The rotary electrorheological effect

PDF Version Also Available for Download.

Description

The viscous response of electrorheological fluids is usually manipulated through the use of DC or uniaxial AC electric fields. The result is that fibrillated structures parallel to the field form in a quiescent fluid; the distortion of such structures in a flow determines the enhanced viscous response, at least at low and moderate flow rates. We have conducted preliminary studies of electrorheological response in a different field configurations rotating electric field. With respect to the uniaxial AC case. there are two new developments in this type of field. The structures formed are disk-like, in the plane of the rotating field. ... continued below

Physical Description

9 p.

Creation Information

Halsey, T.C.; Anderson, R.A. & Martin, J.E. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The viscous response of electrorheological fluids is usually manipulated through the use of DC or uniaxial AC electric fields. The result is that fibrillated structures parallel to the field form in a quiescent fluid; the distortion of such structures in a flow determines the enhanced viscous response, at least at low and moderate flow rates. We have conducted preliminary studies of electrorheological response in a different field configurations rotating electric field. With respect to the uniaxial AC case. there are two new developments in this type of field. The structures formed are disk-like, in the plane of the rotating field. Furthermore, the structures rotate either with or against the field, depending on the dielectric or conductivity contrast with the surrounding fluid.

Physical Description

9 p.

Notes

OSTI as DE96003703

Source

  • The electro-rheological fluids, magneto-reheological suspensions and associated technology, Sheffield (United Kingdom), 10-14 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96003703
  • Report No.: SAND--95-2853C
  • Report No.: CONF-9507205--1
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 172473
  • Archival Resource Key: ark:/67531/metadc672720

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 6:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Halsey, T.C.; Anderson, R.A. & Martin, J.E. The rotary electrorheological effect, article, December 31, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc672720/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.