The success of many computational strategies hinges upon the ability to treat 
high-resolution and non-uniform meshes, complicated geometry and coupled 
nonlinear physical phenomena in a computationally efficient fashion. Al- 
though the intrinsic adaptive nature of wavelet bases promises to relieve the 
need for increasingly high-resolution meshes, most of the existing wavelet for- 
mulations have not been assessed for their computational performance. Thus, 
this effort has also attempted to quantify the following: computational effi- 
ciency, sequential scaling (complexity), compatibility with FE (unstructured 
grid) data structures, and adaptivity. In addition, the methods selected for 
this study have been chosen based on the ability to exploit parallelism. 

1.4 Overview 
The subsequent chapters of this report consider the so-called DGHM multi- 
wavelet element and the use of semi-orthogonal wavelets for solving elliptic 
partial differential equations. In Chapter 2, the development of a residual- 
based multi-level solution strategy that directly uses the wavelet basis and a 
discrete wavelet transforin is presented. Chapter 3 presents the construction 
of wavelets that, by design, are semi-orthogonal with respect to the bilinear 
form of an elliptic operator. The use of the wavelet transform as a multi-scale 
preconditioner is also outlined in this chapter. The ideas of splitting finite 
element spaces are presented with the development of a multi-scale finite 
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element in Chapter 4. Finally, the numerical performance of the reproducing 
kernel method for hyperbolic and parabolic problems is addressed in Chapter 
5 .  A summary of the exploratory research efforts and recommendations for 
further work are presented in Chapter 6. 



Chapter 2 

The DGHM Multi-wavelet 

This chapter provides an overview of a finite element based on the DGHM 
(Donovan-Geronimo-Hardin-Massopust ) mu1 t i-wavelet s and the use of both 
the DGHM multi-scaling functions and the multi-wavelets in a Galerkin 
framework. The DGHM multi-wavelets are not new, and their use in solv- 
ing elliptic partial differential equations has been investigated by KO et ai? 
where the so-called AFLF element was considered. Here, we choose to refer 
to the AFIF element as the DGHM element to acknowledge the researchers 
that introduced the DGHM multi-wavelets. The theoretical development and 
background on the DGHM multi-wavelets may be found in the series of pa- 
pers by Donovan et al.,37 Geronimo et al.,40 and M a s s ~ p u s t . ~ ~  The piecewise 
quadratic form of the multi-scaling functions with approximation order p = 3 
was constructed by in the context of pre-filters for signal process- 
ing. Additional informaxion on multi-wavelets may be found in the work by 
Strela,go Strela and Strangg2 and Plonka and Strela.83 

In the work presented here, the choice to use the DGHM multi-wavelet 
was driven by the desire to have a basis with compact support while focusing 
on developing algorithms that make use of both the scaling functions and 
their associated wavelets. Here, both the linear (DGHM) and quadratic87 
forms of the multi-wavelets are considered. Figure 2.1 shows the linear 
DGHM multi-scaling and multi-wavelet functions at the element level and in 
an assembled form for two elements. In the element form, the multi-scaling 
functions exhibit some similarities to the quadratic finite element. That is 
to say, the DGHM multi-scaling functions looks like a fractal version of the 
quadratic finite element 

Before proceeding with a description of the multi-scale Galerkin solution 
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Figure 2.1: Donovan-Geronimo-Hardin-Massopust (DGHM) multi-wavelet 
element showing (a) the DGHM “shape” functions ($), (b) the element view 
of the multi-wavelet shape functions ($), (c) an assembly of two DGHM 
multi-wavelet elements, and (d) the corresponding wavelets. 

algorithm for elliptic partial differential equations, the mathematical frame- 
work for the Gderkin procedure is outlined in terms of the multi-scaling func- 
tions. A detailed description of the DGHM multi-wavelets is not presented 
here. The interested reader may refer to the work by Donovan, Geronimo 
and M a s s o p ~ s t ~ ~ ~ ~ ~ ~ ~ ~  

2.1 A Scaling Function Galerkin Formulation 
Let !Dk be a column vector containing all of the translations of a set of scaling 
functions supported in 52 c R at scale IC, 

l 7  
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where the length, N d o f ,  of @k depends on the scale, k. Here, Ndof in- 
dicates the number of degrees-of-freedom associated with scale k neglecting 
boundary degrees-of-freedom. This form of the scaling functions is somewhat 
inconsistent with equation (1.5), since here k is used to designate the “scale77 
and the vector of basis elements, @k7 corresponds to the collection of all the 
integer translates of the scaling functions at scale k. An assembly of two 
DGHM elements is shown in Figure 2.lc corresponding to  Ndof = 3 and 
IC = 0. 

Given a differential operator L consider the boundary value problem 

Lu = f o n R  
u = gonl?.  

Let the trial solution be :in v k ,  i.e. 

In a Bubnov-Ga1erki:n formulation with v k  being the test space, after 
integration by parts, the problem becomes 

where c i  are the unknown coefficients at scale k. 
For the model elliptic problem considered here, Cu = -u”, the condition 

number associated with the stiffness matrix, K f @ ,  grows as O(IL-~)  for the 
finite elements as well as the multi-scaling function elements as shown in 
Table 2.1. Here, h is the node spacing, and the superscript “@@7’ on the 
operator K has been used to  indicate that the scaling functions, @, have 
been used as both test and trial functions. 

The condition numbers presented in Table 2.1 show that the initial con- 
dition number is approxjmately 2 - 6 times worse for the multi-wavelet el- 
ements than the corresponding quadratic finite element. A precise reason 
for the degraded condition number relative to the finite elements at a given 
mesh resolution is not cliearly understood, but it is thought to be related to 
the underlying fractal nature of these scaling functions. 

It was shown by Donovan et al.38 that the DGHM element based on 
multi-scaling functions has the same approximation order as the linear fi- 
nite element, i.e., the ap:proximation order is two. M a s s ~ p u s t ~ ~  showed that 
the rate of convergence of the DGHM scaling function element for a simple 
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Element Linear Quadratic DGHM Quadratic 

Scale k cond(Kf@) cond(K;') cond(Kf@) cond(K:*) 
0 5.8 7.2 14.4 43.2 

FEM FEM Multi- Wavelet Multi-Wavelet 

1 25.3 33.1 79.8 198.8 
2 103.1 136.8 346.1 824.6 
3 414.3 551.8 1413.2 3328.7 
4 1659.4 2211.8 5681.9 13345.2 

Table 2.1: Condition numbers of the stiffness matrix K f @  at scale k for 
the linear and quadratic finite elements and DGHM multi-scaling function 
elements. 

elliptic problem is the same as for the linear finite element. Therefore, ig- 
noring the difficulties in performing numerical quadrature due to the fractal 
nature of the scaling functions, the DGHM element has a computational cost 
that is about the same as a quadratic finite element but the approximation 
properties of a linear finite element. 

Using the wavelets 
As suggested in the historical overview of wavelet-based PDE solution meth- 
ods, few researchers have made use of the wavelet bases directly in the solu- 
tion algorithm. In order to make use of the multi-wavelets, let @k and \Jrk be 
column vectors containing all of the translations of the scaling and wavelet 
functions supported in R C R at scale k.  Let uk+l := c:@k + c$'l€'k where 
q and d k  are column vectors of the appropriate lengths. Implicit in this 
definition is the fact that multiple grid levels are being used - a coarse grid 
representation associated with scale k ,  and a finer grid associated with scale 
k + 1. Given a differential operator, L, consider the boundary value problem 
defined by equation (2.2). Let < -, - > denote the L2 inner-product between 
L2(R) functions. The Galerkin approximation for uk+l is determined by 
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After integration by parts, the matrix form of the two-scale formulation is 

where the operators Kf"', Kf', and Kf' are understood to contain weak- 
ened derivatives obtained by integration by parts. 

In the subsequent algorithm development, the initial coarse-grid so- 
lution is chosen to be c: := Kfo-lFf with d: = 0 for convenience. With this 
convention it can be shown that 

To see this equivalence, recall that 

where the wavelet transform is given by 

For DGHM, the wavelet transform matrices are 

1 Hi = - 
20Jz 

. 12 -Jz 0 

12 9Jz 0 

0 9Jz 12 

. 0 -Jz 12 

1 6 4  -6 0 

0 20 0 

0 -6 16 f i  

- -2 -Jz -1 0 

18 9 a  9 0 
GI = - 0 0 -loa 0 

0 -9Jz 9 

- 0  Jz -1 -2 

-6f i  -6 - 3 a  0 

1 
2o 18 

0 6 - 3 J z  - 6 J z  

(2.10) 

(2.11) 
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The action of the wavelet transform is to act as a finite-domain convolution 
where Hk is essentially an averaging operator, and Gk is a “differencing” 
operator that accounts for detail in the function. 

Proceeding with these definitions, the wavelet transform is used to develop 
the Galerkin formulation in terms of coarse-scale unknown coefficients, c k  
and wavelet coefficients, dk-  Beginning with the original problem, 

Therefore using equations (2.6) and (2.12) we have 

(2.12) 

(2.13) 

Now because 
to form an orthogonal matrix, i.e. (A-I = AT).  Thus 

and XP each form an orthonormal basis, Hk and Gk combine 

(2.14) 

2.2 A Multi-Scale Algorithm 
As we have seen, the Galerkin formulation just described leads to the follow- 
ing linear system, 

(2.15) 



2.2. A MULTI-SCALE ALGORITHM 37 

Consider the individual discrete equations for and d k  

(2.16) 
(2.17) 

Remark 1 Given any wavelet trial basis for  the operator Cu = -ut', the two 
sparse block -Toeplitz maiirices K:@ and Kf' have the property that 

T:* ._ .- K:*-~K@@ k (2.18) 

is  also sparse block-Toeprlitz. This property is  true for  the DGHM and the 
piecewise quadratic multi-wavelets and may be true f o r  all wavelets. 

Using the relation between the stiffness operators in equations (2.16) and 
(2.17), 

(2.19) 

where c: is the coarse-grid solution at scale k that is associated with the 
scaling functions. Thus, c k  is determined by reconstruction using c&, dk, 
and T:@ which can be assembled in the finite element sense for any scale k. 
Substituting equation (2.19) into equation (2.17) yields 

(2.20) 

Table 2.2 shows that, for the elliptic model problem, the matrix, (Kf' - 
K:@Z',,'), in equation (14.20) is well-conditioned for both the DGHM and 
piecewise-quadratic multi-wavelet elements. (The condition number of a ma- 
trix is the ratio of the largest to smallest eigenvalues and is used as a measure 
of the difficulty associated with solving the linear system involving the oper- 
ator K:" - K:@T;*.) 

At this point the problem is reduced to solving for d k  using the well- 
conditioned system in (2.20). Numerous methods can be used, but for sim- 
plicity we will consider 1;wo stationary iterative methods, i.e., Jacobi and 
Gauss-Seidel. 

The discussion of these methods begins with the following splitting 

(2.21) 

where Ak = (KZ' - KF@T'2*), and Mk is the diagonal (lower triangle) of Ak 
for the Jacobi (Gauss-Seidel) method. Applying this splitting to  equation 
(2.21) yields 

d k  = k f F 1  (Nkdk 4- b k ) ,  (2.22) 
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Element 

Scale k 
0 
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DGHM Quadratic 
Multi- Wavelet Multi- Wavelet 

2.3533 5.5676 
cond(Kf'@ - Kf'T,,*) cond(Kf* - K;?!''') 

1 
2 
3 
4 

2.5497 5.7478 
2.6057 5.7945 
2.6201 5.8063 
2.6238 5.8093 

~~ 

Table 2.2: Condition numbers for the matrix (Kf" - Kf'T:*) for scale 0 
through 4. 

which will be used in the iteration process in the multi-scale algorithm de- 
scribed below. 

Multi-Scale Algorithm 
The multi-scale solution algorithm proceeds as follows. 

1. Solve for the coarse-grid coefficients, cfl. = Kf'-lFf with 4 = 0. 

2. Use an iterative method (here, Jacobi or Gauss-Seidel) to find the 
wavelet coefficients, d r .  

3. Correct the coarse-grid coefficients using the wavelets. 

0 a'@ N Ck = ck - Tk d k  . 

4. Reconstruct the coefficients associated with the next higher-resolution 
grid using the wavelet transform, i.e. 

5. Repeat 2-4 until the wavelet coefficients, d k ,  are sufficiently small. 
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Although this example algorithm only explicitly refers to two scales, it 
is understood that multiple levels of grid resolution may be nested in the 
computation of the waveliet coefficients. That is to say, the computation of 
dk implies that as many levels of grid resolution as are required are included 
in steps 2-4 in the multi-scale algorithm. It is also important to note that 
the matrices M;', T'', JTk, and wk are all assembled matrices, reducing the 
algorithm to matrix-vect or multiplications. 

Example 3 As an example application of the multi-scale algorithm, consider 
the diflerential equation 

-U''(X) = z(z - 5/4)(z - 2) on [O, 21, 
with essential boundary conditions 

u(0) = u(2) = 0. 

(2.23) 

(2.24) 

The solution to  this problem is shown in Figure 2.2 at four scales (levels of 
grid resolution) with the exact solution. 

- 
1 Sunknow - - -  

. . . . . . . . 
- Exact 

I 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
-0.0 

X 

Figure 2.2: DGHM multi-wavelet multi-scale solution. 

Table 2.3 shows the spectral radii for  the Jacobi and Gauss-Seidel iteration 
matrices associated with the multi-wavelet elements for  the model problem. 
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DGHM 
Mu1 t i- Wavele t 

Jacobi 

The spectral radii quickly asymptote, are bounded away from unity and remain 
constant with respect t o  increasing mesh resolution, i. e., increasing f rom scale 
0 to  scale 8 corresponds to increasing the mesh resolution by a factor of 
256. This result reinforces the idea that application of an iterative method to  
(Kf* - Kf'Tfq) is an appropriate choice for the development of eficient 
solution methods. 

Quadratic DGHM Quadratic 
Multi- Wavelet Multi- Wavelet Mu1 ti-Wavelet 

Jacobi Gauss-Seidel Gauss-Seidel 

Table 2.3: Spectral radii for for Jacobi and Gauss-Seidel iteration matrices as- 
sociated with Ak = (KF'-KF'T''@) for the DGHM and piecewise-quadratic 
elements. 

In order to further evaluate the DGHM multi-wavelet element and the 
multi-scale algorithm the condition number associated with the general- 
ized stiffness matrix was computed for both the multi-scahng functions and 
the multi-wavelets. The model problem considered is -cu" + u = f with 
E 2 0, and u(0) = u(L)  = 0. In the weak form, this problem becomes 
M'+U + K"U = F which introduces the mass matrix, M" in addition to 
the stiffness. 

Table 2.4 shows the condition numbers for both k" = [Ma@ +K"] and 
&lkq = [M" + K"] after diagonal scaling for 0 5 E 5 00. Here, k indicates 
the scale with increasing k corresponding to increasing mesh resolution, i.e., 
Ax = 2-@+'). As shown by the results, increasing the mesh resolution by a 
factor of 256 results in condition numbers that grow by 5 orders of magnitude 
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Table 2.4: Condition numbers for the diagonally scaled 2'' and K" oper- 
ators for multiple mesh scales, 0 5 k 5 8, and 0 5 E 5 co. 

for KO*, while the condition numbers for I?"@ increase by only a factor of 
10 and appear to be approaching asymptotic values. Note that for small 
values of the parameter, E, the eigenvalues associated with the mass matrix 
dominate in K*' yielding condition numbers that are O(1). In contrast, for 
finite values of e, the eigenvalues of the stiffness matrix, K@@ dominate and 
yield condition numbers for I?'' that grow as h-2. In contrast, the condition 
numbers for Kqq are relatively well behaved independent of E. 

2.3 Numerical Performance 
In this section, a brief digression is made in order to present a finite difference 
interpretation of the DGliM element. In addition, the dispersive behavior of 
the DGHM element is presented relative to the quadratic finite element. 

2.3.1 A Finite Difference Interpretation 
In order to gain a sense of what the DGHM element yields in terms of a 
finite difference discretization, the equivalent difference stencils for a cen- 
tered approximation to zt" is presented here. In order to undo the Galerkin 
weighting introduced by the multiplication of the test functions, the proce 
dure outlined by Greshoa6 (see pp. 52-53) is used for the linear, quadratic 
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and DGHM elements. 
A cautionary warning is needed here because the use of a Taylor series, 

i.e., a finite difference, interpretation of the Galerkin discretizations can be 
misleading. As pointed out by G r e ~ h o ~ ~  (and many others), the global finite 
element theory prevails over local Taylor series analyses. This point will be 
emphasized below with the quadratic element. The finite difference sten- 
cils presented below are simply intended to aid in the understanding and 
interpretation of the DGHM wavelet element. 

In a Galerkin finite element setting, the element level mass, M e ,  and 
stiffness, Ke,  operators associated with the second order wave equation for 
the one-dimensional DGHM element are 

M e = G [ ’  6 4 1 ] ,  (2.25) 

and 

K“ = - 256 . (2.26) 

Here, d = 2 A x  is the element diameter in the grid, and Ax is the node 
spacing. A partition of unity scaling has been applied to the multi-scaling 
functions to obtain the “unit” mass and stiffness. Surprisingly, the element 
level mass matrix is identical to the row-sum lumped mass matrix for the 
quadratic finite element and is diagonal because the DGHM multi-wavelet 
scaling functions are orthogonal in L2(R). In contrast, the stiffness in equa- 
tion (2.26) differs somewhat from the stiffness for the quadratic element 
shown in Eq. (2.27) (see Belytschko and Mullen4). 

85 

7 -8 
K e = L [  16 -8 r ]  

sym. 3d 
(2.27) 

Remark 2 Despite the fractal nature of the DGHM multi-wavelet, the mass 
and stiflness entries can be calculated exactly f o r  the one-dimensional DGHM 
element. This is  accomplished by using the refinement equations associated 
with each scaling function. The recursion relation associated with the refine- 
ment equation provides a convenient way to solve for  the moments, polyno- 
mial inner products, and in particular the mass and stiflness entries. For 
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inner products with general functions, there is no exact calculation, but by  
conveniently representinil the function of interest with a polynomial spline 
function a very good approximation to the inner product is obtained by  using 
the exact polynomial inner product. 

The local finite difference stencils are shown in Table 2.5 with the corre- 
sponding order of the local truncation error for each discretization scheme. 
In a finite difference sense', the second-order central difference scheme and the 
linear finite element yield identical difference stencils. Similarly, the center 
node for the quadratic finite element yields a difference stencil identical to 
the linear element and 3-point finite difference stencil. Interestingly, the edge 
node of the quadratic dots not appear to yield the fourth-order 5-point finite 
difference stencil. However, G r e ~ h o ~ ~  has demonstrated that this apparent 
result is in error and misleading since the global finite element theory leads 
to 0(Ax3) estimates rather than the local estimates of O(Ax2) based on a 
Taylor series expansion. 

The DGHM element yields center and edge node stencils that are simi- 
lar in some respects to the quadratic element stencils. However, the leading 
fractional multiplier for each stencil is a result of the fractal nature of the ba; 
sis functions. Although it would be natural to suspect that the global finite 
element theory would show that the DGHM element, like the quadratic ele- 
ment, yields an O( Ax3) approximation, M a ~ s o p u s t ~ ~  has demonstrated that 
the DGHM element delivers accuracy no better than the linear finite element, 
i.e., O(Ax2)). This is due to the fact that the DGHM multi-scaling functions 
can only represent functions comprised of { 1, x}, unlike the quadratic element 
that can represent { 1, x, x2}. Thus, the DGHM element is a quadratic-like 
element, with the conco:mitant computational cost of a quadratic element, 
that performs like a linear element! 

2.3.2 Dispersive Behavior 
Attention is now turned to the question of numerical dispersion. For this 
discussion, the model problem under consideration is the second-order wave 
equation in Cartesian coordinates, 

a2u a2u 
-- c2- = 0. 
at2 ax2 

(2.28) 

Because of the similaritjes to the quadratic element, the dispersion results 
for the DGHM element are compared to those for the quadratic element. 
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Remark 3 The hierarchical nature of the DGHM wavelet-Galerkin formu- 
lation permits multi-scale solution strategies to be formulated. However, for 
the purposes of numerical analysis, only the scaling functions need to be con- 
sidered because the total, solution is considered to  be represented in terms of 
the scaling functions at the finest scale, i.e., at the highest mesh resolution. 
Thus, the operators based only on the scaling functions are suficient for a 
von Neumann analysis. 

The details of the von Neumann analysis are omitted here, but follow the 
analysis performed by Belytschko and Mullen4 for the quadratic element. A 
detailed introduction to dispersion analysis is also presented in Chapter 5 .  
The semi-discrete Galerkin form of the second-order wave equations is 

MU + KU = 0, (2.29) 

where M is the mass matrix, K is the stiffness matrix, and U are the unknown 
coefficients. 

The non-dimensional frequency, wAx/c,  for the DGHM wavelet element 
is shown in Figure 2.3 with the frequency spectra for the quadratic finite 
element. Here, c is the sonic velocity, Ax the grid spacing, and X the wave- 
length. The frequency response for each element admits two solutions, the 
so-called optical and acoustical branches. The gap between the branches of 
the frequency response is often referred to as a “stopping” band. The simi- 
larities between the spectra for the DGHM and quadratic elements suggests 
that the dispersive nature of the DGHM element will be somewhat worse 
than the quadratic element, due in part to the lack of spatial coupling of 
time-derivatives associated with the diagonal mass matrix. 

An alternative view of the dispersion error may be seen in Figure 2.4 
which shows the non-dimensional phase speed, i.e., the discrete or apparent 
sound speed normalized by the true sound speed. Here, only the  acoustic^' 
branch from the dispersion relations is shown, and there is clearly significant 
leading phase error in the mid-range of the spectrum relative to the acoustic 
branch for the quadratic element. 

2.4 Summary 
In this chapter, the Donovan-Geronimo-Hardin-Massopust (DGHM) multi- 
wavelets were used to develop a multi-level solution algorithm in which both 
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Figure 2.3: Non-dimensional circular frequency for the quadratic finite ele- 
ment and the DGHM multi-wavelet element. 
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Figure 2.4: Non-dimensional phase speed for the quadratic finite element and 
the DGHM multi-wavele t element. 
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the multi-scaling functions and the multi-wavelets are used directly in the 
solution procedure. However, the DGHM wavelet element is inferior to the 
quadratic finite element in terms of its numerical performance because the 
element has the computational cost of a quadratic element, the convergence 
properties of a linear element, and inferior dispersive characteristics. Al- 
though the DGHM element is not appropriate for use in applications, it has 
been useful in developing the concepts for multi-level solution algorithms in 
terms of a true wavelet basis. These concepts are expanded in the subsequent 
chapters. 



2.4. SUMMARY 

Stencil Truncation Error 

FDM - Centered 3 F’oint 
1 

~ ( U 2 - 1  - 2% + Ui+:i) O(Ax2) 

FEM - Linear 
1 - As2 (ui-1- 2ui + ui+L) 

FEM - Quadratic (cl2nter node) 
1 

i&i-1 - 2% + Ui+-l) 

O( Ax2) 

0 ( Ax2) 

FEM - Quadratic (edge node) 
- 4Ax2 1 (-ui-2 + 8 ~ i - 1  -- 14ui + 8~i+1 - ~ i + 2 )  0 ( Ax2) 

DGHM - Center Node 
10 - 7Ax2 (ui-1 - 2ui + ui-1) 0 ( Ax2) 

47 

Table 2.5: Finite difference stencils and leading order of truncation error for 
Uft. 
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Chapter 3 

The “Semi,-hat” Basis 

In this chapter, we present a construction of wavelets that are (a) semi- 
orthogonal with respect to an arbitrary elliptic bilinear form a(.,-) on the 
Sobolev space Hi(0 ,L)  and (b) continuous and piecewise linear on an arbi- 
trary discretization of [0, L]. Here, semi-orthogonal is understood to indicate 
orthogonality of the wa1,elets between multiple scales with respect to the 
bilinear form, i.e., ~ ( + ( 2 ~ - ) , + ( 2 j . ) )  = 0 for k # j .  We illustrate this con- 
struction using the model problem 

-E2Urn 4- u = f 
u(0) = u(L) = 0. 

We also construct a-orthogonal Battle-Lemari6 type wavelets that fully 
diagonalize the Galerkin discretized matrix for the model problem with do- 
main R. 

Finally, we describe a hybrid basis consisting of a combination of el- 
ements from the semi-orthogonal wavelet basis and a hierarchical Schauder 
basis. Numerical experiments indicate that this basis leads to robust, scalable 
Galerkin discretizations of the model problem that remain well-conditioned 
independent of E ,  L, and the refinement level K.  

3.1 Introduction 
In this section, we review some basic theory about Galerkin discretizations 
of elliptic variational problems and their relationship to the Riesz bounds of 
the underlying basis (cf. Cohmas and Dahmen26). 

49 
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Let 3c be a Hilbert space with inner product (-,.).tl. Let a(-, - )  be a 
symmetric coercive continuous bilinear form on X, that is, a is a symmetric 
bilinear form such that 

Cllull; 5 a ( v )  5011~11~ 
for some positive constants C and D. Let 11 - I I E  := dm is the energy norm 
generated by a. The coercivity and continuity of a imply that the energy 
norm is equivalent to the norm associated with X. 

Let 3c‘ (S R) denote the dual of 3c. Consider the elliptic variational 
problem: 

(3.1) 
Given F E R’, find u E 3c such that 

Let Y be a finite dimensional subspace of R. Then the Galerkin approximate 
solution uv is the unique solution of (3.1) with X replaced by V .  Let ia = 
(@,. . . , $ N ) T  be a basis for Y .  (Throughout this paper, a basis will be 
arranged as a column vector.) Then uv = cT(a can be found by solving the 
linear system 

where .((a, ia) is the N x N matrix (a(@, p ) )  and F ( @ )  is the column vector 

For large N ,  it is usually impractical to solve the linear system (3.2) using 
direct solution methods. When the matrix A’ := .((a, (a) is well-conditioned, 
the system can be efficiently solved using iterative methods. We say that 
(respectively 5) is a lower (upper) Riesz bound for the basis (a with respect 

a ( w )  = F ( 4 ,  vu  E X. 

a(@, (a)c = F((a), (3-2) 

N T  ( F W ,  * e 7 F ( 4  )) - 

(3-3) T 
to 11 * IIE if 

p c  c 5 IlcT(all; 5 ZC%. 

Define 
with respect to 11 - 

(a+) to be the largest (smallest) lower (upper) Riesz bound for (a 
Observe that 

llcTiallg = c*A’c. 

Since A* is symmetric and positive definite we have 

cTA@c 
min- = a@. 

c CTC II = 
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Therefore, the condition. number of A*, cond(A@), is related to the Riesz 
bounds for @ in the following way: 

cond(A@) = E@/cJ@. (3.4) 

Suppose lQ is another basis for V and suppose W is the nonsingular N x N 
matrix such that 

Then defining uv = &‘\E, d may be found by solving 

lQ = WT@. 

a(Q, * ) d  = F(lQ). 

Note that 
A’ = u(@,  \k) = W*a(@, @)W. 

Thus the linear system (3.5) resulting from (3.2) by a change of basis can 
also be considered to arise from (3.2) by preconditioning with W .  

3.2 Multi-Scaile Transformations 
As demonstrated in Chapter 2, the wavelet transform plays a key role in 
multi-scale solution algorithms. Given that 

is a one-sided sequence of nested finite-dimensional subspaces of 3c such that 
= x. Define WI) := vo and, for k 2 1, choose wk in v k  so that 

where denotes the direct sum. (Note that here, the direct sum is not an 
orthogonal direct sum). Let @k be a basis for Vk and let $k be a basis for 
wk (we choose $0 = @ o : .  Then 
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is also a basis for vk. Let wk be the multi-scale transformation such that 

and let T k  be the two-scale transformation such that 

where I k  is the n x n identity matrix with n = dim(Vk). 
Fix K and let !& = XPK, CP = C P K ~  and W = WK. We assume that (a) 

multiplication by W can be implemented with a fast algorithm (this is the 
case for compactly supported wavelet bases), (b) A* is well-conditioned, and 
(c) F(@)  can be easily approximated. Algorithm A summarizes the solution 
of the discretized problem given in (3.2) using the multi-scale transform W .  
Algorithm A: 

0 Approximate Fa. 

0 Cdculate Fq = WTFa. 

e Solve A*d = Fq. 

e C =  Wd. 

One very important aspect of this algorithm is that it does not use the 
decomposition matrix W-l. This is significant because it permits the relax- 
ation of strict orthogonality in the construction of the wavelet basis. 

3.3 Wavelet Construction 
Let ( x k ) k > O  be a given sequence of nested knot sequences on [&I] 
series of logically ordered and nested grids) satisfying 

a 
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Figure 3.1: Schauder basis XP2 = ($; $: $T)* with dimension 7 on a 
uniform discretization. 

Let be the piecewise linear continuous function associated with knot 
sequence xk such that 4:(4') = bj,jt. If @k = ( 4 i 7 . .  . , +p-')*, then @k is 
a nodal basis for v k  that is the usual finite element space of piecewise linear 
continuous functions on [I), L] with knot sequence xk. 

we next describe two choices for wk. 

3.3.1 Hierarchical Schauder Basis 
One simple choice for nk satisfying (3.7) is the well known Schauder ba- 
sis27, 110,112 

$ f : = c j k :  2j-1 , j = 1 ,  ...,Nk 

illustrated in Figure 3.1. 

Denote the length of the subinterval [4-',4] by 
Next we construct the two-scale transformation for the Schauder basis. 

The function values hp' and e' for &-l and & respectively at the knot 
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(grid point) 4' are given by 

otherwise 

Then 

Now let Hk be the ( N k  - 1) x ( N k - 1  - 1) matrix Hk = (hp')jf,j and let 
Gk be the (Nk - 1) x (Nk-l) matrix Gk = (gy ' ) j f , j .  Thus, the two-scale 
transformation for the Schauder basis is given by 

Tk = (Hk Gk) - 

3.3.2 Semi-Orthogonal Sombrero Wavelets 
Here we choose Wk to be the orthogonal complement of Vk--l in Vk with 
respect to  the scalar product a( - ,  e), that is 

wk := vk n v::,. 
Regardless of the choice of basis & for Wk, the matrix A'k is then decoupled 
between grid levels so that it is a block diagonal matrix: 

Aqk = diag(A+O . . . , A$k).  

We next give a procedure for constructing a local basis of wavelets for 
Wk- Let 

B := B ( k )  = ~ ( Q k - 1 ,  Qk) 
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where we suppress the k dependence when the choice for IC is unambiguous. 
Note that 

' w k  = { g T @ k  I g E ker B}. 
We will use certain sub-blocks of B in our construction. To this end we 

define to be the (22  - il + 1) x (Nk - 1) matrix whose i-th row is the 
(i - il + 1)-th row of the (Nk - 1) x (Nk - 1) identity matrix. Then the 
[ i l ,  221 x [ j l ,  j 2 ]  block of I? is given by 

Let 
B1,2n-1 1 ,n for n = 2,3  I 
n-3,n Cn := B2n-5,2n-1 

n-3,n-1 

for 3 5 n 5 N k - 1  - 1 i B2n-5,2n-1 for n = N k - 1  

For 4 5 n < Nk-1, the matrix Cn is a 4 x 5 matrix that generically has 
a kernel of dimension one. This kernel then corresponds to a wavelet with 
support contained in [3;:n-67 z$] = [$I:, 3 ; ~ - , ] .  More generally, we define 
the following procedure for constructing a local basis for wk. 

Let Kn := ker(Cn) a,nd, for n 2 3, let K: denote the subspace of Kn 
consisting of the elements in w E Kn whose last two components are both 
zero. In the generic case: K: is the trivial subspace. Let 

Algorithm B: 

0 Let w3 denote a basis for C3 and set @E = (wT@i I w E w3). 

0 For n = 3  ,..., Nk-1, do 

- Choose KA so that Kn = K: @ .KA and choose a basis w, for Kk 
- Set $2 = {w~Q;  I w E W n } .  
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We next give a sufficient condition that the above procedure produces a 
basis for wk. For 4 5 n < Nk-1, we note that Cn has the following block 
form 

0 Fn 
where D, is 3 x 3, En is 3 x 2, and Fn is 1 x 

Lemma 3.3.1 Let $k be the set produced by  

) 
2. 

(3.9) 

Algorithm B. Suppose 

Then +k as a basis f o r  wk := v k  n v,$zl. 
Proof: 

that f E Soyn if and only if f = yT(& . . . for some y E ker Bn and 
that f E Sn-'ln if and only if f = yT@z for some y E kerC,. Hence, the 
proof will be complete if we can show that 

Let S7219n2 e- .- {f E Wk 1 supp(f) c [Z:',Z~~]). Let Bn := B$,+1. Note 

(3.11) 
Observe that 

(3.12) Bn = ( 2 )  
for n 2 4. 

Suppose E kerF', then by (3.10) there is some u E kerCn such that 
( ~ ~ ~ 2 1 ~ ) ~  = v. From (3.12) it is clear that w := 
( ~ 2 n - 2 ,  ~ 2 7 3 - 1 ) ~  E ker Fn and hence there is some u E ker C, such that the 
last two components of y agree with the last two components of u. We then 
obtain 

ker Bn = PI (ker Bn-l) + P,(ker C,) (3.13) 

Suppose y E kerB,. 

where PI is the padding operator that takes a vector v of length 2n - 3 to one 
of length 2n - 1 by appending two zeros to v and P2 is the padding operator 
that takes a vector w of length 5 to one of length 2n - 1 by prepending 2n - 6 
zeros to v. 

Then (3.11) follows from (3.13) and the proof is complete. 

An example is shown in Figure 3.2 for a non-uniform discretization with an 
arbitrary refinement. 
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3.4 Uniform Iliscretization 
In this section we give t,he construction of piecewise-linear wavelets on a 
uniform discretization thi5t are semi-orthogonal with respect to the bilinear 
form associated with the following model problem: 

-E2U1' -F u = f 
u(0) = u(L) = 0. (3.14) 

Let (-, -) be the usual inner product on L 2 ( [ 0 ,  L ] )  and let 31 be the Sobolev 
space 31:((0, L ) )  for some L E Et+. We assume f is such that F := (f, -) is 
in X'. Then the weak formulation becomes: Find u E 31 so that 

u(u, v) := E2(U', 21') + (u, v) = (f, v) vv E 31. (3.15) 

Moreover, suppose ( x k )  is a uniform discretization of [0, L]. In order to avoid 
special cases associated with boundary wavelets, we let L = 4 and No = 4: 

Let 4(z) = (1 - IIZ: - 11) iind define 

(Here we have chosen a different normalization of 4 than the normalization 
used in the non-uniform case.) Then 

1=-1 

1 1 where h-1 = hl = -, and ho = z. 
As in the previous scsction, let be defined by (3.8). Because of the 

differentiation in the scalar product a,  the E in the model problem is scaled 
differently at each level resulting in a level dependent parameter Ek given by 

2Jz 

' k  fk := 2 E .  

In this case, C, is independent of 4 5 n 5 Nk-1 - 1 and its kernel is the 
space spanned by the vector 

w = (244 - 1,6,486: - 10,6,24~2, - 1)* (3.16) 



58 CHAPTER 3. THE “SEMI-HAT” BASIS 
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Figure 3.2: VO, VI @ Wl, and V2 @ W2 bases respectively for the semi- 
orthogonal wavelets with a non-uniform discretization and arbitrary refine- 
ment. 
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The kernel of C3 (respectively, CNk-l) contains w plus an additional vector 
WL (respectively? WR) given below: 

WL == (9 + 7 2 ~ : ~  - 6 , l  - 24~:, 0, O)T 

and 
W R  =: (O,O, 1 - 24~2 ,  -6,9 + 7 2 ~ 2 ) ~ .  

N k - I  - Then we let ?+hi = wz@i.  & = wT%+' for 2 5 j 5 Nk-l - 1 and ?+hk - 

w R  k . 
The wavelet @ is shown in Figure 3.3 for 0 5 E 5 3. Another more 

general construction of semi-orthogonal wavelets on a uniform grid using 
Fourier techniques was given in24>25 that includes these wavelets. 

TGNk-1 

3.4.1 Unbounded Domain: Riesz bounds and Battle- 
Lemari6 Type Wavelets 

We next consider the sjmpler choice of domain R. In this case we can 
calculate the Riesz bounds for the wavelet bases Z!J~ for W k  using Fourier 
transform techniques. Fix 8 E L2(R) we define the Grammian symbol Eo 
(with respect to the scali3r product u ( - ,  .)) by 

1 
Ee(w) = - a(8,8(- - n))einw 

2~ n E z  
(3.17) 

It is a standard result for example) that the Ftiesz bounds aQ and 
CXQ for the infinite basis 0 = (e(.  - T Z ) ) , ~ ~  with respect to a(-, .) are equal 
to the essential infimum and essential supremum of E@, respectively. The 
La-condition number of i;he infinite matrix (AQ) is then the ratio i3e/ae. 

In the case of our model problem with the sombrero wavelets ?+hk we get 

- 

E+k (w; = 0 0  + 2 q  cos(w) + 202 cos(2w) 

where 
cxo = 12(3 + 1224 + 480~2 + 1152~6,) 
01 = 20/3 + 3846: - 2304~: - 92166; 
C X ~  = (2/3) (1 - 24#( -1 + 6 4 ) .  

It is an elementary? but tedious, exercise to verify that 
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2 

1.5 

1 

0.5 

Figure 3.3: Semi-orthogonal Sombrero for a) E = 0, b) E = 0.3, c )  E = 0.5, d) 
E = 3, and e )  0 5 E 5 3 on a uniform grid with 0 5 x 5 3. 
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(3.18) 

Since A*k is block diagonal, A*k can be preconditioned with a simple diag- 
onal preconditioner so thiat the resulting A*k satisfies 

cond(Aqk) = max cond(A$j). 
j<k 

Then (3.18) shows that cond(AQk) is uniformly bounded for 0 5 f k  5 E* for 
any fixed E*. For instance, we get the following: 

2.4 for Ek < .5 
271 for Ek < 2 
1330 for Ek < 3 

For the unbounded domain case we use the following well known Fourier 
trick ( ~ f . ~ ~ )  to construct an a-orthogonal basis for W k .  Let ( & ) e G z  denote 
the Fourier coefficients of' dm- and define 

In the case E = 0, we get the usual Battle-Lemarie wavelets. In this case, 
A*k is the identity matrix. It is interesting to observe that BL$: appears to 
converge point-wise to  the Schauder wavelet h$g = 4: as E goes to infinity. 
The wavelet BL$ is shown in Figure 3.4 for selected E .  

3.4.2 Hybrid Basis 
Our goal is to achieve a robust, fully scalable algorithm that is uniformly 
O(NK)  independent of the size of the problem L, the maximum refinement 
level K ,  and the parameter E. In this section we assume that our bases 
are normalized in the a-norm. This corresponds to a preconditioning of the 
form D-1/2AD-1/2 where D is the diagonal of A.  We let hQk denote the 
normalized Schauder basis described in Section 3.3.1 and "@k the normalized 
Sombrero basis described in Section 3.4. 

For the model problem, the semi-orthogonal basis is ill-conditioned for 
large E and well-conditioned for small E .  One approach we have explored 
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Figure 3.4: Battle-LemariB type wavelets for a) E = 0, b) E = 1, c) E = A, 
and d) E = 10. 
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Figure 3.5: Non-zero entries in AshqK with 4 levels and the semi-orthogonal 
basis combined with 2 additional levels with the Schauder basis. 

numerically is to use the hybrid basis 

where k is chosen so that ~g = O(1). The resulting discretized matrix Ash'K 
is illustrated in Figure i3.5. Our numerical experiments indicate that the 
hybrid basis achieves the above mentioned goals for the model problem. 
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Summary 
The approach taken for the semi-hat bases has relied on relaxing the orthog- 
onality constraints and relying on an algorithmic approach that does not 
require the inverse wavelet transform, W-l. The goal for these bases was to 
demonstrate the use of semi-orthogonal wavelets that are constructed to have 
certain algorithmic properties, i.e., semi-orthogonal with respect to an elliptic 
bilinear form, a(-, e). The construction of a hybrid basis was demonstrated to 
provide well-conditioned Galerkin discretizations of an elliptic model prob- 
lem independent of the model parameters, E ,  L,  and the refinement level or 
grid resolution. This approach follows the lines of the most recent research 
(see for example Dahrnen and Stevenson34 and Frohlich and S ~ h n e i d e r ~ ~ )  
where wavelet bases are being designed specifically to yield stable discretiza- 
tions with the condition number uniformly bounded independent of the grid 
resolution. The concepts put forward here are extended in the subsequent 
chapter where the theoretical issues and computational performance of the 
hierarchical Schauder basis are addressed. 



Chapter 4 

The Schauder Basis 

In this chapter, the theoretical issues surrounding the well known Schauder 
bas is log^ ll1 are presented. In one-spatial dimension, the “hierarchical” Schauder 
basis is the simplest uniformly stable H1 basis that is available today. The 
uniform stability in H’ yields uniformly bounded condition numbers, i.e., 
independent of refinement level (grid resolution) , for elliptic operators in a 
Galerkin form. In the ensuing discussion, the details of a uniformly stable 
basis will be made concrete. In addition, a comparison between a hierarchi- 
cal Schauder basis and the linear finite element basis is presented. The use 
of the wavelet transform in conjunction with the assembly of the mass and 
stiffness operators for a hierarchical basis is also presented. The application 
of an ad-hoc row-column lumping procedure for the hierarchical basis is out- 
lined, and its effectiveness for solving elliptic boundary value problems in one 
and two-dimensions is demonstrated. Finally, 1-D and 2-D multi-scale finite 
elements based on the Schauder basis are outlined. 

4.1 Stability 
To begin the discussion on stability, several definitions are required. 

Definition 1 Given a basis = ($0, $1, &, . . .)T for  a subspace of a Hilbert 
Space, H ,  with norm 11 1 1 ~  := d a .  Define the associated discretized 
matrix as 

A* := (a, := ((#i, #.) ) ’ H i ,jcz’ 

65 



66 C H A P T E R  4. T H E  SCHAUDER BASIS 

Definition 2 Suppose the vector @ is a normalized basis for a Hilbert space, 
H .  Then @ is said to be stable an H if there exists constants  CY,^ > 0 such 
that 

allclI$ 5 IlcTQII; L Pllcll;2. 

This definition of stability is equivalent to the definition of a Riesz basis with 
respect to  the 11 - 1 1 ~  norm. 

Now consider the following set of nested subspaces of H ,  

such that @ j  is a basis for Vj. 

Definition 3 Given a nested sequence {Vj}jEe+ of subspaces of a Hilbert 
space H and their respective bases (@j)jcz+ (normalized in H), then { @ j ) j c z i  

is uniformly stable in H if there exists constants a,p > 0 independent of j 
such that 

aIICjlI$ I I lCT@jl l& L P J J C j J I $  j = 0,1, - .  - 
Next, the relationship between stability of a basis and the condition num- 

ber of its associated discretized matrix is outlined. In particular, it will be 
demonstrated that a uniformly stable set of bases yields uniformly bounded 
condition numbers for the discretized matrices independent of the refinement 
level. 

Lemma 1 Let @ be a basis for a subspace of a Hilbert space H such that A' 
is positive definite. Let a = llA@-lll~l and p = IIA@'ll2. Then 

allcll;2 L IlcT@II; 5 P l l ~ I l ; 2 ~  

and 
cond(A 0 ) - -. 

CY 

Proof: 
For the second part, by definition the condition number of a symmetric ma- 
trix is given by cond(A') = llA'1121/A'-1112. 

For the stability condition, note that 
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Moreover, for symmetric matrices 

which gives us the upper bound. For the lower bound, observe that for 
symmetric positive definite matrices 

Remark 4 The proof oj. Lemma 1 states that the best stability bounds are 
provided by the smallest and largest eigenvalues of the discretized matrix - a 
well known fact. 

Example 4 Linear finit e element basis: 
Let H = L2(0 ,2 ) ,  h(z) =: (1 - la: - I/), and qbj,k = 2j/2 $h ( 23' - -k)+ where 
( a ) +  is the usual ramp fiinction. (Here, the subscript + indicates that only 
the positive contributions to  h (x)  are retained and all other function values 
are set to zero.) Define 

This basis f o r  j = 3 is  shown in Figure 4.1- 

ing applied t o  the finite dement  mass matrix. 
Note that the normahlzation of q5j,k is equivalent to  diagonal precondition- 

Lemma 2 The sequence of bases (@j}j f rom Example 4 is uniformly stable 
in L2(0 ,  2). 

Proof: 
The discretized matrix A'J corresponds to the diagonally scaled finite ele- 
ment mass matrix, and is a symmetric tridiagonal matrix consisting of 1 on 
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1 2 3 4 5 6 7 8 9 

Figure 4.1: The linear finite element basis for level j = 3 with 8 elements 
and 9 nodes. 

the diagonal and 1/4 on the off diagonals. Using Gershgorin's theorem, the 
eigenvalues for A@J' lie in the interval [1/2,3/2] giving 

and cond(A'j) 5 3. 

Recall the norm and semi-norm for the Sobolev space H' for one space 
dimension are 

Theorem 1 (PoincarbFriedrich) For bounded domains, the H m  norm and 
semi-norm are equivalent in the sense that there exists constants a,@ > 0 
such that 

+lHm 5 IlUllHm I PlulHm for u E Ho". 

Remark 5 The stability associated with the finite element basis in L2 is 
consistent with the empirical obseruation that the consistent mass matrix is  
well behaved in t e r n s  of its condition number. In practice, this is  reflected 
in the ability to easily solve mass matrix dominated problems with simple 
iterative techniques. 

Lemma 3 After re-normalization with respect to the H1  semi-norm, the se- 
quence of bases { @ j } j  f rom Example 4 is not uniformly stable in H;(O, 2). 
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Proof: 
Using the equivalence of the norm and semi-norm, we will construct a se- 
quence of vectors { c j } j  for which uniform bounds are not possible. If 

then 

Example 5 Hierarchical Schauder Basis: Let q5 and Vo be the same as in 
Example 4 and let 

Wj = span.{&k, IC = 0 , 2 , 4 , .  . .Zj+' - 2 )  

where @ is the direct sum. The hierarchical basis for j = 3 is shown in 
Figure 4.2. 

Lemma 4 After re-normalization with respect to  the H 1  semi-norm, the se- 
quence of bases { Q j } j  from Example 5 is uniformly stable in Hi(O,2) .  

Proof: 
The H1 semi-norm of { Q j } j  is equivalent to  the L2 norm of the orthogonal 
Haar wavelet basis. The Haar basis is an orthogonal basis for L2[0,2]  and 
thus A'j is the identity with respect to the semi-norm for j = 0,1,2,. . . , m. 

Lemma 5 After re-nornaalization with respect t o  the L2 norm, the sequence 
of bases { Q j ) j  from Example 5 is not uniformly stable in L2(0, 2). 
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1 2 3 4 5 6 7 8 9 
1 I I 

I 

Figure 4.2: The hierarchical Schauder basis for level j = 3 showing a) the 
composite basis for 8 elements and 9 nodes, b) the basis functions €or scale 
2, c) the basis functions for scale 1, and d) the basis functions for scale 0. 
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Proof: 
Define the sequence cj which gives the hat function centered at one with 
support [I - 2j7 1 + 2 j ]  as 

Thus, 

4.2 Wavelet-Galerkin Method 
In this section, a brief overview of the tensor product formulation for the 
Galerkin method is presented with “e~perimental~~ comparisons of the linear 
finite element and the hierarchical Schauder bases. We begin by defining the 
Frobenius product which generalizes the outer product of two matrices and 
gives a convenient general framework for the two-dimensional calculations. 

F Definition 4 Frobenius Product: The Frobenius product * of two rectangular 
matrices A and B of dimensions rn x n and r x s respectively is the rnr x ns 
matrix deJined b y  

Remark 6 Given rectangular matrices A, B and C with B and C having 
the same dimensions, tht: following are easily verified: 

A Z B  # B ~ A  for A # B  
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+ 
Definition 5 Column stack: The column stack operator () of a rectangular 
matrix C of dimension m x n with column vectors cl, c2, . . . , c, is the mn x 1 
vector defined by 

-+ c := 

t 

The inverse of the column stack operator will be denoted by  (). 

Remark 7 The Frobenius product is  used here to permit the direct appli- 
cation of the one-dimensional wavelet transform in the development of the 
multi-scale mass and stiflness operators. The multi-scale finite element pre- 
sented in subsequent sections illustrates the direct use of the multi-scale basis 
functions fo r  the generation of the multi-scale operators. 

4.2.1 The Model Problem 
In this section, the one and two-dimensional formulations are presented. For 
notational convenience the bases are configured as a vector in 1-D and a 
matrix in 2-D. Given a basis @(z) in 1-D, we form the 2-D tensor product 
basis, @(x, y), using the Frobenius product as follows 

The boundary value problem with homogeneous Dirichlet boundary con- 
ditions is 

-cAu+u=f on s1 
u=O on r. 
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The discrete formulation of (4.1) is 

1-D: 

2-D: 

where 

finite 
For Galerkin formulaiion, u k , v k  E v k  c H t ,  where Qk is a finite 

dimensional basis for the subspace v k .  Here, u k  = c z @ k ( x )  and uEd = 
( a k ( x ) T C k ( a k ( Y )  for one and two dimensions respectively. 

4.2.2 1-D Comparison: Schauder vs. Linear Finite El- 
ement 

With the Galerkin formulation for the model problem established, a compar- 
ison between the hierarclnical basis and the linear finite element basis on a 
uniform discretization is presented. It should be noted that the hierarchical 
Schauder basis retains its properties for a non-uniform grid as well. In Figure 
4.3, the non-zero entries of the mass and stiffness matrices are illustrated for 
both the Schauder and the linear finite element bases. The non-zero struc- 
ture of the mass matrix for the Schauder basis has been termed a “finger 
diagonal matrix”. 
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Schauder 
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Stiffness 

Linear Finite Element 
Mass 

10 - 

20- 

30- 

40- 

50- 

I 
0 1 0 2 0 X 1 4 0 5 O w  

Stiffness 

Figure 4.3: The nonzero entries in the mass and stiffness matrices for both 
the Schauder and linear finite element bases for a mesh with 64 nodes. 



4.2. WAVELET-GALERKIN METHOD 75 

Basis-mat rix 
Linear Finite Element - Mk 

Linear Finite Element - Kk 

Schauder - Mk 

Schauder - Kk 

Level Unknowns Non-zeros 
k N 3 N - 2  
IC N 3 N - 2  
k N (2k  - 1)(N + 1) + 3 
k N N 

Table 4.1: Formulas for the number of non-zeros in the 1-D mass and stiffness 
matrices where N = 2k+' - 1. 

The number of non-zeros can be calculated for the mass and stiffness 
operators for both the Schauder and finite element bases and are shown in 
Table 4.1. Because the Schauder basis diagonalizes the stiffness, the storage 
is N for the the diagonal, while the finger-diagonal mass matrix, although 
sparse, requires increased storages relative to the tri-diagonal finite element 
mass matrix. 

Attention is now turned to the condition number associated with each op- 
erator. In general, the finite element mass matrix and the Schauder stiffness 
matrix are both well Conditioned operators. In fact, the Schauder stiffness 
is ideal since this choice of basis makes the stiffness operator diagonal. In 
contrast, the finite element stiffness and the Schauder mass matrices are both 
poorly conditioned opera-tors. To be more precise, the finite element basis is 
uniformly stable in L2, hut it is not in H1. In contrast, the Schauder basis 
is uniformly stable in H1, but it is not stable in L2. Again, the concept of a 
stable basis is defined in 84.1. 

In order to illustrate the differences between the finite element and the 
Schauder bases, consider the condition numbers associated with the mass and 
stiffness operators for the finite element and Schauder bases shown in Table 
4.2. Here, multiple lev& of mesh refinement are considered with IC = 1 
corresponding to a mesh with 3 nodes (2 elements). The growth of the 
condition numbers for KI,  is seen to be proportional to O(h-2) for the linear 
finite element bases, while the condition numbers for the mass matrix are 
bounded asymptotically at 3. The condition number associated with the 
combined mass and stiffness operator is dominated by the stiffness for the 
finite element basis in this case since E = 1. In contrast, the mass matrix for 
the Schauder basis yields a condition number that grows approximately as 
O(h-3/2) while the condixion number for the stiffness is uniformly bounded at 
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Table 4.2: Condition numbers for the 1-D mass and stiffness matrices after 
diagonal preconditioning. 

0 (1). Surprisingly, the combined mass and stiffness operator for the Schauder 
basis is also uniformly bounded indicating the dominance of the stiffness in 
this example. 

Mass Lumping 

An ad-hoc procedure of mass lumping is considered in this section. In a 
finite element setting, mass lumping refers to the row-sum lumping procedure 
used to obtain a diagonal mass matrix. The use of a lumped mass matrix can 
have deleterious effects, particularly for problems with a dominant hyperbolic 
chara~ter. ' ' ,~~ Here, the interest in mass lumping is due to the computational 
gains that may be obtained for the Schauder mass matrix, i.e., it would 
be convenient to have both a diagonal mass and diagonal stiffness matrix. 
However, in the context of a multi-scale basis, the physical interpretation of 
mass lumping is not simple, and the idea is perhaps even less well founded 
than the use of mass lumping for the linear finite element basis. 

Regardless of these issues, experimentation with mass lumping has sug- 
gested that it may be a viable procedure for the multi-scale Schauder basis. 
After a brief trial and error process, it was determined that lumping the 
mass by summing the values to the left and above the diagonal entry to the 
diagonal works the best. Thus, after a simple vector divide and a multi-scale 
reconstruction, an approximation to the solution is obtained. Inspection of 
the resulting approximate wavelet coefficients obtained by the lumping pro- 
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cedure indicated that a small correction to the largest wavelet coefficients 
can dramatically improve the solution quality. This process amounts to per- 
muting the rows and columns of A := k f k  + E K ~  with respect to the largest 
lumped approximate wavelet coefficients and solving for these coefficients 
with a correction from thl? smaller “lumped” approximate coefficients. The 
lumped-mass algorithm proceeds as follows. 

Algorithm 1 Lumped-Mass Correction Algorithm 

1. Lump the mass rnati-ix resulting in a diagonal matrix, AL := & l ~ - t E K k .  

2. Calculate the lumped approximate wavelet coeficients dL b y  dividing f 
by  the diagonal entries of AL. 

3. Permute the components of dL  so that the largest N coeficients are at 
the top. Let d N  be the largest N lumped-approximate wavelet coeficients 
and dR be the remaining coejgicients such that 

perm(dL) = ( iz ) . 
4. Permute the rows and columns of A to  match the permutation of dL. 

Let the superscript N denote the first N rows and R the remaining 
rows. 

5. Solve the smaller system, i e . ,  the coarse-grid correction, 

p e ~ m ( . 4 ) ~ d ~  = perm(  f - p e r m ( A )  R R  d . 

In practice, the coefficients associated with the coarsest grid resolution 
tend to be the largest and are the ones that need to be corrected. Thus, the 
permutation step can be :replaced with a solve of the N coarsest coefficients 
however they are arranged. Figure 4.4 illustrates the effectiveness of the mass 
lumping for the hierarchical Schauder basis for solving the model problem 
with E = 1. Here, E = I was chosen because it provides equal weighting 
between the mass and stiffness operators. 

Further experimentation with the idea of the row-column lumping has 
demonstrated that using the lumped approximate solution at level k and a 
correction for the coarsest coefficients of level k -2 yields significantly reduced 
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3 s l ,  , , , I * , , , 

Figure 4.4: Solutions, u, on 0 5 x 5 2 using the Schauder basis with mass- 
lumping and a) no corrections and b) 3 wavelet coefficient corrections. 

error in H 1  when compared to solving the consistent system at level k - 2. 
This effect is shown in Table 4.3 where the H1 error for the consistent and 
lumped-corrected results are compared. Thus, in this algorithm, the mass 
lumping can improve the approximation order with respect to the number of 
unknowns solved for using the conjugate gradient method. 

4.2.3 2-D Comparison: Schauder vs. Linear Finite El- 
ement 

In two dimensions, the behavior of the Schauder basis changes rather signif- 
icantly. Most apparent is the change in the structure of the stiffness matrix 
which is no longer diagonal, but is a finger diagonal matrix. This is shown 
in Figure 4.5 for a 32 x 32 mesh. In addition, the O(1) conditioning for 
the discretized 1-D stiffness matrix becomes O ( l ~ g ( h - ~ ) )  in 2-D. Because of 
the change in sparsity of the stiffness matrix and the conditioning, compu- 
tational complexity becomes an important issue in the comparison between 
the Schauder and linear finite element bases. 

Recall that the system of equations to be solved is 
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Schauder 

Stiffness 

Linear Finite Element 
Mass 

Stiffness 

Figure 4.5: The nonzero entries in the mass and stiffness matrices generated 
with the Schauder and linear finite element bases in 2-D for a 32 x 32 mesh. 
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Table 4.3: Comparison of H 1  error for equivalent conjugate gradient method ' 

unknowns for the consistent and lumpcorrected solutions for the model prob- 
lem with E = 1. 

Because Mzd and Kid can be created by the Frobenius product of the 1-D 
matrices, the number of non-zero entries in the mass and stiffness operators 
may be easily computed. The formulae for the number of non-zero entries in 
the mass and stiffness operators are shown in Table 4.4. 

Table 4.4: Formulae for the number of non zeros in 2-D mass and stiffness 
matrices where N = 2kf1 - 1. 

As mentioned above, in two dimensions, the condition numbers for the 
stiffness matrix using the Schauder basis grows as O(Zog(h-2)). In contrast, 
the condition number for the finite element stiffness (using the 2-D bilin- 
ear element) grows as O(II -~)  regardless of the dimensionality. Table 4.5 
illustrates how the condition numbers grow for the model problem. 
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3 9 
4 9 2  

ISstimation based on trend 
688 102347 303 308 

2752 716429 758 770 
h 2 8  

9 3312 

Table 4.5: Condition numbers for the 2-D mass and stiffness matrices after 
diagonal scaling. 

In order to estimate the computational cost associated with solving the 
problem with the Schauder basis, both the number of non-zero entries in 
the matrix, and the number of iterations required to solve the problem are 
required. Table 4.6 shows the number of non-zero entries and associated 
iteration count for the Scliauder and linear finite element bases for the model 
problem with 0 5 E: 5 :1000. Due to the finger-diagonal structure of the 
hierarchical basis, the number of non-zero entries grows nearly exponentially 
for the Schauder basis. 

During experimentation with the 2-D Schauder basis, it was observed 
that the number of non-zero entries in the stiffness matrix grows more slowly 
than for the mass matrix. This effect is shown in Table 4.7 with the iteration 
count associated with a Jacobi preconditioned conjugate gradient algorithm. 

However, accounting for both the number of non-zero entries, and the 
number of iterations, i.e., the number of floating point operations per solve, 
the Schauder basis does have a lower overall computational cost for large 
problems. 

Using these various estimates, Table 4.8 gives an order of magnitude 
estimate for the computational complexity for the Schauder and linear finite 
element bases. From this data, the Schauder basis does eventually have a 
lower computational cost as shown in Figure 4.6. For the “purely” elliptic 
operator, KZd, the Schauder basis wins, Le., has lower computational cost, 
for mesh resolution exceeding lo5 degrees-of-freedom. In contrast, for the 
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Schauder Basis 

Table 4.6: Jacobi preconditioned conjugate gradient iterations required for 
the Schauder and linear finite element bases in 2-D. 

Schauder Basis for Kid: Number of PCG iterations 
Level Unknowns Non zeros E = W  

1 9 33 3 

13113 
3969 68985 
16129 342265 59 

Table 4.7: Storage requirements and Jacobi preconditioned conjugate itera- 
tions for “purely” elliptic model problem. 
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MZd + eKid case, the Schauder basis does not win until the mesh resolution 
exceeds 10’. 

Mass Lumping in 2-D 

For the purposes of this study, the lumped 2-D mass matrix was generated 
by lumping the 1-D mass matrix and then forming the 2-D mass and stiffness 
matrices using the Frobenius product. Since the stiffness matrix is diagonal 
for the 1-D Schauder bass, the resulting 2-D mass and stiffness matrices are 
diagonal. In one sense, this is akin to lumping the stiffness matrix. Although 
the row-sum lumping procedure is not valid for the nodal basis, it is valid 
for the multi-scale representation of the stiffness. In other words, the multi- 
scale representation of the stiffness does not retain the “row-sum to zero” 
property of the nodal stiffness matrix. Thus, after doing a vector divide 
and a multi-scale reconstruction, the result is a reasonable initial solution. 
Figure 4.7 illustrates the lumped-approximation with no correction and the 
correction of the largest wavelet coefficient respectively. Using the lumped- 
approximation as an initial solution shows some promise as a component of 
an overall solution strategy. For example, the row-column lumping procedure 
could be used to generate a good initial solution for an iterative procedure. 
As shown in Table 4.9, using the lumped-approximate solution as an initial 
guess reduces the number of iterations required to solve the linear system. 
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I Commtational Comdexitv ComDarison I 

Table 4.8: Computational comparison between the linear finite element and 
the hierarchical Schauder basis where N = 2k. 

Table 4.9: Number of PCG iterations using the lumped approximation as an 
initial guess. 
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Figure 4.6: Number of unknowns versus number of flops 
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Figure 4.7: The exact and approximate solutions using the lumping proce- 
dure with and without wavelet correction for a 32 x 32 2-D mesh. (u" is the 
i n t e r n n i a n t  nf tho ovart  cnl i i t inn a n d  ,,h i e  thc. r l icr roto  cnl i i t inn 1 
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4.3 The Multi-Scale Finite Element 
This section outlines the l-D and 2-D multi-scale finite element formulations. 
The multi-scale element iis based upon the Schauder basis with the change-of- 
basis incorporated at  the element-level in order to make use of the well-known 
finite element assembly procedure.51 

4.3.1 Multi-Scale Transformations Revisited 
Before embarking on a description of the 1-D multi-scale finite element, a 
brief review and interpret ation of the multi-scale transformation is presented. 
Recall from $3.2 that 

where wk is the multi-sc d e  transformation operator. 
In order to make thls transformation concrete, consider the following 

example. Beginning with a 1-D grid consisting of 5 grid points and 4 linear 
elements, the nodal basis will be decomposed into a coarse-grid consisting of 
two elements and the associated “pse~do-wavelets~~. This decomposition is 
shown schematically in F‘igure 4.8. 

Remark 8 Here, the term ‘$~eudo-wavelet~~ refers to the fact that the el- 
ements of wk an the Schauder basis do not possess the property that their 
zeroth moment is zero. However, the elements of W k  are used t o  complete 
the subspace at scale k and they are semi-orthogonal in an HI sense so the 
term pseudo-wavelet seems appropriate. 

In this example, the wavelet transform, QO = WF<pl, is 

where the subscript indicates the scale, and the superscript indicates the 
node number. From this, it is clear that the wavelet transform performs 
an averaging procedure to obtain the coarse-grid basis elements, <PO, and an 
injection to obtain the coarse-grid pseudo-wavelets, QO. 
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The decomposition of nodal variables, u, may be accomplished with the 
wavelet transform as well. Here, the inverse transform is required to obtain 
the coarse-grid coefficients 

nu= W-lu, (4-4) 
where Au is the multi-scale or incremental component of the field. Relying 
on the inverse wavelet transform is impractical because the orthogonality 
constraint between the wavelets and scaling functions have been relaxed in 
the Schauder basis. However, incorporating the Schauder basis at the element 
level will yield solution algorithms that compute the multi-scale solution 
directly and rely only on the reconstruction algorithm, i.e., u = WAu. Thus, 
given a multi-scale representation of the field that corresponds to the multi- 
scale basis elements in Figure 4.8, the reconstruction algorithm is simply 

1/2 1 0 { r i } = [  112 1 0 0 0 ] {  1 Aui 2; } .  (4-5) 

Thus, the reconstruction algorithm relies on data at both the coarse grid 
and the detail from the “pseudo-wavelets”, Au, at the finer scales. These 
concepts are carried over to the finite element methodology where the recon- 
struction algorithm is applied at the element level. 

As an aside, the wavelet transform is comprised of two components and 
both may be viewed in terms of a discrete convolution. Using the nomencla- 
ture introduced in Chapter 3, TI = [ H I I G ~ ] ,  where 

Ell = [ If] I 

and 

GI= [ H I .  
(4-6) 

(4-7) 

In this simple example of a two-scale decomposition, W1 = TI, but in general, 
the wavelet transform is computed recursively as 
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I 

1 2 3 4 5 

Figure 4.8: One dimensional two-scale decomposition of the finite element 
nodal basis. 
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4.3.2 One-Dimensional Element 
The description of the multi-scale element begins with the linear finite ele- 
ment for which the shape functions are 

1 
Ni = 2(1 - <it). (4.9) 

Here, < is the natural coordinate, & is the nodal value of the natural coordi- 
nate, i = 1 , 2 ,  and -1 5 < 5 1 for the linear element. 

The concept of scale is introduced at the element level by injecting degrees- 
of-freedom (DOF) that are supported by the “pseudo-wavelets” of the Schauder 
basis. The 1-D multi-scale element is shown in Figure 4.9 where a single “in- 
ternal” degree-of-freedom located at < = 0 in the element is introduced at 
Scale-1, two DOF are introduced at Scale-2, and four DOF at Scale-3. 

At Scale-1, the pseudo-wavelet is 

(4.10) 

More generally, the pseudo-wavelets for the multi-scale DOF may be written 
in terms of the translates and dilates of +(<) as 

where 

aRd 

5 = 2k-1(1+ e)  - 2 j  - 1, 

(4.11) 

(4.12) 

(4.13) 

Here k indicates the scale, and j indicates the translates in the element 
parametric space (- 1 5 < < 1). 

The derivatives of the shape functions yield constant functions that are 
orthogonal to the derivatives of the pseudo-wavelets at all scales. The deriva- 
tives of the pseudo-wavelets yield Haar wavelets as illustrated in Figure 4.9, 
and at any given scale they are orthogonal with the derivatives at all other 
scales in the multi-scale element. 

The reconstruction algorithm may be viewed as an element-by-element 
procedure that relies only on the multi-scale information in each element. 
The reconstruction is shown schematically in Figure 4.9 where the DOF 
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Figure 4.9: Basis elements and their piecewise derivatives for the one dimen- 
sional multi-scale element with three refinement scales. The derivatives have 
been scaled by l / k  for scales IC = 1,2,3. 
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located at < = -3/4 is computed as a linear combination of the detail cor- 
rections, Au, at scales 0 - 3. Here, a canonical node-numbering scheme is 
used where the node numbers are n 1 , n 2  at Scale-0, n3 a t  Scale-1, n 4 , n 5  at 
Scale-2, etc. as shown in Figure 4.9. That is to say, for k > 0, the node 
numbers are set according to the scale as 2 + Z k - l  + j .  

With this numbering scheme, the reconstruction for the DOF located at 
726 may be written as 

where each of the basis elements is evaluated at < = -3/4. Thus, the re- 
construction algorithm begins with the interpolant of the coarse-grid solution 
and injects refinements, or detail, up to the desired scale. The reconstruction 
may be written more generally as 

where the basis elements (Ni, and $ k )  are evaluated at <k,j  corresponding to 
the DOF location in the parent element. 

The Multi-Scale Operators 

The computation of the stiffness for a bilinear operator, a(u, ?I), is a straight- 
forward procedure that begins with the coarse-grid stiffness. 

At the element level, i.e., Scale-0, this is simply 

(4.16) 

where h is the node-spacing for the coarse-grid. Making use of orthogonality, 
the stiffness entries for the scale DOF, i.e., for k > 0, are 

2 k + l  
2+2k-l+j - 

K k  h *  (4.17) 
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The resulting element-level stiffness matrix with scale DOF included is 

1 K" = - 
h 

1 -1 
-1 1 

4 
8 

8 
(4.18) 

With this form of the element stiffness, only the coarse-scale terms contribute 
to the element assembly procedure since all internal DOF simply require a 
point evaluation and do not rely on information outside the element. 

The mass matrix computation is somewhat more involved because it re- 
quires the calculation of inner-products that involve the basis elements across 
scale. The computation of the multi-scale mass matrix consists of the follow- 
ing 

(4.19) 

This series of element-level integrals leads to the finger-diagonal matrix struc- 
ture described in the previous sections of this chapter. Figure 4.10 shows the 
composite finger diagonal structure with the inset coarse-grid element mass 
matrix. 

The row-column lumping procedure is shown schematically in Figure 4.10 
for the multi-scale DOF z,t 727 in the element. Note that the traditional row- 
sum lumping for the co;srse-grid mass matrix can be used for the nodes 
corresponding to the coarse-grid, but this type of mass lumping has not been 
effective for the multi-scale DOF in the element. 
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Figure 4.10: Finger diagonal structure of element mass matrix. 

4.3.3 A Multi-Scale Algorithm 
The application of the one-dimensional multi-scale finite element with the 
row-column mass lumping lends itself to the following adaptive solution strat- 
egy. 

Algorithm 2 Multi-Scale Solution Algorithm 

1. Form the coarse-grid operators, Mo, and KO, and solve the coarse-grid 
problem. 

2. For each element, inject one scale DOF and solve fo r  the wavelet co- 
eficient, Au,. Here, the row-column mass lumping is used t o  permit 
point evaluation of the scale solution. 

(4.20) 

3. Compute the termination measure for  the scale DOF injection. One 
possibility f o r  the termination measure relies on  stopping when the scale 
DOF are small relative to  the overall solution. (Other stopping criteria 
have not been investigated.) 

(4.21) 
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4. Repeat 1 - 3 until 6 is smaller than some user-specified criteria. 

5. Perform the element- by-element multi-scale reconstruction using Eq. 
(4-15)- 

4.3.4 Example 1-D Calculation 
As an example of the multi-level algorithm, consider the following problem. 

-u''(z) = 1 on [O, 11, (4.22) 

with essential boundary conditions 

u(0) = 0, u(1) = 0. (4.23) 

In this example, three scale solutions were computed. Scale-0 corresponds 
to the coarse-grid solution using two elements. Scale-1 corresponds to the 
injection of one multi-scale DOF per element, while Scale-2 corresponds to 
the injection of two multi-scale DOF per element. This may be seen in Figure 
4.11 where the multi-scale DOF are shown relative to the elements (el, e2) of 
the one-dimensional grid. 

In this example, the multi-scale DOF for k = 1 correspond to Auf = 
Au: = 1/32. For k = 2, the multi-scale solution consists of f lu; = Au: = 
1/128, and Aui = Au; = 1/128. After the reconstruction procedure, the 
scale DOF yield solution values that interpolate the exact solution - a result 
that is expected for linea-r problems. Similar results have been obtained for 
problems with non-linear source terms, and for problems with inhomogeneous 
essential and natural boundary conditions. 

Remark 9 The algorithm presented for the 1-D multi-scale element pos- 
sesses the property that all scale injection relies only on element-local data 
and does not require a re-solve of the coarse-grid problem to improve the solu- 
tion. For problems that are mass-matrix dominated, the correction procedure 
outlined earlier in this chapter may be required when the row-column lumped 
mass is used. 
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Figure 4.11: Exact solution and scale solutions for k = 0,1,2. (Node numbers 
correspond to the insertion of multi-scale DOF). 
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4.3.5 Two-Dimensional Element 
Attention is now turned t o  the 2-D multi-scale element. As in the 1-D case, 
the 2-D bilinear element provides the element-level components of the global 
basis functions. However, the two-dimensional case is somewhat more com- 
plicated. 

To begin, Figure 4.12 shows a four-patch of bilinear finite elements with 
the injected multi-scale DOF corresponding to k = 1. As in the 1-D element, 
the shape functions are treated as k = 0 and associated with the coarsest 
grid resolution. The configuration of the multi-scale DOF in the parent 
element is shown in Figure 4.13. Like the shape functions, the components 
of the pseudo-wavelets at the element level take on a value of 1 at the DOF 
location, and they are zero at all other node locations. Only one of the 
multi-scale DOF is compktely supported in the two-dimensional element. 

The shape functions for the 2-D bilinear element are 

(4.24) 

where i = 1,2 ,3 ,4 ,  and -1 4 <,q 5 1. At the first scale, k = 1, the 
pseudo-wavelets are 

(4.25) 

In a more general way, the pseudo-wavelets for the multi-scale DOF may 
be written in terms of the translates and dilates of the basis functions at 
scale k = 1. The pseudo-wavelets in two-dimensions are 

where 

( = 2k-'(1+<) - 2 j  - 1 
jj = 2k-'(1+77) - 2 j  - 1, 

(4.26) 

(4.27) 



98 

and 

C H A P T E R  4.  T H E  SCHAUDER BASIS 

(4.28) 

Here IC indicates the scale, j indicates the translates in the element parametric 
space (-1 5 5 , ~  5 I), and m = 5,6,7,8,9 for the element-local numbering 
of the pseudo-wavelets. With the basis elements defined this way, the use 
of recursion at the element level can be used to automate the computation 
of the mass and stiffness operators with a given scale of resolution, Nscale. 
This type of recursion is illustrated in Figure 4.12. 

The performance of the 2-D Schauder basis was presented relative to 
the bilinear element in s4.2.3. However several key points are re-iterated 
here. First, the orthogonality of derivatives of the pseudo-wavelets between 
scales is not preserved in two dimensions - even on an orthogonal grid. The 
finger-diagonal matrices that arise from this discretization lead to extreme 
storage costs if the matrices are used without row-column lumping proce- 
dures. However, the row-column lumping can be applied to both the mass 
and stiffness operators, albeit only for the rows and columns corresponding 
to the multi-scale DOF. In addition, the 2-D multi-scale element is compat- 
ible with many h-adaptivity strategies being implemented in finite element 
codes, and the ability to use this element as a change-of-basis preconditioner 
is just beginning to be explored. 

Remark 10 The numerical performance of the 1-D and 2-0 multi-scale el- 
ement is  identical to the bilinear element since any multi-scale solution can 
be cast in terms of the reconstructed solution in the finite element basis at 
the finest grid scale. 

4.4 Summary 
The use of a Schauder basis in l-D and 2-D has been considered with an 
emphasis on the stability of the basis. In terms of stability, the finite element 
basis is uniformly stable in L2, but it is not stable in H1. In contrast, the 
Schauder basis is uniformly stable in H1, but it is not stable in L2. For the 
purely elliptic problems, the Schauder basis is a good choice in terms of a 
lower computational cost with respect to a traditional nodal basis. However, 
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Figure 4.12: Four-patch of bilinear elements with multi-scale DOF. 
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Figure 4.13: Parent element and multi-scale DOF for IC = 1. a) reference 
element and basis elements for multi-scale DOF with k = 1, b) ?,bf7 c) y ! f ,  d) 
?,bL e) ?,b!7 and f )  +;- 
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the benefit does not occur until the mesh resolution exceeds lo5 degrees-of- 
freedom when the finger-diagonal form of the stiffness operator is used. The 
benefit of the preconditioning of the Schauder basis is not realized for the 
Mid + €Kid case until the mesh resolution exceeds lo8 grid points. However, 
the use of the row-column lumping procedure may be applied to both the 
multi-scale mass and stiffness operators yielding a solution algorithm that 
relies on a predictor with a simple vector divide. The 1-D and 2-D multi- 
scale elements provide a simple mechanism for implementing the Schauder 
basis in an existing code, albeit with extensions for the insertion of scale 
degrees-of-freedom. Alth mgh only uniform refinement at the element level 
was presented here, there is no restriction on the spacing of scale DOF in the 
multi-scale element. 
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Chapter 5 

Reproducing Kernel Methods 

The Reproducing Kernel Particle Method (RKPM) has many attractive 
properties that make it ideal for treating a broad class of physical prob- 
lems. RKPM may be implemented in a “mesh-full” or a “mesh-free” manner 
and provides the ability to tune the method, via the selection of a window 
function and its associated dilation parameter, in order to achieve the req- 
uisite numerical performance. In RKPM, the dilation parameter plays a 
role similar to the dilation parameter in a scaling function although its im- 
plementation is somewhat different from traditional scaling functions that 
satisfy a two-scale difference relationship. RKPM also provides a framework 
for performing hierarchical computations making it an ideal candidate for 
simulating multi-scale piroblems. Although the method has many appeal- 
ing attributes, it is quite new and its numerical performance is still being 
quantified with respect t D more traditional discretization techniques. 

In order to assess the numerical performance of RKPM, detailed studies of 
the method on a series of model partial differential equations has been under- 
taken. The results of VOLL Neumann analyses for RKPM semi-discretizations 
of one and two-dimensional, first and second-order wave equations are pre- 
sented in the form of p:hase and group errors. Excellent dispersion char- 
acteristics are found for the consistent mass matrix with the proper choice 
of dilation parameter. [n contrast, row-sum lumping the mass matrix is 
demonstrated to introduce severe lagging phase errors. A “higher-order” 
mass matrix improves the dispersion characteristics relative to the lumped 
mass matrix but also yields significant lagging phase errors relative to  the 
fully integrated, consistent mass matrix. 
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5.1 Forrnulat ion 
This section begins with a brief overview of the reproducing kernel particle 
formulation. A detailed presentation of RKPM may be found in the work by 
Liu et a1.17318755y62-73796 Following the overview is a derivation of the formulae 
for computing the normalized phase and group speed associated with semi- 
discretizations of the model hyperbolic partial differential equations. 

5.1.1 Reproducing Kernel Particle Formulation 
For the sake of clarity, the following overview is limited to one spatial di- 
mension although the formulation may be easily extended to higher dimen- 
s i o n ~ . ~ ~ , ~ ~ ~ ~ ~  The RKPM formulation begins with the notion of a kernel 
approximation of a function, U ,  on a domain, Q, 

U R ( 4  = s, W c p @  - 0 @ 7  (5-1) 

where cp is the kernel function and UR is the continuous approximation to 
U.67971 In order to address discrete problems, numerical quadrature (i.e., 
trapezoidal or particle integration) is used to evaluate Eq. (5.1) as 

NP 

i=l 
U h ( x )  = div(z - x ~ ) A x ~ ,  (5.2) 

where Uh is the discrete analogue of U R ,  di are the particle coefficients, and 
N p  is the total number of particles in the domain, Q.67 In general, the coef- 
ficients, di,  are different from the value of the function at particle i because 
the RKPM basis is non-nodal, that is, it does not posses the Kronecker-delta 
property. 

One of the most commonly used RKPM kernel functions, and the one 
used here, is the cubic spline. In one-dimension, the cubic spline kernel 
function is { ? [ l - p  3 2  + , z ]  3 3  z < l  

1 5 z < 2 ,  (5.3) 3 44 = & [2- z] 
2 2 2  

where z = 1x - zil /(.AX), xi is the position of particle i, Ax is the particle 
spacing, and T is the refinement ~ a r a m e t e r . ~ > ~ ~ * ~ ~  The refinement parameter 
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controls the dilation of the kernel function, and subsequently, the domain 
of influence for the function. For example, consider the cubic-spline window 
function with a uniform particle distribution. In this case, r = 1/2 results in 
support over 3 particles, .while r = 1 results in support over 5 particles. In 
this work, the optimal dilation parameter, r = 1.14, established by Liu and 
Ched5 to minimize aliasing error in terms of energy, is used. 

In general, Eq. (5.2) will not exactly reproduce an arbitrary polynomial. 
The accurate reproduction of polynomials to order p is ensured by introducing 
a modified window function, 

where Pk(x) represents a set of correction functions that vary within the 
domain, Q.67768 The mociified window function, ?p, replaces cp in Eq. (5.2) 
yielding 

NP 
U " ( Z )  = - ~ i ) d i A ~ i .  (5-5) 

i=l 

The correction functions are determined by substituting Eq. (5.4) into 
Eq. (5.5) and requiring t,hat the resulting kernel approximation reproduce 
polynomials to the desired order. For linear consistency, the following con- 
straints are required, 

NP 
[P&) -t. P&) (z - Xi)] y ( x  - zi )xiAxi  = 2. (5-7) 

i=l 

From these equations, ,!3o(x) and Pl(x) may be calculated in a point-wise 
fashion in the domain. Vl'ith the correction functions in hand, the requisite 
derivatives for a Bubnov- Galerkin procedure may be computed. Although 
the calculation of these derivatives is rather straight forward, the algebra 
required is significant and the reader is directed to the work of Liu et al.17,67y68 
for details. 

Remark 11 As a brief aside, consider the limiting case where the linear 
"hat function" is used as the kernel function instead of the cubic-spline of 
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Eq. (5.3). In this case, the window function is 

If the dilation parameter is unity, then the resulting basis elements are 
simply the linear finite element functions and yield the usual form of the 
mass and stiffness operators. 

In the ensuing dispersion analysis, tensor products of Eq. (5.3), 

are used to generate a two-dimensional kernel function with rectangular s u p  
p ~ r t . ~ ? ~ ~  The tensor-product kernel function in Eq. (5.9) is used with bi- 
linear consistency enforced for the two-dimensional dispersion results pre- 
sented in 55.2.3. 

5.1.2 RKPM Two-Scale Decomposition 
The use of the RKPM window functions in a multi-resolution analysis is 
briefly demonstrated in this section. Following the procedure outlined in 
Chapter 1, the projection of a discrete solution, Uh, onto the subspace, Va, 
may be written as 

where a = rAx is the dilation parameter and relies on the refinement pa- 
rameter and particle spacing. Here, the projection at  scale-a is simply 

NP 

i=l 
PaUh = T ( X  - ~1:i)U)Azi. (5.11) 

The projection, P2a, may be thought of as the providing the represen- 
tation of the field at twice the scale, or at half the grid resolution. The 
projection, &2a, may be viewed as the detail or the “peeled-off part of 

Unlike the projections discussed in Chapter 1, the RKPM projections are 
not necessarily idempotent. The wavelets associated with the @projection 
are defined as 

PaUh- 
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4 2 a  = Pa - ~ 2 a -  (5.12) 
Although these wavelets satisfy the property that the first moment is zero, 
the rigorous enforcement of orthogonality and the satisfaction of a two-scale 
difference relation has been abandoned. 

Example 6 The two-scaie decomposition of a step-function using the “linear 
hat” function for the window function is shown in Figure 5-1- Here, the grid 
consists of 11 uniformly ,spaced particles with 0 5 x 2 1. In this case, the 
original signal was repre:;ented on the grid using linear hat functions with 
r = 1, i.e., a = Ax. The coarse scale representation of the original signal is 
shown with the wavelet projection at scale-2a. 
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Figure 5.1: One-dimensional two-scale decomposition based on dilation of 
the window function. 
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Remark 12 One interesting and useful aspect of the RKPM two-scale de- 
composition is that the field at scale-2a may be represented on the original 
grid. That is, there is no inherent down-sampling of the field that is required 
making wavelet projection useful f o r  detecting steep gradients automatically. 

5.1.3 von Neumann Analysis 
The accurate simulation of wave propagation or advection dominated pro- 
cesses using discrete numerical schemes hinges upon having a clear under- 
standing of the constraining numerical errors, and sufficient computational 
resources to effect solutions at the requisite grid scale. Examples of this 
may be seen when attempting to  simulate wave propagation in an acous- 
tic medium, or compute turbulent flow fields via direct numerical simulation 
(DNS) or large eddy simulation (LES). In physical problems with a dominant 
hyperbolic character, controlling the dispersive errors, i.e., phase and group 
speed errors, to within 5% can require 8 to 10 grid points per wavelength with 
traditional finite difference or lumped-mass finite element methods. Thus, 
the simulation of hyperbolic problems is limited by the wavelength that the 
grid can accurately represent. Further, a failure to respect the so-called grid 
Nyquist limit can introduce deleterious aliasing effects that corrupt the sim- 
ulation fidelity. 

In general, the application of discrete methods to hyperbolic partial dif- 
ferential equations can result in solutions that are dispersive even though the 
physical model for wave propagation is non-dispersive. Dispersion errors are 
typically characterized by the differences between the apparent, i.e., numeri- 
cal, phase and group speed of waves and their exact counterparts. Phase and 
group speed errors represent some of the most constraining numerical errors 
associated with the simulation of wave propagation and advection dominated 
flows. 

In the context of linear acoustics, the phase speed is the speed at which 
individual waves propagate. In the absence of dispersion, i.e., for a per- 
fect acoustic fluid, this is simply the sound speed. In a dispersive acoustic 
medium, the phase speed is a function of the frequency or wavelength of the 
propagating wave. Thus, phase error may be viewed as a measure of the 
influence of numerical dispersion on the apparent sound speed relative to the 
true sound speed. 

In contrast to the phase speed, the group speed describes the propagation 
of wave packets that are comprised of short wavelength signals modulating 
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a slowly varying, longer wavelength envelope. Because the energy associated 
with a wave packet travels with the packet, the group speed is often referred 
to as the “energy” velocitly. The group speed is also referred to as the speed 
of modulation. For a non-dispersive medium the phase and group speed are 
identical. 

In discrete wave propagation problems, the group speed may be used to 
study and explain the propagation of short wavelength oscillations that are 
typically 2Ax in wavelength where Ax is the characteristic mesh spacing. 
Vichnevetsky’oo, lo’ has demonstrated that spurious 2Ax oscillations, that 
are induced by rapid changes in mesh resolution and at physical boundaries, 
propagate at a group speed associated with a 2Ax wavelength. 

The investigation of the dispersive errors associated with discrete solu- 
tions is not new and has been used by numerous researchers to characterize 
the performance of numerical methods. A brief review of earlier dispersion 
analyses may be found in Christon.lg The focus of the current work is upon 
characterizing the dispersive nature of the reproducing kernel particle method 
for hyperbolic problems. 

With the RKPM formulation outlined, the weak forms of three model par- 
tial differential equations (two hyperbolic and one parabolic) are presented 
along with a description of the Fourier analysis. For generality, the numeri- 
cal dispersion and diffusion relations are generated for the two-dimensional 
model equations from which their one-dimensional counterparts are obtained. 

The two-dimensional first-order wave, second-order wave and parabolic 
partial differential equations are, in Cartesian coordinates, 

dU au dU 
- + e,- + cy-- = 0 
at dX dY 

(5.13) 

and, 
E’U a2u a2u 
i3t =o.  

(5.14) 

(5.15) 

Here t is time, U is the dependent variable, c is the wave speed, (e,, cy) = 
(ccos(O), csin(13)) are the advection velocity components, 8 is the wave vector 
direction measured from the x-axis, and Q is the diffusivity. 

The semi-discrete forms of Eq. (5.13) through (5.15) are required for the 
following analysis. The details for obtaining the weak form of these equations 
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are well known,51 and are not repeated here. The semi-discrete forms of the 
first-order wave, second-order wave and parabolic equations are, 

Md + A (e)  d = 0, (5.16) 

Md + K (c) d = 0, (5.17) 
and, 

Md + K (a) d = 0, (5.18) 
where A is the advection operator, and K is the stiffness matrix. The gen- 
eralized mass matrix is defined as 

M = yMC + (1 - y)M', (5.19) 

where M" and MI are the consistent and row-sum-lumped mass matrices 
respectively, and 0 5 y 5 1 is the lumping parameter. 

It should be noted that some form of numerical quadrature is required 
for the evaluation of A, K and M above. This integration may be per- 
formed by placing a grid of quadrature points overlaying the nodal points 
and employing, for instance, Gaussian quadrature. Alternatively the nodal 
points can themselves be used as the quadrature points with the appropriate 
weight being the variational volume associated with the node (termed trape- 
zoidal integration here). Both integration techniques and their effects on the 
discretization errors are considered. 

Proceeding with the Fourier analysis, a plane wave solution is placed on 
an infinite span (alternatively, on a finite domain with periodic boundary 
conditions) in order to compare the exact and semi-discrete solutions. It can 
be shown that the particle values, Uh, satisfy the same evolution equations as 
the coefficients, d, when a periodic domain and symmetric window functions 
are used.lol Thus, Eq. (5.16) and (5.17) may be rewritten in terms of Uh 
for the purposes of this analysis, and the plane wave solution to Eq. (5.13) 
and (5.14) may be expressed as 

V(z, y, t )  = Uo exp[Lk(z cos(@) + y sin(@) - u t ] .  (5.20) 

Here, Uo is the amplitude, k is the wave number, 8 is the propagation direc- 
tion of a plane wave measured from the x-axis, and L = a. 

For the parabolic equation, Eq. (5.15), the particle values also satisfy the 
same evolution equation as the particle coefficients, d, and so the periodic 
solution to the parabolic equation is 

~ ( z ,  y, t )  = u~(z, y) exp[-ak2t]. (5.21) 
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Remark 13 The use of ithe term “von Neumann” analysis for the parabolic 
equation is somewhat misi!eadzng because the partial diflerentiai equation does 
not admit wave solutions under ordinary circumstances (although the authors 
are aware of a hyperbolic theory for heat conduction). Instead, the interpre- 
tation relies on consideration ofthe fact that the diflusivity is now a function 
of wavelength, i.e., Q = cr(X). With this in mind, for each wavelength, i.e., 
Fourier mode, there is an associated diflusivity. Thus, the analogue to disper- 
sion error for the hyperbolic equations is the observation that the wavelength 
dependent rate of diffusion leads to  errors in the overall rate of diffusion. 

Now, considering a mesh with nodes equally spaced at intervals of Ax 
and Ay, any node (i + m, j + n) at coordinates (xi+m, yj+n) may be located 
relative any other node ( i , j )  as xi+m = xi + mAx and y j+n = yj  + nay. 
Thus, solutions to the serni-discrete hyperbolic and parabolic equations are, 

Ui+m,j+n = Uo(r~i, y j )  ~?xp[ik(mAx COS 6 + n a y  sin e)] exp[-iwt] (5.22) 

and, 

Ui+m,j+n - - U0(xi, yj) e:~p[ik(mAx cos 6 + n a y  sin e)] exp[-ak2t], (5.23) 

respectively. 

first and second-order wave and parabolic equations for node (i,  j) are 
Given an arbitrarily wide kernel function, the semi-discrete forms of the 

and, 

(5.24) 

(5.25) 

(5.26) 

respectively. In Eq. (5.24) through (5.26) , M ( i , j ) , ( p , q )  7 K(i , j ) , (p ,q)  and A( i , j ) , (p ,q )  
are the mass, stiffness arid advection matrix entries on the row associated 
with node (i, j )  and the column associated with node ( p ,  4) on a natural 
ordered Cartesian grid. 
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Substituting the appropriate forms of Eq. (5.22) and (5.23) into Eq. 
(5.24) through (5.26) and canceling terms yields, 

n n  
-iw [M(i,j),(i+l,j+m) exp(ik(lAz cos(@) + mAy sin(@)))] + 

A(i,j),(i+l,j+m) exp(ik(ZAz cos(6) + mAy sin(@))) = 0 (5.27) 

l=-n m=-n 
n n  

I=-n m=-n 

and, 

for the first and second-order wave equations and 

for the parabolic PDE. The computation of the normalized phase and group 
speed for the hyperbolic problems proceeds by solving for the circular fre- 
quency, w, and making use of Eq. (5.20). The normalized phase speed asso- 
ciated with either semi-discrete equation is + = E/c where Z is the apparent 
phase speed. Rearranging Eq. (5.27) and (5.28) yields 

for the first-order wave equation, and 

(5.31) 
for the second-order wave equation. 
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The appropriate error measure which arises for the parabolic PDE is the 
normalized apparent diffusivity, E/a.  Rearranging Eq. (5.29) yields 

(5.32) 
The one-dimensional apparent dispersion and diffusion characteristics 

may be obtained from the' two-dimensional relations results by setting 6 = 0 
yielding, 

I 
J 4  

$1 = - 
ckfm ' (5.33) 

(5.34) 

and, 
- 1 f k  a/a = -- 

a k 2  f m  
(5.35) 

for the apparent phase speed, group speed and diffusivity respectively where, 
n 

f a  := Ai,i + 2 sin(kZAz)Ai,i+l 
1=1 

and 

(5.36) 

(5.37) 

(5.38) 

The normalized group speed, in one-dimension7 is defined as = vg/c, 
where zig = au/aiC. Consideration of the normalized group velocity for the 
two-dimensional, semi-discretizations introduces significant complexities that 
make such analysis beyond the scope of this work. 

Using Eq. (5.33) and (5.34), the normalized group speed in one-dimension 
is 

and 

(5.39) 

(5.40) 
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for the first and second-order wave equations respectively. Here, 

n 

gm = d f m / d k  = -2Ax 1 sin(klAx)Mi,i+l, 
1=1 

and 
n 

g k  = a f k / d k  = -2Ax Z sin(kEAx)Ki,i+l. 
1=1 

(5.41) 

(5.42) 

(5.43) 

Unless otherwise noted, the normalized phase and group speed defined above 
are referred to simply as phase speed and group speed in the remaining text. 

Remark 14 There have been no restrictions (other than symmetry) placed 
on the form or type of basis functions used to obtain the mass, stiflness or 
advection operators. Thus, Eq. (5.30) through (5.40) are equally valid for 
Galerkin formulations that use the RKPM functions or finite element basis 
functions. 

5.2 Results 
This section summarizes the results of the von Neumann analyses in terms of 
phase and group speed for RKPM semi-discretizations of the one-dimensional 
model hyperbolic equations followed by phase speed associated with the two- 
dimensional equations, and a brief discussion of the analysis for the parabolic 
equation. Unless otherwise noted, the normalized phase and group speeds 
defined in the previous section are referred to simply as phase and group 
speed in the remaining text. Both the one and two-dimensional RKPM 
formulations use the cubic spline kernel function in Eq.(5.3). Further, the 
two dimensional formulation uses the tensor product in Eq. (5.9) to produce a 
two dimensional kernel function. Both spatial formulations use the procedure 
outlined in 55.1.1 to generate modified window functions that ensure linear 
(U(x) = 1 + x; one-dimensional) and bi-linear (U(x, y) = 1 + x + y + zy; 
two-dimensional) functions are reproduced exactly. 

For the purpose of comparison, results are presented for linear and bi- 
linear finite element (FE) semi-discretizations. Here, the linear and bi-linear 
finite element basis functions were chosen for comparison as they provide the 
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same order of consistency as the RKPM discretizations considered. The FE 
phase and group speed art: calculated using the formulae presented in Section 
2.2 with linear finite element basis functions. 

In the discussion that follows, the phase and group speed results are 
presented as functions of non-dimensional wave number, kAx/.rr = 2Ax/X. 
In order to simplify the discussion, the following nomenclature has been 
adopted to identify the the mass matrix and quadrature rule used for both 
the FE and RKPM results. The mass matrix is identified as C for consistent 
(y = l), L lumped (y = 0), or H higher-order (y = 1/2); cf. Eq. (5.19). The 
numerical integration scheme is identified as either F indicating full Gauss 
quadrature, or T indicati:ng a trapezoidal rule, i.e., particle integration. 

The F nomenclature for “full Gauss quadrature” indicates a 2 x 2 quadra- 
ture rule for the bi-linear finite element and a 4 x 4 quadrature rule for the 
RKPM formulation. In the case of the RKPM formulation, the sensitivity of 
the matrix entries with respect to the quadrature rule was tested and demon- 
strated that the entries did not change appreciably with increased number of 
quadrature points beyond 4 x 4. For trapezoidal (particle) integration, the 
particle locations are used as quadrature points. Here, the motivation for 
consideration of particle integration is the potential reduction in computa- 
tional complexity gained by elimination of the background integration mesh 
which also results in a truly mesh-free method. 

5.2.1 1-D Hyperbolic Equations 
In this section, the phase and group speed for the semi-discrete, one-dimensional, 
first and second-order wave equations are presented. 

First-Order Wave Equation 

Phase and group speed for the linear finite element semi-discretizations of 
the first-order wave equation are presented in Figure 5.2. Results are plotted 
for fully integrated, consistent (CF), lumped (LF) and higher-order (HF) 
mass matrix formulations. As shown, the FE formulations introduce strictly 
lagging phase speed for all wavelengths considered with the CF formulation 
delivering smaller phase errors up to the 2Ax limit. All three mass matrices 
result in a phase speed of zero at 2Ax/X = 1, i.e., wavelengths of 2Ax are 
stationary on the grid. 
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Figure 5.2: One-dimensional phase (a) and group (b) speed results for the 
first-order wave equation, linear finite element semi-discretization employing 
fully integrated, consistent (CF) , lumped (LF) mass and higher-order (HF) 
matrix formulations. 

The finite element discretizations also yield strictly lagging group speed 
for all three mass matrices. However, the lumped mass matrix yields a zero 
group speed for 4Ax wavelengths while both the CF and HF mass matrices 
have zero group speed at shorter wavelengths. The CF formulation performs 
better than the LF and HF formulations, Le., yields smaller group errors for 
X 2 3Ax. All three formulations yield negative group speeds for short wave- 
lengths indicating that the energy associated with 2Ax wavelength signals 
propagates in the opposite direction of the longer wavelength signals. Sur- 
prisingly, the LF formulation yields the smallest, albeit still negative, group 
speed in the limit of 2Ax wavelengths. 

Figure 5.3 shows the phase and group speed for the one-dimensional 
RKPM semi-discretizations of the first-order wave equation. Again, fully 
integrated consistent (CF) , lumped (LF) and higher-order (HF) mass matrix 
formulations are presented. In addition, results are shown for the consistent 
mass matrix formulation with particle integration of the advection and mass 
matrices (CT). As with the FE results in Figure 5.2, the RKPM method 
introduces lagging phase errors over the discrete spectrum of wavelengths. 
The consistent mass (CF) formulation performs the best and delivers signif- 
icantly better phase speed relative to the FE results presented in Figure 5.2. 
In order to  quantify the increased performance of the RKPM-CF method, 
consider a phase error, E = 11 - $1, of 5% or less to be appropriate for en- 
gineering purposes. For the FE-CF method, this criterion corresponds to 
4Ax or 5 grid-points per wavelength. In contrast, the RKPM-CF and CT 
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Figure 5.3: One-dimensional phase (a) and group (b) speed results for the 
first-order wave equation, Reproducing Kernel Particle semi-discretization 
employing full-integration consistent (CF) , lumped (LF) , higher-order (HF) 
and trapezoidal integration consistent (CT) mass matrix formulations. 

methods require 2 - 3Ax, or approximately 3 - 4 particles per wavelength. 
While both the RKPM-C? and CT methods perform quite well, the lumped 
and higher-order formulaisions introduce severe lagging phase errors relative 
to their finite element counterparts. 

In terms of the group speed, both the RKPM-CT and CF formulations 
are far superior to the LF and HF formulations. Similar to the phase speed, 
the CT formulation yield,s lagging group errors at  longer wavelengths than 
the CF formulation. However, the trapezoidal mass matrix, CT, avoids the 
large negative group speed associated with the fully-integrated, CF, matrix 
at  2Ax wavelengths. Both the FE-CF and RKPM-CT formulations yield 
negative group speed for wavelengths shorter than 3Ax, while the RKPM- 
CF formulation produces negative group speed for wavelengths shorter than 
about 2.5Ax. However, the group error associated with 2Ax wavelengths for 
the RKPM-CF formulation is over 3 times larger than for the F E C F  case and 
is 10 times larger than the sound speed. From these results it is apparent that 
the RKPM-CT and CF formulations exhibit very good dispersive behavior, 
discounting the large negative group speed for the RKPM-CF case, with 
consistency identical to the finite element formulation. 

Second-Order Wave Elquation 

Phase and group speeds jor the linear finite element semi-discretizations of 
the second-order wave equation are presented in Figure 5.4 for the fully inte- 
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Figure 5.4: One-dimensional phase (a) and group (b) speed results for the 
second-order wave equation, linear finite element semi-discretization employ- 
ing full-integration consistent (CF), lumped (LF) and higher-order (HF) mass 
matrix formulations. 

grated, consistent, lumped and higher-order mass matrix formulations. The 
consistent mass formulation (CF) introduces leading phase errors while the 
lumped (LF) and higher-order (HF) methods exhibit strictly lagging phase 
errors. Additionally, both the LF and HF methods demonstrate lagging 
group speed for all wavelengths considered while the CF group speed is lead- 
ing for 2Ax/X 5 0.85. 

Figure 5.5 shows the phase and group speeds for the one-dimensional, 
second-order wave RKPM semi-discretization using the CF, CT, LF and HF 
formulations. Relative to the FE results of Figure 5.4, the consistent mass 
matrix (CF) provides better phase and group speed. Surprisingly, the trape- 
zoidal mass formulation (CT) yields zero phase speed for 2Ax wavelengths, 
Le., these wavelengths are stationary on the grid. Additionally, the CT for- 
mulation results in large, lagging group errors for wavelengths shorter than 
3Ax. In contrast, the FE semi-discretizations do not yield any negative group 
speeds. 

Employing the 5% phase error criterion introduced earlier, the FE-HF 
method requires approximately 4 nodes per wavelength while only 3 particles 
are required for the RKPM-CF method. As with the RKPM discretization 
of the first-order wave equation, the lumped and higher-order formulations 
introduce severe lagging phase and group errors relative to both the FE 
counterparts and the CT and CF mass matrices. 
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Figure 5.5: One-dimensional phase (a) and group (b) speed results for the 
second-order wave equation, Reproducing Kernel Particle semi-discretization 
employing the full-integriktion, consistent (CF) , lumped (LF) , higher-order 
(HF) and trapezoidal integration consistent (CT) mass matrix formulations. 

5.2.2 2-D Hyperholic Equations 
This section presents tht: phase speed results for the semi-discrete, two- 
dimensional, hyperbolic equations. Results are plotted as functions of the 
propagation angle, 8, and non-dimensional wave number. For this analy- 
sis, the particle spacing is uniform with, Ay/Ax = 1. As with the one- 
dimensional analyses, a refinement parameter of T = 1.14 based upon a min- 
imum energy error is used in the RKPM formulation. In order to  highlight 
the directional dependence of the phase error, the phase speed is presented 
with both polar and Cartesian plots. The phase speed results exhibit angu- 
lar symmetry about propagation directions, 8, that are multiples of 7r/4 as 
a result of the imposed uniform spacing of particles. However, the data is 
presented for 0 5 8 5 27r for the sake of clarity. 

First-Order Wave Equation 

Phase speed plots for the semi-discrete first-order wave equation using the 
fully integrated bi-linear finite element and a consistent mass matrix are 
shown in Figure 5.6. The polar plot of Figure 5.6a shows phase speed as 
a function of direction, 6, for several values of non-dimensional wavelength, 
2Alc/X. The non-circular phase speed contours emphasize the anisotropic 
nature of wave propagation on the discrete mesh. Figure 5.6b presents the 
results of Figure 5.6a at five propagation angles, 8. It is apparent from Figure 
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Figure 5.6: Polar (a) and Cartesian (b) plots of the phase speed for the FE 
semi-discretization of the two-dimensional, first-order wave equation employ- 
ing a full-integration, consistent mass matrix formulation (CF). 

5.6 that a minimum error in phase speed occurs when the wave propagation 
direction is 7r/4 from the x-axis. It is also apparent that the anisotropy 
becomes more pronounced for shorter wavelengths, i.e., 2Ax/X > 0.4 (cf. 
Figure 5.6a). 

Phase speed results for the fully integrated "bi-linear" reproducing ker- 
nel particle method using a consistent mass matrix are shown in Figure 5.7. 
As with the FE formulation, the RKPM semi-discretization leads to strictly 
lagging phase speed with minimum phase speed errors occurring for 8 = n/4. 
However, unlike FE, RKPM shows negligible phase error in this direction. 
Further, relative to the finite element method, the anisotropic behavior has 
been significantly reduced, with wave propagation being effectively indepen- 
dent of wavelength and propagation direction for 2Az/X 5 0.8, i.e., for 
wavelengths greater than about 2 - 3Ax. 

Figure 5.8 shows polar and Cartesian plots of the phase speed for the 
"bi-linear" RKPM formulation using trapezoidal integration and a consis- 
tent mass matrix. Again, the phase speed is lagging and anisotropic, with 
minimum errors occurring in the 6 = 7r/4 directions. Although the phase 
speed appears anisotropic for short wavelength signals, this formulation de- 
livers nearly isotropic wave propagation for 2Ax/X 5 0.6, Le., wavelengths 
greater than 3 - 4Ax. 
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Figure 5.7: Polar (a) and Cartesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, first-order wave equation 
with full-integration7 and a consistent mass matrix (CF). 
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Figure 5.8: Polar (a) and Cartesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, first-order wave equation 
with a consistent mass matrix and trapezoidal integration (CT). 
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Figure 5.9: Polar (a) and Cartesian (b) plots of the phase speed for the FE 
semi-discretization of the two-dimensional, second-order wave equation using 
a full-integration, consistent mass matrix formulation (CF). 

Second-Order Wave Equation 

Figure 5.9 shows phase speed results for the second-order wave semi-discretization 
using a fully integrated bi-linear finite element method with a consistent mass 
matrix. The results indicate that the finite element formulation introduces 
strictly leading phase errors. The finite element semi-discretization results 
in anisotropic wave propagation, with a minimum phase error occurring in 
the 8 = 7r/4 propagation directions. However, the anisotropy is not as pro- 
nounced as for the first-order equation (cf. Figure 5.6) 

The fully integrated "bi-linear" RKPM semi-discretization (consistent 
mass matrix) yields almost negligible phase errors as shown in Figure 5.10. 
Further, as phase errors are quite small for all 8, wave propagation is nearly 
perfectly isotropic. Some slight leading phase speed errors are evident for 
wavelengths approaching 2Ax. However, these errors are less than 2.5% with 
a minimum in phase error occurring in the 8 = 7r/4 propagation directions. 

Finally, Figure 5.11 shows the phase speed results for "bi-linear" RKPM 
semi-discretization using trapezoidal integration with a consistent mass ma- 
trix. Unlike t he fully integrated results, anisotropic dispersion errors are 
quite evident for 2Az/X > 0.6. However, for 2Az/X 5 0.6 phase errors are 
negligible and are significantly better than for the FE case (cf. Figure 5.9). 
Similar to the fully-integrated RKPM semi-discretization, the phase errors 
are minimized in the 7r/4 propagation directions, but with nearly perfect 
phase speed for wavelengths longer than 3 - 4Ax. 
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Figure 5.10: Polar (a) a:nd Cartesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, second-order wave equa- 
tion using full-integration and a consistent mass matrix (CF). 
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Figure 5.11: Polar (a) and Cartesian (b) plots of the phase speed for the 
RKPM semi-discretization of the two-dimensional, second-order wave equa- 
tion using a consistent m(sss matrix and trapezoidal integration (CT). 
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Remark 15 During the course of analyzing the results from the von Neu- 
mann analysis it was observed that the use of trapezoidal integration results 
in identical dispersion relations fo r  the first and second-order wave equations 
with a consistent mass matrix. The fact that the discrete spectrum or sym- 
bollo1 for  the first and second-order wave equations are identical may be seen 
clearly in Figures 5.3 and 5.5 for  the one-dimensional case. Similarly, for  the 
two-dimensional case, the phase speed shown for the first-order wave equation 
in Figure 5.8 is identical to  the phase speed shown in Figure 5.11. 

Similar behavior has been noted by  Vichnevetsky and BowleslOl when a 
second-order central difference approximation is applied to  both the first and 
second-order wave equation. In this situation, the semi-discrete first-order 
equation is a consistent representation of the second-order wave equation. In 
the case of RKPM,  a similar result may be obtained in the one-dimensional 
case f o r  a refinement parameter, r = 112. However, we have been unable 
to  verify this behavior analytically for r = 1.14. Regardless of this, numer- 
ical experiments (cf. Figures 5.3, 5.5, 5.8, and 5.11) have verified that the 
discrete spectrum is identical for  the two model hyperbolic equations when 
particle integration is used. 

5.2.3 Parabolic Equation 
The apparent diffusivity results are presented in Figure 5.12 for several 
RKPM semi-discretization techniques and a range of refinement parameters 
for the parabolic partial differential equation. 

Figure 5.12 (a) shows the apparent diffusivity for the consistent mass, 
fully integrated formulation (CF) for refinement parameters 0.5,0.75,1.0,1.14. 
Here, T = 0.5 corresponds to the usual finite element formulation with a con- 
sistent mass matrix and demonstrates that the shorter-wavelength modes will 
diffuse up to  40% faster than the long wavelength modes. As the refinement 
parameter approaches the minimum energy error value of 1.14, this effect is 
minimized with only a small error introduced for 2Az/X 2 0.9. 

Figure 5.12 (b) shows the apparent diffusivity for RKPM using particle 
integration and a consistent mass matrix. Once again, the minimum energy 
error refinement parameter of 1.14 yields the best performance with nearly 
constant diffusivity up to 4Ax wavelengths. Surprisingly, all three refinement 
parameters result in apparent diffusivities that are zero for 2Ax wavelengths. 
Thus, any short-wavelength modes will not diffuse at all, but will persist on 
the grid. 
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Figure 5.12: Parabolic :PDE apparent diffusivity for the (a) fully inte- 
grated consistent mass (b) trapezoidal integration consistent mass (c) fully- 
integrated higher order mass and (d) fully-integrated lumped mass RKPM 
semi-discretizations. 

Similar results are shown in Figure 5.12 when the lumped or higher-order 
mass matrix is used with a refinement parameter of 1.14. For the finite 
element formulation, i.e., T = 0.5, the apparent diffusivity is lagging for all 
wavelengths, but remains finite in the limit of 2Ax wavelengths. As in the 
case of the hyperbolic PIIEs, the higher-order mass matrix yields the best 
overall behavior across tho entire discrete spectrum. Unfortunately, any form 
of mass lumping procedure seems to severely deteriorate the performance of 
the RKPM formulation. 

5.3 Summary 
The results of the analyses presented here indicate that, for the formula- 
tions considered, the consxtent mass RKPM-CF semi-discretizations display 
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better dispersion properties than the finite element method with similar con- 
sistency constraints. In a one-dimensional sense, phase errors of less than 5% 
are ensured with 3 to 4 particles per wavelength with RKPM while the FE 
formulations require 4 to 5 nodes. Incredibly, RKPM semi-discretizations of 
the second-order wave equation require only 3 particles per wavelength (the 
Nyquist limit) for phase errors of less than 2.5%. In addition, wave propaga- 
tion with the consistent mass RKPM formulation in two-dimensions is nearly 
isotropic in terms of angular dependence of the phase speed and in terms of 
the amplitude of the phase errors. 

While the consistent mass matrix RKPM formulations perform quite well, 
the lumped and higher order mass formulations introduce severely lagging 
phase and group speeds. Thus, the performance of these formulations is quite 
poor relative to their finite element counterparts. 

Finally, the consistent mass RKPM results indicate that minimal losses 
in phase and group speed error result when particle integration of the ma- 
trices is employed in place of full (Gauss) quadrature. With the sacrifice of 
negative group speeds and a slight increase in phase speed errors, the use of 
particle integration may significantly reduce computational cost by reducing 
the number of quadrature points needed. Further, the method should be 
simpler to implement as the background integration mesh can be eliminated. 
However, further direct testing with particle integration is required. 



Chapter 6 

Summary and Conclusions 

In the search for an optimal basis for performing multi-scale simulations, the 
following shopping list of’ characteristics was developed as the goal for the 
ideal multi-scale basis. 

0 Compact support. 

0 Low order, e.g., linear, for computational efficiency. 

0 Consistent reproduction of polynomials, e-g., reproduce { 1, z, y, zy} in 
two-dimensions. 

0 Nodal, i.e., possesses the Kronecker delta property. 

0 Hierarchical: V I  = 110 €3 Wo. 

0 Element based - coimpatible with isoparametric elements. 

0 Analytic expressions for the basis elements q5 and .IC. 

0 Easy treatment of boundary conditions. 

0 Good numerical pe:tformance, e.g., dispersion characteristics, trunca- 
tion error, etc. 

0 Appropriate for both Eulerian and Lagrangian computations. 

0 Computationally eflicient decomposition and reconstruction of fields. 

0 Extensible to multiple spatial dimensions. 

127 
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Based on these characteristics and the results of this exploratory effort 
the following conclusions are drawn. 

1. 

2. 

3. 

4. 

5 .  

The DGHM (and related) multi-wavelets are not a good choice for a 
multi-scale basis because they are relatively difficult to compute with 
and do not extend to multiple dimensional isoparametric elements. In 
addition, the DGHM element delivers the Performance of a linear e l e  
ment at the cost of a quadratic element with inferior dispersive behav- 
ior. 

The Schauder basis, and the 1-D and 2-D multi-scale elements, are pro- 
totypical of what the ideal multi-scale basis should be. Unfortunately, 
the storage and computational cost associated with the finger-diagonal 
operators from this type of basis is a significant penalty. However, the 
use of ad-hoc lumping procedures ameliorates this problem and offers 
the potential for the development of fast, simple preconditioners. Cur- 
rently, the real value of the multi-scale elements lies in the application 
to  elliptic problems. 

The numerical performance of the reproducing kernel particle method 
makes it a viable candidate for both Eulerian and Lagrangian computa- 
tions for a broad range of physical problems. However, the integration 
of wavelets with the multiple scale window functions remains a topic 
of current research. This research is currently being addressed by Pro- 
fessor Wing Kam Liu and his colleagues at Northwestern University. 

As demonstrated in the discussion of the “semi-hat” bases, it is diffi- 
cult to construct a basis that is stable in both L2 and in H1, i.e., for 
all possible combinations of mass and stiffness operators. The applica- 
tion of wavelet bases that have been customized for a specific partial 
differential equation remains an open topic of active research. 

The use of wavelet bases for the solution of partial differential equa- 
tions remains a research topic that is centered squarely in the mathe- 
matics community at this time. Hierarchical solution procedures that 
use wavelets tailored to the physical problem appear to be the most 
viable candidates for using wavelet bases. 
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Recommendations for further work 

1. At this time, the multi-scale elements are the best choice for a "wavelet" 
basis that can be implemented in existing finite element codes. The 
development of a pi-econditioner based upon the multi-scale element 
would be of great value in applications such as time-dependent incom- 
pressible flow, quasi-static electro-magnetics, as well as the obvious 
application to conduction problems, where there is a dominant elliptic 
component. The row-column lumping procedure combined with the 
element-based reconstruction algorithm can yield a computationally 
efficient preconditiorier or multi-level solution scheme. 

2. Another potential a,pplication for the 1-D multi-scale element is in 
the one-dimensional turbulence (ODT) sub-grid scale modeling efforts. 
Here, the implementation of a fast solution to the 1-D parabolic prob- 
lem could aid in reducing the computational complexity of this a p  
proach . 

3. The application of RKPM to high-rate7 large-deformation physical prob.- 
lems has been demonstrated, but there are still many questions to be 
answered. Of particular concern here is the application to shock dom- 
inated problems and the construction of a viable artificial viscosity 
treatment. There if; a clear need for continued refinement of search 
algorithms for the numerical integration procedures in RKPM. 

4. The implementation of two-scale decomposition strategies based upon 
the finite-domain ccmvolution kernel of RKPM promises to yield fil- 
tering strategies thiit can be used in a stand-alone mode for post- 
processing simulation results. In addition, this type of filter possesses 
consistency properties that make it a viable candidate for explicit fil- 
tering in large eddy simulations where a dynamic sub-grid scale model 
is used. 
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